Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, , 104 - 114, 30.09.2024
https://doi.org/10.30516/bilgesci.1460055

Öz

Kaynakça

  • Adediran, J.A., Mnkeni, P.N., Mafu, N.C., Muyima, N.Y. (2004). Changes in Chemical Properties and Temperature during the Composting of Tobacco Waste with Other Organic Materials, and Effects of Resulting Composts on Lettuce (Lactuca sativa L.) and Spinach (Spinacea oleracea L.). Biological Agriculture and Horticulture, 22, 101 – 119.
  • Ansari, A. A., Kumar, S. (2010). Effect of vermiwash and vermicompost on soil parameters and productivity of okra (Abelmoschus esculentus) in Guyana. Current Advances in Agricultural Sciences (An International Journal), 2(1), 1-4.
  • Azarmi, R., Giglou, M. T., Taleshmikail, R. D. (2008). Influence of vermicompost on soil chemical and physical properties in tomato (Lycopersicum esculentum) field. African Journal of Biotechnology, 7(14).
  • Baddi, G. A., Hafidi, M., Gilard, V., Revel, J. C. (2003). Characterization of humic acids produced during composting of olive mill wastes: Elemental and spectroscopic analyses (FT-IR and 13C-NMR). Agronomie, 23(7), 661-666.
  • Baldock, J. A., Smernik, R. J. (2002). Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Organic Geochemistry, 33(9), 1093–1109. doi:10.1016/s0146-6380(02)00062-1
  • Bellitürk, K., Turan, H., Göçmez, S., Solmaz, Y., Üstündağ, Ö., Adiloğlu, A. (2020). Effects of vermicompost applications on microelemental contents of olive saplings’ production material. Tekirdağ Ziraat Fakültesi Dergisi, 17(3), 285-291.
  • Bello, A. S., Al-Ghouti, M. A., Abu-Dieyeh, M. H. (2022). Sustainable and long-term management of municipal solid waste: A review. Bioresource Technology Reports, 101067.
  • Campitelli, P., Ceppi, S. (2008). Effects of composting technologies on the chemical and physicochemical properties of humic acids. Geoderma, 144(1-2), 325-333.
  • Canet, R., Pomares, F., Cabot, B., Chaves, C., Ferrer, E., Ribó, M., Albiach, M. R. (2008). Composting olive mill pomace and other residues from rural southeastern Spain. Waste Management, 28(12), 2585-2592.
  • Chen, Y., Zhang, Y., Shi, X., Shi, E., Zhao, T., Zhang, Y., Xu, L. (2023). The contribution of earthworms to carbon mineralization during vermicomposting of maize stover and cow dung. Bioresource Technology, 368, 128283.
  • Dajko, M. Vasilikiotisi C. (2015). Vermicompositng of two-phase olive mill waste (OMW) using the earthworm Eisenia fetida with the aim to reduce environmental pollution and produce a high quality organic fertilizer and soil amendment. Fork to Farm: International Journal of Innovative Research and Practice, 2(1) 1-11.
  • Das, T., Saikia, B. K., Baruah, B. P., Das, D. (2015). Characterizations of humic acid isolated from coals of two Nagaland Coalfields of India in relation to their origin. Journal of the Geological Society of India, 86(4), 468-474. Delgado-Moreno, L., Peña, A. (2009). Compost and vermicompost of olive cake to bioremediate triazines-contaminated soil. Science of the Total Environment, 407(5), 1489-1495.
  • El Joumri, L., Labjar, N., Dalimi, M., Harti, S., Dhiba, D., El Messaoudi, N., ... El Hajjaji, S. (2022). Life cycle assessment (LCA) in the olive oil value chain: A descriptive review. Environmental Development, 100800.
  • El-Haddad, M. E., Zayed, M. S., El-Sayed, G. A. M., Hassanein, M. K., Abd El-Satar, A. M. (2014). Evaluation of compost, vermicompost and their teas produced from rice straw as affected by addition of different supplements. Annals of Agricultural Sciences, 59(2), 243-251.
  • European Environment Agency, (2009). EEA Report No 7/2009, Diverting waste from landfill: Effectiveness of waste‑management policies in the European Union, ISSN 1725‑9177. https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.eea.europa.eu/publications/diverting-waste-from-landfill-effectiveness-of-waste-management-policies-in-the-european-union/download&ved=2ahUKEwjc0ZqUlZSFAxUHQvEDHdYHChAQFnoECCkQAQ&usg=AOvVaw2I3K8pDV0lcDIgU1CW-0mf (accessed 27 March 2024)
  • European Parliament, (2018). Sustainable waste management: what the EU is doing. 20180328STO00751. https://www.europarl.europa.eu/pdfs/news/expert/2018/4/story/20180328STO00751/20180328STO00751_en.pdf (accessed 27 March 2024)
  • Göçmez, S., Bellitürk, K., Görres, H. J., Turan, H. S., Üstündağ, Ö., Solmaz, Y., Adiloğlu, A. (2019). The Effects of the use of vermicompost in olive tree farming on microbiological and biochemical characteristics of the production material. Erwerbs-Obstbau, 61(4), 337-344.
  • Gören, S., Özdemir, F. (2011). Regulation of waste and waste management in Turkey. Waste Management and Research, 29(4), 433–441. https:// doi. org/ 10. 1177/ 07342 42X10 378887
  • Gutiérrez-Miceli, F. A., Santiago-Borraz, J., Molina, J. A. M., Nafate, C. C., Abud-Archila, M., Llaven, M. A. O., ... Dendooven, L. (2007). Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (Lycopersicum esculentum). Bioresource Technology, 98(15), 2781-2786.
  • Hammes, K., Smernik, R. J., Skjemstad, J. O., Herzog, A., Vogt, U. F., Schmidt, M.W.I. (2006). Synthesis and characterisation of laboratory-charred grass straw (Oryza sativa) and chestnut wood (Castanea sativa) as reference materials for black carbon quantification. Organic Geochemistry, 37(11), 1629-1633,
  • Helal, A. A., Murad, G. A., Helal, A. A. (2011). Characterization of different humic materials by various analytical techniques. Arabian Journal of Chemistry, 4(1), 51-54.
  • Kale, G., Kijchavengkul, T., Auras, R., Rubino, M., Selke, S. E., Singh, S. P. (2007). Compostability of bioplastic packaging materials: an overview. Macromolecular bioscience, 7(3), 255–277. https://doi.org/10.1002/mabi.200600168
  • Kaouachi, A., Ibijbijen, J., Amane, M., El Jaafari, S. (2013). Management of olive mill waste employing vermicomposting technology. International Journal of Science and Research (IJSR), 4(5), 886-890.
  • Komilis, D. P., Ham, R. K. (2006). Carbon dioxide and ammonia emissions during composting of mixed paper, yard waste and food waste. Waste management (New York, N.Y.), 26(1), 62–70. https://doi.org/10.1016/j.wasman.2004.12.020
  • Kumar, M. S., Rajiv, P., Rajeshwari, S., Venckatesh, R. (2015). Spectroscopic analysis of vermicompost for determination of nutritional quality. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 135, 252–255.
  • Kumas, A., Ertekin, S. G., Gurbanov, R., Şimşek, Y. E., Kocak, F., Değirmenci, L., (2023). Effect of Micromonospora sp. KSC08 on nitrogen conservation throughout composting. Biomass Conversion and Biorefinery, 13(3), 2375-2390.
  • Lakhdar, A., Rabhi, M., Ghnaya, T., Montemurro, F., Jedidi, N., Abdelly, C. (2009). Effectiveness of compost use in salt-affected soil. Journal of Hazardous Materials, 171(1-3), 29–37.
  • Lim, S. L., Wu, T. Y. (2015). Determination of maturity in the vermicompost produced from palm oil mill effluent using spectroscopy, structural characterization and thermogravimetric analysis. Ecological Engineering, 84, 515–519. Lleó, T., Albacete, E., Barrena, R., Font, X., Artola, A., Sánchez, A. (2013). Home and vermicomposting as sustainable options for biowaste management. Journal of Cleaner Production, 47, 70-76.
  • Manivannan, S., Balamurugan, M., Parthasarathi, K., Gunasekaran, G., Ranganathan, L. S. (2009). Effect of vermicompost on soil fertility and crop productivity-beans (Phaseolus vulgaris). Journal of Environmental Biology, 30(2), 275-281.
  • Mohee, R., Soobhany, N. (2014). Comparison of heavy metals content in compost against vermicompost of organic solid waste: Past and present. Resources, Conservation and Recycling, 92, 206-213.
  • Mu, M., Yang, F., Han, B., Ding, Y., Zhang, K. (2023). Insights into the panorama of antibiotic resistome in cropland soils amended with vermicompost in China. Science of The Total Environment, 161658.
  • Munroe, G. (2007). Manual of on-farm vermicomposting and vermiculture. Organic Agriculture Centre of Canada, 39, 40.
  • Muscolo, A., Papalia, T., Settineri, G., Romeo, F., Mallamaci, C. (2019). Three different methods for turning olive pomace in resource: Benefits of the end products for agricultural purpose. Science of the Total Environment, 662, 1-7.
  • Plaza, C., Nogales, R., Senesi, N., Benitez, E., Polo, A. (2008). Organic matter humification by vermicomposting of cattle manure alone and mixed with two-phase olive pomace. Bioresource technology, 99(11), 5085-5089.
  • Pospíšilová, Ľ., Fasurová, N. (2009). Spectroscopic characteristics of humic acids originated in soils and lignite. Soil and Water Research, 4(4), 168-175.
  • Rajiv, P., Rajeshwari, S., Venckatesh, R. (2013). Fourier transform-infrared spectroscopy and Gas chromatography–mass spectroscopy: Reliable techniques for analysis of Parthenium mediated vermicompost. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 116, 642-645.
  • Rashid, S.Z., “Composting and use of Compost for Organic Agriculture in Bangladesh”, Proceedings of The 4th International Conference for The Development of Integrated Pest Management in Asia and Africa, 20-22 January (2011).
  • Rautenstrauch, J. C., Aguerre, R. N., Fernández Méndez, H. (2012, September). Agronomic and economic benefits of the application of olive pomace and harvest residues composted with bioaugmentation on olive orchards. In VII International Symposium on Olive Growing 1057 (pp. 301-307).
  • Sakellariadou, F. (2006). Spectroscopic studies of humic acids from subsurface sediment samples collected across the Aegean Sea. Mediterranean Marine Science, 7(2), 11-18.
  • Soares, M. A., Quina, M. M., Quinta-Ferreira, R. M. (2013). Co-composting of eggshell waste in self-heating reactors: monitoring and end product quality. Bioresource Technology, 148, 293–301. https://doi.org/10.1016/j.biortech.2013.08.151
  • Taşeli, B.K., The impact of the European Landfill Directive on waste management strategy and current legislation in Turkey's Specially Protected Areas. (2007) Resources, Conservation and Recycling, 52(1), 119–135.
  • Venecio U. Ultra Jr., Danilo M. Mendoza and Angelina M. Briones., Chemical Changes Under Aerobic Composting and Nutrient Supplying Potential of Banana Residue Compost, Renewable Agriculture And Food Systems, 20 : 113 – 125 (2005).
  • Xiao, X., Chen, Z., Chen, B. (2016). H/C atomic ratio as a smart linkage between pyrolytic temperatures, aromatic clusters and sorption properties of biochars derived from diverse precursory materials. Scientific Reports, 6(1), 1-13.
  • Yang, L., Zhao, F., Chang, Q., Li, T., Li, F. (2015). Effects of vermicomposts on tomato yield and quality and soil fertility in greenhouse under different soil water regimes. Agricultural Water Management, 160, 98-105.
  • Zhang, L., Xu, L., Zhang, L., Zhang, Y. Chen, Y. (2023). Adsorption–desorption characteristics of atrazine on soil and vermicompost prepared with different ratios of raw materials, Journal of Environmental Science and Health, Part B, 58(9), 583-593, DOI:10.1080/03601234.2023.2247942
  • Zhou, Y., Xiao, R., Klammsteiner, T., Kong, X., Yan, B., Mihai, F. C., ... Awasthi, M. K. (2022). Recent trends and advances in composting and vermicomposting technologies: A review. Bioresource Technology, 127591.

Investigation of the Effects of Waste Olive Pomace on Vermicompost

Yıl 2024, , 104 - 114, 30.09.2024
https://doi.org/10.30516/bilgesci.1460055

Öz

The effects of olive pomace on the degradation of organic matter were investigated via vermicomposting. Biomass consisting of eggshell, cabbage, banana peel, napkin, nutshell, cattle manure, and soil was amended with varying amounts of olive pomace (0, 15, 30, 37.5%). These four mixtures, with a total of 2000g, were fed to 170 Eisenia fetida earthworms per mixture. Nitrogen adsorption-desorption, FT-IR, and elemental analyses analyzed samples collected from biomass at the end of 45 days. Results were evaluated to determine the effect of olive pomace on organic matter degradation and earthworm vitality. Nitrogen adsorption-desorption isotherms of feedstock revealed a decrease in void volumes, implying the formation of a compact structure with olive pomace addition. Vermicomposting of biomass enhanced biomass’s compactness, further validated by decreases in BET surface areas, pore sizes, and pore volumes. The 31% increase of earthworm biomass in the presence of 37.5% olive pomace implied an affinity of Eisenia fetida towards olive pomace. This finding was further validated by FT-IR peaks obtained at 2850 and 2923 cm-1, showing increased biomass aromaticity due to the degradation of readily biodegradable aliphatic structure introduced by olive pomace. Ongoing organic matter degradation could be observed with the decrease of C/N ratios in the presence of olive pomace as high as 15%. However, a further increase in olive pomace increased the C/N ratio, which was explained by the increase in total nitrogen values during vermicomposting. Elemental analyses evaluated regarding C/N, O/C, and H/C ratios also indicated increased earthworm mobility with increasing olive pomace in the feedstock. The results obtained in the study were interpreted to introduce olive pomace as a preferable nutrition source for earthworms, which was the highlight of the present study

Kaynakça

  • Adediran, J.A., Mnkeni, P.N., Mafu, N.C., Muyima, N.Y. (2004). Changes in Chemical Properties and Temperature during the Composting of Tobacco Waste with Other Organic Materials, and Effects of Resulting Composts on Lettuce (Lactuca sativa L.) and Spinach (Spinacea oleracea L.). Biological Agriculture and Horticulture, 22, 101 – 119.
  • Ansari, A. A., Kumar, S. (2010). Effect of vermiwash and vermicompost on soil parameters and productivity of okra (Abelmoschus esculentus) in Guyana. Current Advances in Agricultural Sciences (An International Journal), 2(1), 1-4.
  • Azarmi, R., Giglou, M. T., Taleshmikail, R. D. (2008). Influence of vermicompost on soil chemical and physical properties in tomato (Lycopersicum esculentum) field. African Journal of Biotechnology, 7(14).
  • Baddi, G. A., Hafidi, M., Gilard, V., Revel, J. C. (2003). Characterization of humic acids produced during composting of olive mill wastes: Elemental and spectroscopic analyses (FT-IR and 13C-NMR). Agronomie, 23(7), 661-666.
  • Baldock, J. A., Smernik, R. J. (2002). Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Organic Geochemistry, 33(9), 1093–1109. doi:10.1016/s0146-6380(02)00062-1
  • Bellitürk, K., Turan, H., Göçmez, S., Solmaz, Y., Üstündağ, Ö., Adiloğlu, A. (2020). Effects of vermicompost applications on microelemental contents of olive saplings’ production material. Tekirdağ Ziraat Fakültesi Dergisi, 17(3), 285-291.
  • Bello, A. S., Al-Ghouti, M. A., Abu-Dieyeh, M. H. (2022). Sustainable and long-term management of municipal solid waste: A review. Bioresource Technology Reports, 101067.
  • Campitelli, P., Ceppi, S. (2008). Effects of composting technologies on the chemical and physicochemical properties of humic acids. Geoderma, 144(1-2), 325-333.
  • Canet, R., Pomares, F., Cabot, B., Chaves, C., Ferrer, E., Ribó, M., Albiach, M. R. (2008). Composting olive mill pomace and other residues from rural southeastern Spain. Waste Management, 28(12), 2585-2592.
  • Chen, Y., Zhang, Y., Shi, X., Shi, E., Zhao, T., Zhang, Y., Xu, L. (2023). The contribution of earthworms to carbon mineralization during vermicomposting of maize stover and cow dung. Bioresource Technology, 368, 128283.
  • Dajko, M. Vasilikiotisi C. (2015). Vermicompositng of two-phase olive mill waste (OMW) using the earthworm Eisenia fetida with the aim to reduce environmental pollution and produce a high quality organic fertilizer and soil amendment. Fork to Farm: International Journal of Innovative Research and Practice, 2(1) 1-11.
  • Das, T., Saikia, B. K., Baruah, B. P., Das, D. (2015). Characterizations of humic acid isolated from coals of two Nagaland Coalfields of India in relation to their origin. Journal of the Geological Society of India, 86(4), 468-474. Delgado-Moreno, L., Peña, A. (2009). Compost and vermicompost of olive cake to bioremediate triazines-contaminated soil. Science of the Total Environment, 407(5), 1489-1495.
  • El Joumri, L., Labjar, N., Dalimi, M., Harti, S., Dhiba, D., El Messaoudi, N., ... El Hajjaji, S. (2022). Life cycle assessment (LCA) in the olive oil value chain: A descriptive review. Environmental Development, 100800.
  • El-Haddad, M. E., Zayed, M. S., El-Sayed, G. A. M., Hassanein, M. K., Abd El-Satar, A. M. (2014). Evaluation of compost, vermicompost and their teas produced from rice straw as affected by addition of different supplements. Annals of Agricultural Sciences, 59(2), 243-251.
  • European Environment Agency, (2009). EEA Report No 7/2009, Diverting waste from landfill: Effectiveness of waste‑management policies in the European Union, ISSN 1725‑9177. https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.eea.europa.eu/publications/diverting-waste-from-landfill-effectiveness-of-waste-management-policies-in-the-european-union/download&ved=2ahUKEwjc0ZqUlZSFAxUHQvEDHdYHChAQFnoECCkQAQ&usg=AOvVaw2I3K8pDV0lcDIgU1CW-0mf (accessed 27 March 2024)
  • European Parliament, (2018). Sustainable waste management: what the EU is doing. 20180328STO00751. https://www.europarl.europa.eu/pdfs/news/expert/2018/4/story/20180328STO00751/20180328STO00751_en.pdf (accessed 27 March 2024)
  • Göçmez, S., Bellitürk, K., Görres, H. J., Turan, H. S., Üstündağ, Ö., Solmaz, Y., Adiloğlu, A. (2019). The Effects of the use of vermicompost in olive tree farming on microbiological and biochemical characteristics of the production material. Erwerbs-Obstbau, 61(4), 337-344.
  • Gören, S., Özdemir, F. (2011). Regulation of waste and waste management in Turkey. Waste Management and Research, 29(4), 433–441. https:// doi. org/ 10. 1177/ 07342 42X10 378887
  • Gutiérrez-Miceli, F. A., Santiago-Borraz, J., Molina, J. A. M., Nafate, C. C., Abud-Archila, M., Llaven, M. A. O., ... Dendooven, L. (2007). Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (Lycopersicum esculentum). Bioresource Technology, 98(15), 2781-2786.
  • Hammes, K., Smernik, R. J., Skjemstad, J. O., Herzog, A., Vogt, U. F., Schmidt, M.W.I. (2006). Synthesis and characterisation of laboratory-charred grass straw (Oryza sativa) and chestnut wood (Castanea sativa) as reference materials for black carbon quantification. Organic Geochemistry, 37(11), 1629-1633,
  • Helal, A. A., Murad, G. A., Helal, A. A. (2011). Characterization of different humic materials by various analytical techniques. Arabian Journal of Chemistry, 4(1), 51-54.
  • Kale, G., Kijchavengkul, T., Auras, R., Rubino, M., Selke, S. E., Singh, S. P. (2007). Compostability of bioplastic packaging materials: an overview. Macromolecular bioscience, 7(3), 255–277. https://doi.org/10.1002/mabi.200600168
  • Kaouachi, A., Ibijbijen, J., Amane, M., El Jaafari, S. (2013). Management of olive mill waste employing vermicomposting technology. International Journal of Science and Research (IJSR), 4(5), 886-890.
  • Komilis, D. P., Ham, R. K. (2006). Carbon dioxide and ammonia emissions during composting of mixed paper, yard waste and food waste. Waste management (New York, N.Y.), 26(1), 62–70. https://doi.org/10.1016/j.wasman.2004.12.020
  • Kumar, M. S., Rajiv, P., Rajeshwari, S., Venckatesh, R. (2015). Spectroscopic analysis of vermicompost for determination of nutritional quality. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 135, 252–255.
  • Kumas, A., Ertekin, S. G., Gurbanov, R., Şimşek, Y. E., Kocak, F., Değirmenci, L., (2023). Effect of Micromonospora sp. KSC08 on nitrogen conservation throughout composting. Biomass Conversion and Biorefinery, 13(3), 2375-2390.
  • Lakhdar, A., Rabhi, M., Ghnaya, T., Montemurro, F., Jedidi, N., Abdelly, C. (2009). Effectiveness of compost use in salt-affected soil. Journal of Hazardous Materials, 171(1-3), 29–37.
  • Lim, S. L., Wu, T. Y. (2015). Determination of maturity in the vermicompost produced from palm oil mill effluent using spectroscopy, structural characterization and thermogravimetric analysis. Ecological Engineering, 84, 515–519. Lleó, T., Albacete, E., Barrena, R., Font, X., Artola, A., Sánchez, A. (2013). Home and vermicomposting as sustainable options for biowaste management. Journal of Cleaner Production, 47, 70-76.
  • Manivannan, S., Balamurugan, M., Parthasarathi, K., Gunasekaran, G., Ranganathan, L. S. (2009). Effect of vermicompost on soil fertility and crop productivity-beans (Phaseolus vulgaris). Journal of Environmental Biology, 30(2), 275-281.
  • Mohee, R., Soobhany, N. (2014). Comparison of heavy metals content in compost against vermicompost of organic solid waste: Past and present. Resources, Conservation and Recycling, 92, 206-213.
  • Mu, M., Yang, F., Han, B., Ding, Y., Zhang, K. (2023). Insights into the panorama of antibiotic resistome in cropland soils amended with vermicompost in China. Science of The Total Environment, 161658.
  • Munroe, G. (2007). Manual of on-farm vermicomposting and vermiculture. Organic Agriculture Centre of Canada, 39, 40.
  • Muscolo, A., Papalia, T., Settineri, G., Romeo, F., Mallamaci, C. (2019). Three different methods for turning olive pomace in resource: Benefits of the end products for agricultural purpose. Science of the Total Environment, 662, 1-7.
  • Plaza, C., Nogales, R., Senesi, N., Benitez, E., Polo, A. (2008). Organic matter humification by vermicomposting of cattle manure alone and mixed with two-phase olive pomace. Bioresource technology, 99(11), 5085-5089.
  • Pospíšilová, Ľ., Fasurová, N. (2009). Spectroscopic characteristics of humic acids originated in soils and lignite. Soil and Water Research, 4(4), 168-175.
  • Rajiv, P., Rajeshwari, S., Venckatesh, R. (2013). Fourier transform-infrared spectroscopy and Gas chromatography–mass spectroscopy: Reliable techniques for analysis of Parthenium mediated vermicompost. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 116, 642-645.
  • Rashid, S.Z., “Composting and use of Compost for Organic Agriculture in Bangladesh”, Proceedings of The 4th International Conference for The Development of Integrated Pest Management in Asia and Africa, 20-22 January (2011).
  • Rautenstrauch, J. C., Aguerre, R. N., Fernández Méndez, H. (2012, September). Agronomic and economic benefits of the application of olive pomace and harvest residues composted with bioaugmentation on olive orchards. In VII International Symposium on Olive Growing 1057 (pp. 301-307).
  • Sakellariadou, F. (2006). Spectroscopic studies of humic acids from subsurface sediment samples collected across the Aegean Sea. Mediterranean Marine Science, 7(2), 11-18.
  • Soares, M. A., Quina, M. M., Quinta-Ferreira, R. M. (2013). Co-composting of eggshell waste in self-heating reactors: monitoring and end product quality. Bioresource Technology, 148, 293–301. https://doi.org/10.1016/j.biortech.2013.08.151
  • Taşeli, B.K., The impact of the European Landfill Directive on waste management strategy and current legislation in Turkey's Specially Protected Areas. (2007) Resources, Conservation and Recycling, 52(1), 119–135.
  • Venecio U. Ultra Jr., Danilo M. Mendoza and Angelina M. Briones., Chemical Changes Under Aerobic Composting and Nutrient Supplying Potential of Banana Residue Compost, Renewable Agriculture And Food Systems, 20 : 113 – 125 (2005).
  • Xiao, X., Chen, Z., Chen, B. (2016). H/C atomic ratio as a smart linkage between pyrolytic temperatures, aromatic clusters and sorption properties of biochars derived from diverse precursory materials. Scientific Reports, 6(1), 1-13.
  • Yang, L., Zhao, F., Chang, Q., Li, T., Li, F. (2015). Effects of vermicomposts on tomato yield and quality and soil fertility in greenhouse under different soil water regimes. Agricultural Water Management, 160, 98-105.
  • Zhang, L., Xu, L., Zhang, L., Zhang, Y. Chen, Y. (2023). Adsorption–desorption characteristics of atrazine on soil and vermicompost prepared with different ratios of raw materials, Journal of Environmental Science and Health, Part B, 58(9), 583-593, DOI:10.1080/03601234.2023.2247942
  • Zhou, Y., Xiao, R., Klammsteiner, T., Kong, X., Yan, B., Mihai, F. C., ... Awasthi, M. K. (2022). Recent trends and advances in composting and vermicomposting technologies: A review. Bioresource Technology, 127591.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Orman Biyokütlesi ve Biyoürünleri
Bölüm Araştırma Makaleleri
Yazarlar

Alev Akpinar Borazan 0000-0002-3815-2101

Levent Değirmenci 0000-0001-6608-0398

Öznur Cumhur Değirmenci 0000-0003-4486-2959

Erken Görünüm Tarihi 30 Eylül 2024
Yayımlanma Tarihi 30 Eylül 2024
Gönderilme Tarihi 27 Mart 2024
Kabul Tarihi 16 Eylül 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Akpinar Borazan, A., Değirmenci, L., & Cumhur Değirmenci, Ö. (2024). Investigation of the Effects of Waste Olive Pomace on Vermicompost. Bilge International Journal of Science and Technology Research, 8(2), 104-114. https://doi.org/10.30516/bilgesci.1460055