Derleme
BibTex RIS Kaynak Göster

Edible Insects with in Scope of Sustainable Nutrition

Yıl 2022, , 1166 - 1178, 31.12.2022
https://doi.org/10.35193/bseufbd.1163805

Öz

It is predicted that the world population will exceed 9 billion in the following years. It is thought that people will have great problems in reaching sufficient animal product resources due to the increasing population, growing urbanization rate, economic reasons, and some environmental factors. For this reason, traditional protein sources will be insufficient and edible insects will have to be taken into account as alternative protein sources. Many insect species are edible today, including ants, grasshoppers, bees, wasps, crickets and more. It is known that more than 1,900 insect species are edible in the world; these insect species are used as human food, and approximately 2 billion people worldwide consume insects. When plant and animal proteins and insect proteins are compared, edible insects are valuable sources in terms of essential amino acid profile, total protein level, and other nutritional values. In addition, the obtained bioactive substances can be used in the promotion of health and the prevention of diseases. There are studies on edible insects in the field of food in the literature and they are increasing day by day. In this review, information about the edible insects cricket (Acheta domesticus), mealworm (Tenebrio molitor), black soldier fly (Hermetia illucens), grasshopper (Locusta migratoria) and silk worm (Bombyx mori) aimed at providing information transfer and their use in food.

Kaynakça

  • FAO, (2019). Food and Agriculture Organization of the United Nations World Health Organization, Sustainable Healthy Diets Guiding Principles. Food and Agriculture Organization of the United Nations Rome, http://www.fao.org/3/ca6640en/CA6640EN.pdf / (Erişim: 25.05.2022).
  • FAO, (2017). The Future of Food and Agriculture, Trends and Challenges. Food and Agriculture Organization of the United Nations Rome, http://www.fao.org/3/a-i6583e.pdf / (Erişim: 25.05.2022).
  • Van Huis, A., & Oonincx, D. G. (2017). The Environmental Sustainability of Insects as Food and Feed, A Review. Agronomy for Sustainable Development, 37(5), 1-14.
  • Van der Spiegel, M., Noordam, M. Y., & Van der Fels‐Klerx, H. J. (2013). Safety of Novel Protein Sources (Insects, Microalgae, Seaweed, Duckweed, and Rapeseed) and Legislative Aspects for Their Application in Food and Feed Production. Comprehensive reviews in food science and food safety, 12(6), 662-678.
  • Van Huis, A. (2020). Insects As Food and Feed, A New Emerging Agricultural Sector: A Review. Journal of Insects as Food and Feed, 6(1), 27-44.
  • Imathiu, S. (2020). Benefits and Food Safety Concerns Associated with Consumption of Edible Insects. NFS Journal, 18, 1-11.
  • İpçak, H. H., Özüretmen, S., Alçiçek, A., & Özelçam, H. (2018). Alternatif Protein Kaynaklarının Hayvan Beslemede Kullanım Olanakları. Hayvansal Üretim, 59(1), 51-58.
  • Özkan, M., & Güneş, E. (2020). Alternatif Gıda Kaynağı Olarak Yenilebilir Böceklerin Kullanımına Dair Bakış Açılarının Değerlendirilmesi. Journal Of Tourism and Gastronomy Studies, 8(2), 839-851.
  • Perez-Santaescolastica, C., De Winne, A., Devaere, J., & Fraeye, I. (2022). The Flavour of Edible Insects: A Comprehensive Review on Volatile Compounds and Their Analytical Assessment. Trends in Food Science & Technology, 127, 352-367.
  • Güneş, E., & Özkan, M. (2018). Insects as Food and Feed in The Turkey: Current Behaviours. International Journal of Environmental Pollution and Environmental Modelling, 1(1), 10-15.
  • Delvendahl, N., Rumpold, B. A., & Langen, N. (2022). Edible Insects as Food–Insect Welfare and Ethical Aspects from A Consumer Perspective. Insects, 13(2), 121.
  • Bisconsin-Júnior, A., Rodrigues, H., Behrens, J. H., da Silva, M. A. A. P., & Mariutti, L. R. B. (2022). “Food Made with Edible Insects”: Exploring the Social Representation of Entomophagy Where It Is Unfamiliar. Appetite, 173, 106001.
  • İncekara, Ü. (2017). Opportunities For Using the Insect Potential in Wetlands of Turkey as An Alternative Protein Source. The Black Sea Journal of Sciences, 7(1), 117-125.
  • Koç, K., İncekara, Ü. & Türkez, H., (2014). Biomonitoring of the Potential of Genotoxic and Oxidative Effects of Commercial Edible Dung Beetles (Onitis Sp.), Flying Grasshopper (Caelifera Sp.) and Mole Crickets (Gryllotalpa Sp.). Toxicology and Industrial Health, 30(8), 683-689.
  • Türkez, H., İncekara, Ü., Güner, A., Aydın E., Dirican, E. & Togar, B. (2014). The Cytogenetic Effects of The Aqueous Extracts of Migratory Locust (Locusta Migratoria) in Vitro. Toxicology and Industrial Health, 30(3), 233-237.
  • Memiş, E., Türkez, H., İncekara, Ü., Banjo, A.D. & Fasunwon, B.T. (2013). In Vitro Biomonitoring of The Genotoxic and Oxidative Potentials of Two Commonly Eaten Insects in Southwestern Nigeria, Toxicology and Industrial Health, 29 (1), 52-59.
  • Türkez, H., İncekara, Ü. & Erman, O. (2010). Biomonitoring of the Genotoxic Potentials of Aqueous Extracts of Two Edible Insects Species in Vitro. Turkish Journal of Entomology, 34 (4), 411-417.
  • Koç, K., İncekara, Ü., Türkez, H. & Çelik, K. (2019). In Vitro Assessment of Genotoxic and Oxidative Effects Potentials of Edible Bamboo Worms and Weaver Ants. Munis Entomology & Zoology, 14 (2), 496-501.
  • Koç, K., Memiş, E., Polat, H., Türkez, H., & İncekara, Ü. (2012). Effects Potentials of Commercial Edible Heterometrusspinifer in Vitro. Munis Entomology & Zoology, 7(1), 496-501.
  • Aydoğan, Z., İncekara, Ü. & Gürol, A. (2018). Preliminary Study on Edible Insect Species Cybisterlim batus (Fabricius 1775) and Its Heavy Element Contents. Anadolu Journal of Aegean Agricultural Research Institute, 28(1), 94-99.
  • Özdal, M., İncekara, Ü., Polat, A., Gur, Ö., Kurbanoğlu, E.B. & Taşar, G. E. (2012). Isolation of Filamentous Fungi Associated with Two Common Edible Aquatic Insects, Hydrophilus piceus and Dytiscus marginalis. Journal of Microbiology, Biotechnology and Food Sciences, 2 (1), 95-105.
  • Aydoğan, Z. (2021). Anthropo-Entomophagy: Quantitatively Chemical Assessment of Some Edible Arthropods, Bought from an E-Shop. Environmental Science and Pollution Research, 28(12), 15462-15470.
  • Mishyna, M., Keppler, J. K., & Chen, J. (2021). Techno-Functional Properties of Edible Insect Proteins and Effects of Processing. Current Opinion in Colloid & Interface Science, 56, 101508.
  • Güneş, E. (2018). Gastronomide Güncel Konular. Billur Yayınevi, Konya, 14, (281-308).
  • Nowakowski, A. C., Miller, A. C., Miller, M. E., Xiao, H., & Wu, X. (2022). Potential Health Benefits of Edible Insects. Critical Reviews in Food Science and Nutrition, 62(13), 3499-3508.
  • Wade, M., & Hoelle, J. (2020). A Review of Edible Insect Industrialization: Scales of Production and Implications for Sustainability. Environmental Research Letters, 15(12), 123013.
  • Barbi, S., Macavei, L.I., Fuso, A., Luparelli, A.V., Caligiani, A., Ferrari, A.M., Maistrello, L. & Montorsi, M. (2020). Valorization of Seasonal Agri-Food Leftovers Through Insects. Science of the Total Environ, 709, 136209.
  • Kim, T. K., Cha, J. Y., Yong, H. I., Jang, H. W., Jung, S., & Choi, Y. S. (2022). Application of Edible Insects as Novel Protein Sources and Strategies for Improving Their Processing. Food Science of Animal Resources, 42(3), 372.
  • Kaymaz, E., & Ulema, Ş. (2020). Yenilebilir Böceklerin Menülerde Kullanılması Üzerine Bir Araştırma-Kapadokya Örneği. Journal of Travel and Tourism Research, (14), 46-63.
  • Van Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G., & Vantomme, P. (2013). Edible Insects: Future Prospects for Food and Feed Security (No. 171). Food and agriculture organization of the United Nations.
  • Skotnicka, M., Karwowska, K., Kłobukowski, F., Borkowska, A., & Pieszko, M. (2021). Possibilities of the Development of Edible Insect-Based Foods in Europe. Foods, 10(4), 766.
  • Alamu, O. T., Amao, A. O., Nwokedi, C. I., Oke, O. A. & Lawa, I. O. (2012). Diversity and Nutritional Status of Edible Insects in Nigeria: A Rewiew. International Journal of Biodiversity and Conservation, 5 (4), 215-222.
  • Gao, Y., Zhao, Y. J., Xu, M. L., & Shi, S. S. (2021). Clanis bilineata tsingtauica: A Sustainable Edible Insect Resource. Sustainability, 13(22), 12533.
  • FAO (2020). Insects for Food and Feed. The Contribution of Insects to Food Security, Livelihoods and the Environment. http://www.fao.org/edible-insects/en/ (Erişim: 26.05.2022).
  • Mintah, B. K., He, R., Agyekum, A. A., Dabbour, M., Golly, M. K., & Ma, H. (2020). Edible Insect Protein for Food Applications: Extraction, Composition, and Functional Properties. Journal of Food Process Engineering, 43(4), e13362.
  • Gravel, A., & Doyen, A. (2020). The Use of Edible Insect Proteins in Food: Challenges and Issues Related to Their Functional Properties. Innovative Food Science & Emerging Technologies, 59, 102272.
  • Borges, M. M., da Costa, D. V., Trombete, F. M., &Câmara, A. K. F. I. (2022). Edible Insects as a Sustainable Alternative to Food Products: An Insight into Quality Aspects of Reformulated Bakery and Meat Products. Current Opinion in Food Science, 100864.
  • Güneş E., Özkan M. & Şahin G.R. (2018). Güncel Turizm Araştırmaları. İKSAD Yayınevi, Ankara, 156-168.
  • Magara, H. J., Niassy, S., Ayieko, M. A., Mukundamago, M., Egonyu, J. P., Tanga, C. M., ... & Ekesi, S. (2021). Edible Crickets (Orthoptera) Around the World: Distribution, Nutritional Value, and Other Benefits—A Review. Frontiers in nutrition, 7, 257.
  • Jansson, A. and Berggren, Å. (2015). Insects as Food-Something for the Future 1st ed. Sweedish University of Agricultural Sciences. Uppsala, 14-20.
  • Özen, E. Z. (2018). Gastronomi ve Yiyecek Tarihi. Detay Yayıncılık, Ankara, 310-327.
  • Kemsawasd, V., Inthachat, W., Suttisansanee, U., & Temviriyanukul, P. (2022). Road to the Red Carpet of Edible Crickets Through Integration into the Human Food Chain with Biofunctions and Sustainability: A Review. International Journal of Molecular Sciences, 23(3), 1801.
  • da Silva Lucas, A. J., de Oliveira, L. M., da Rocha, M., & Prentice, C. (2020). Edible Insects: An Alternative of Nutritional, Functional and Bioactive Compounds. Food chemistry, 311, 126022.
  • Schmidt, A., Call, L. M., Macheiner, L., & Mayer, H. K. (2019). Determination of Vitamin B12 in Four Edible Insect Species by Immunoaffinity and Ultra-High Performance Liquid Chromatography. Food chemistry, 281, 124-129.
  • Köhler, R., Kariuki, L., Lambert, C., & Biesalski, H. K. (2019). Protein, Amino Acid and Mineral Composition of Some Edible Insects from Thailand. Journal of Asia-Pacific Entomology, 22(1), 372-378.
  • Manditsera, F. A., Luning, P. A., Fogliano, V., & Lakemond, C. M. (2019). Effect of Domestic Cooking Methods on Protein Digestibility and Mineral Bioaccessibility of Wild Harvested Adult Edible Insects. Food Research International, 121, 404-411.
  • Elhassan, M., Wendin, K., Olsson, V., & Langton, M. (2019). Quality Aspects of Insects as Food—Nutritional, Sensory, and Related Concepts. Foods, 8(3), 95.
  • Son, Y. J., Hwang, I. K., Nho, C. W., Kim, S. M., & Kim, S. H. (2021). Determination of Carbohydrate Composition in Mealworm (Tenebrio Molitor L.) Larvae and Characterization of Mealworm Chitin and Chitosan. Foods, 10(3), 640.
  • Smith, R., Pryor, R., (2019). Enabling the Exploitation of Insects as a Sustainable Source of Protein for Animal Feed and Human Nutrition, 46th University of Nottingham Feed Conference, United Kingdom, 5, 1.
  • Jozefiak, D., & Engberg, R.M. (2015). Insect as Poultry Feed. 20th European symposium on Poultry Nutrition, Prague, Czech Republic, 24, 27.
  • Pyo, S. J., Kang, D. G., Jung, C., & Sohn, H. Y. (2020). Anti-thrombotic, Antioxidant and Haemolysis Activities of Six Edible Insect Species. Foods, 9(4), 401.
  • Gessner, D. K., Schwarz, A., Meyer, S., Wen, G., Most, E., Zorn, H., & Eder, K. (2019). Insect Meal as Alternative Protein Source Exerts Pronounced Lipid-Lowering Effects in Hyperlipidemic Obese Zucker Rats. The Journal of Nutrition, 149(4), 566-577.
  • Kuntadi, K., Adalina, Y., & Maharani, K. E. (2018). Nutritional Compositions of Six Edible Insects in Java. Indonesian journal of forestry research, 5(1), 57-68.
  • Kröncke, N., Grebenteuch, S., Keil, C., Demtröder, S., Kroh, L., Thünemann, A. F., & Haase, H. (2019). Effect of Different Drying Methods on Nutrient Quality of the Yellow Mealworm (Tenebrio molitor L.). Insects, 10(4), 84.
  • Papastavropoulou, K., Koupa, A., Kritikou, E., Kostakis, M., & Proestos, C. (2021). Edible Insects: Benefits and Potential Risk for Consumers and the Food Industry. Biointerface Res Appl Chem, 12, 5131-49.
  • Hong, J., Han, T., & Kim, Y. Y. (2020). Mealworm (Tenebrio molitor Larvae) as an Alternative Protein Source for Monogastric Animal: A Review. Animals, 10(11), 2068.
  • Lenaerts, S., Van Der Borght, M., Callens, A., & Van Campenhout, L. (2018). Suitability of Microwave Drying for Mealworms (Tenebrio Molitor) as Alternative to Freeze Drying: Impact on Nutritional Quality and Colour. Food chemistry, 254, 129-136.
  • Barragan-Fonseca, K. B., Dicke, M., & van Loon, J. J. (2017). Nutritional Value of the Black Soldier Fly (Hermetiaillucens L.) and Its Suitability as Animal Feed–A Review. Journal of Insects as Food and Feed, 3(2), 105-120.
  • Sevilmiş, U., Seydosoglu, S., Ayaşan, T., Bilgili, E., & Sevilmiş, D. (2019). Siyah Asker Sineğinin (Hermetiaillucens L.) Yem Kaynağı Olarak Değerlendirilmesi. Journal of the Institute of Science and Technology, 9(4), 2379-2389.
  • Giannetto, A., Oliva, S., Riolo, K., Savastano, D., Parrino, V., Cappello, T., & Mauceri, A. (2020). Waste Valorization Via Hermetia illucens to Produce Protein-Rich Biomass for Feed: Insight into the Critical Nutrient Taurine. Animals, 10(9), 1710.
  • Matin, N., Utterback, P., & Parsons, C. M. (2021). True Metabolizable Energy and Amino Acid Digestibility in Black Soldier Fly Larvae Meals, Cricket Meal, and Mealworms Using a Precision-Fed Rooster Assay. Poultry science, 100(7), 101146.
  • Barragán-Fonsec, K. B. (2018). Flies Are What They Eat: Tailoring Nutrition of Black Soldier Fly (Hermetia illucens L.) for Larval Biomass Production and Fitness. Doctoral Dissertation, Wageningen University and Research, 19-45.
  • Kouřimská, L. & Adámková, A. (2016). Nutritional and Sensory Quality of Edible Insects. NFS Journal, 4, 22-26.
  • Karaman, R., & Bozok, D. (2019). Alternatif Besin Kaynağı Olarak Çekirge: Nitel Bir Uygulama. Journal of Tourism and Gastronomy Studies, 7(3), 1573-1587.
  • Purschke, B., Tanzmeister, H., Meinlschmidt, P., Baumgartner, S., Lauter, K., & Jäger, H. (2018). Recovery of Soluble Proteins from Migratory locust (Locusta migratoria) and Characterisation of Their Compositional and Techno-functional properties. Food Research International, 106, 271-279.
  • Paul, A., Frederich, M., Uyttenbroeck, R., Hatt, S., Malik, P., Lebecque, S., ... & Danthine, S. (2016). Grasshoppers as a Food Source? A Review. Biotechnologie, Agronomie, Société et Environnement, 20, 337-352.
  • Meyer-Rochow, V. B., Gahukar, R. T., Ghosh, S., & Jung, C. (2021). Chemical Composition, Nutrient Quality and Acceptability of Edible Insects Are Affected by Species, Developmental Stage, Gender, Diet, and Processing Method. Foods, 10(5), 1036.
  • Malinga, G. M., Acur, A., Ocen, P., Holm, S., Rutaro, K., Ochaya, S., & Roininen, H. (2022). Growth and Reproductive Performance of Edible Grasshopper (Ruspoliadifferens) on Different Artificial Diets. Journal of Economic Entomology, 115(3), 724-730.
  • Hirunyophat, P., Chalermchaiwat, P., On‐nom, N., & Prinyawiwatkul, W. (2021). Selected Nutritional Quality and Physicochemical Properties of Silkworm Pupae (Frozen or Powdered) from Two Species. International Journal of Food Science & Technology, 56(7), 3578-3587.
  • Rodríguez-Ortega, A., Pino-Moreno, J. M., Ángeles-Campos, S. C., García-Pérez, Á., Barrón-Yánez, R. M., & Callejas-Hernández, J. (2016). Valornutritivo de Larvas Y Pupas de Gusano de Seda (Bombyx Mori) (Lepidoptera: Bombycidae). Revista Colombiana de Entomología, 42(1), 69-74.
  • Tomotake, H., Katagiri, M., & Yamato, M. (2010). Silkworm Pupae (Bombyx mori) Are New Sources of High Quality Protein and Lipid. Journal of nutritional science and vitaminology, 56(6), 446-448.
  • Longvah, T., Manghtya, K., & Qadri, S. S. (2012). Eri Silkworm: A Source of Edible Oil with A High Content Of Α‐Linolenic Acid and of Significant Nutritional Value. Journal of the Science of Food and Agriculture, 92(9), 1988-1993.
  • Kowalczewski, P. Ł., Gumienna, M., Rybicka, I., Górna, B., Sarbak, P., Dziedzic, K., & Kmiecik, D. (2021). Nutritional Value and Biological Activity of Gluten-Free Bread Enriched with Cricket Powder. Molecules, 26(4), 1184.
  • Cruz-López, S. O., Álvarez-Cisneros, Y. M., Domínguez-Soberanes, J., Escalona-Buendía, H. B., & Sánchez, C. N. (2022). Physicochemical and Sensory Characteristics of Sausages Made with Grasshopper (Sphenarium Purpurascens) Flour. Foods, 11(5), 704.
  • Biró, B., Fodor, R., Szedljak, I., Pásztor-Huszár, K., & Gere, A. (2019). Buckwheat-Pasta Enriched with Silkworm Powder: Technological Analysis and Sensory Evaluation. LWT, 116, 108542.
  • Roncolini, A., Milanović, V., Aquilanti, L., Cardinali, F., Garofalo, C., Sabbatini, R., ... & Osimani, A. (2020). Lesser Mealworm (Alphitobius diaperinus) Powder as A Novel Baking Ingredient for Manufacturing High-Protein, Mineral-Dense Snacks. Food Research International, 131, 109031.
  • Igual, M., García-Segovia, P., & Martínez-Monzó, J. (2021). Amino Acids Release from Enriched Bread with Edible Insect or Pea Protein During in Vitro Gastrointestinal Digestion. International Journal of Gastronomy and Food Science, 24, 100351.
  • Biró, B., Sipos, M. A., Kovács, A., Badak-Kerti, K., Pásztor-Huszár, K., & Gere, A. (2020). Cricket-Enriched Oat Biscuit: Technological Analysis and Sensory Evaluation. Foods, 9(11), 1561.
  • Oonincx, D. G., Laurent, S., Veenenbos, M. E., & van Loon, J. J. (2020). Dietary Enrichment of Edible Insects with Omega 3 Fatty Acids. Insect science, 27(3), 500-509.
  • Akande, A. O., Jolayemi, O. S., Adelugba, V. A., & Akande, S. T. (2020). Silkworm Pupae (Bombyx mori) and Locusts as Alternative Protein Sources for High-Energy Biscuits. Journal of Asia-Pacific Entomology, 23(1), 234-241.
  • Montevecchi, G., Licciardello, F., Masino, F., Miron, L. T., & Antonelli, A. (2021). Fortification of Wheat Flour with Black Soldier Fly Prepupae. Evaluation of Technological and Nutritional Parameters of the Intermediate Doughs and Final Baked Products. Innovative Food Science & Emerging Technologies, 69, 102666.
  • Kim, T. K., Yong, H. I., Cha, J. Y., Park, S. Y., Jung, S., & Choi, Y. S. (2022). Drying-Induced Restructured Jerky Analog Developed Using a Combination of Edible Insect Protein and Textured Vegetable Protein. Food Chemistry, 373, 131519.
  • David-Birman, T., Romano, A., Aga, A., Pascoviche, D., Davidovich-Pinhas, M., & Lesmes, U. (2022). Impact of Silkworm Pupae (Bombyx mori) Powder on Cream Foaming, Ice Cream Properties and Palatability. Innovative Food Science & Emerging Technologies, 75, 102874.
  • Sriprablom, J., Kitthawee, S., & Suphantharika, M. (2022). Functional and Physicochemical Properties of Cookies Enriched with Edible Insect (Tenebrio molitor And Zophobas atratus) Powders. Journal of Food Measurement and Characterization, 16(3), 2181-2190.

Sürdürülebilir Beslenme Kapsamında Yenilebilir Böcekler

Yıl 2022, , 1166 - 1178, 31.12.2022
https://doi.org/10.35193/bseufbd.1163805

Öz

İlerleyen yıllarda dünya nüfusunun 9 milyarı geçeceği öngörülmektedir. Artan nüfus, şehirleşme oranının büyümesi, ekonomik nedenler ve bazı çevresel faktörler nedeniyle, insanların yeterli miktarda hayvansal ürün kaynaklarına ulaşmada büyük sorunlar yaşayacağı düşünülmektedir. Bu sebeple geleneksel protein kaynakları yetersiz kalacak olup, yenilebilir böceklerin alternatif protein kaynakları olarak hesaba katılması gerekecektir. Günümüzde karıncalar, çekirgeler, arılar, eşek arısı, cırcır böcekleri ve daha nicesinin dahil olduğu birçok böcek türü yenilebilmektedir. Dünyada yaklaşık olarak 1.900’den fazla böcek türünün yenilebilir olduğu, bu böcek türlerinin insan gıdası olarak kullanıldığı ve dünya çapında yaklaşık 2 milyar insanın böcek tükettiği bilinmektedir. Bitkisel ve hayvansal proteinler ile böcek proteinleri karşılaştırıldığında esansiyel aminoasit profili, toplam protein seviyesi ve diğer besin değerleri bakımından yenilebilir böcekler değerli kaynaklardır. Ayrıca elde edilen biyoaktif maddeler sağlığın geliştirilmesi ve hastalıkların önlenmesinde kullanılabilmektedir. Literatürde gıda alanında yenilebilir böcekler ile ilgili çalışmalar mevcuttur ve her geçen gün artmaktadır. Bu derleme çalışmasında, yenilebilir böceklerden olan kriket böceği (Acheta domesticus), un kurdu (Tenebrio molitor), siyah asker sineği (Hermetia illucens), çekirge (Locusta migratoria) ve ipek böceği (Bombyx mori) ile ilgili bilgi verilmesi ve gıda alanında kullanımı hakkında bilgi aktarımının sağlanması amaçlanmıştır.

Kaynakça

  • FAO, (2019). Food and Agriculture Organization of the United Nations World Health Organization, Sustainable Healthy Diets Guiding Principles. Food and Agriculture Organization of the United Nations Rome, http://www.fao.org/3/ca6640en/CA6640EN.pdf / (Erişim: 25.05.2022).
  • FAO, (2017). The Future of Food and Agriculture, Trends and Challenges. Food and Agriculture Organization of the United Nations Rome, http://www.fao.org/3/a-i6583e.pdf / (Erişim: 25.05.2022).
  • Van Huis, A., & Oonincx, D. G. (2017). The Environmental Sustainability of Insects as Food and Feed, A Review. Agronomy for Sustainable Development, 37(5), 1-14.
  • Van der Spiegel, M., Noordam, M. Y., & Van der Fels‐Klerx, H. J. (2013). Safety of Novel Protein Sources (Insects, Microalgae, Seaweed, Duckweed, and Rapeseed) and Legislative Aspects for Their Application in Food and Feed Production. Comprehensive reviews in food science and food safety, 12(6), 662-678.
  • Van Huis, A. (2020). Insects As Food and Feed, A New Emerging Agricultural Sector: A Review. Journal of Insects as Food and Feed, 6(1), 27-44.
  • Imathiu, S. (2020). Benefits and Food Safety Concerns Associated with Consumption of Edible Insects. NFS Journal, 18, 1-11.
  • İpçak, H. H., Özüretmen, S., Alçiçek, A., & Özelçam, H. (2018). Alternatif Protein Kaynaklarının Hayvan Beslemede Kullanım Olanakları. Hayvansal Üretim, 59(1), 51-58.
  • Özkan, M., & Güneş, E. (2020). Alternatif Gıda Kaynağı Olarak Yenilebilir Böceklerin Kullanımına Dair Bakış Açılarının Değerlendirilmesi. Journal Of Tourism and Gastronomy Studies, 8(2), 839-851.
  • Perez-Santaescolastica, C., De Winne, A., Devaere, J., & Fraeye, I. (2022). The Flavour of Edible Insects: A Comprehensive Review on Volatile Compounds and Their Analytical Assessment. Trends in Food Science & Technology, 127, 352-367.
  • Güneş, E., & Özkan, M. (2018). Insects as Food and Feed in The Turkey: Current Behaviours. International Journal of Environmental Pollution and Environmental Modelling, 1(1), 10-15.
  • Delvendahl, N., Rumpold, B. A., & Langen, N. (2022). Edible Insects as Food–Insect Welfare and Ethical Aspects from A Consumer Perspective. Insects, 13(2), 121.
  • Bisconsin-Júnior, A., Rodrigues, H., Behrens, J. H., da Silva, M. A. A. P., & Mariutti, L. R. B. (2022). “Food Made with Edible Insects”: Exploring the Social Representation of Entomophagy Where It Is Unfamiliar. Appetite, 173, 106001.
  • İncekara, Ü. (2017). Opportunities For Using the Insect Potential in Wetlands of Turkey as An Alternative Protein Source. The Black Sea Journal of Sciences, 7(1), 117-125.
  • Koç, K., İncekara, Ü. & Türkez, H., (2014). Biomonitoring of the Potential of Genotoxic and Oxidative Effects of Commercial Edible Dung Beetles (Onitis Sp.), Flying Grasshopper (Caelifera Sp.) and Mole Crickets (Gryllotalpa Sp.). Toxicology and Industrial Health, 30(8), 683-689.
  • Türkez, H., İncekara, Ü., Güner, A., Aydın E., Dirican, E. & Togar, B. (2014). The Cytogenetic Effects of The Aqueous Extracts of Migratory Locust (Locusta Migratoria) in Vitro. Toxicology and Industrial Health, 30(3), 233-237.
  • Memiş, E., Türkez, H., İncekara, Ü., Banjo, A.D. & Fasunwon, B.T. (2013). In Vitro Biomonitoring of The Genotoxic and Oxidative Potentials of Two Commonly Eaten Insects in Southwestern Nigeria, Toxicology and Industrial Health, 29 (1), 52-59.
  • Türkez, H., İncekara, Ü. & Erman, O. (2010). Biomonitoring of the Genotoxic Potentials of Aqueous Extracts of Two Edible Insects Species in Vitro. Turkish Journal of Entomology, 34 (4), 411-417.
  • Koç, K., İncekara, Ü., Türkez, H. & Çelik, K. (2019). In Vitro Assessment of Genotoxic and Oxidative Effects Potentials of Edible Bamboo Worms and Weaver Ants. Munis Entomology & Zoology, 14 (2), 496-501.
  • Koç, K., Memiş, E., Polat, H., Türkez, H., & İncekara, Ü. (2012). Effects Potentials of Commercial Edible Heterometrusspinifer in Vitro. Munis Entomology & Zoology, 7(1), 496-501.
  • Aydoğan, Z., İncekara, Ü. & Gürol, A. (2018). Preliminary Study on Edible Insect Species Cybisterlim batus (Fabricius 1775) and Its Heavy Element Contents. Anadolu Journal of Aegean Agricultural Research Institute, 28(1), 94-99.
  • Özdal, M., İncekara, Ü., Polat, A., Gur, Ö., Kurbanoğlu, E.B. & Taşar, G. E. (2012). Isolation of Filamentous Fungi Associated with Two Common Edible Aquatic Insects, Hydrophilus piceus and Dytiscus marginalis. Journal of Microbiology, Biotechnology and Food Sciences, 2 (1), 95-105.
  • Aydoğan, Z. (2021). Anthropo-Entomophagy: Quantitatively Chemical Assessment of Some Edible Arthropods, Bought from an E-Shop. Environmental Science and Pollution Research, 28(12), 15462-15470.
  • Mishyna, M., Keppler, J. K., & Chen, J. (2021). Techno-Functional Properties of Edible Insect Proteins and Effects of Processing. Current Opinion in Colloid & Interface Science, 56, 101508.
  • Güneş, E. (2018). Gastronomide Güncel Konular. Billur Yayınevi, Konya, 14, (281-308).
  • Nowakowski, A. C., Miller, A. C., Miller, M. E., Xiao, H., & Wu, X. (2022). Potential Health Benefits of Edible Insects. Critical Reviews in Food Science and Nutrition, 62(13), 3499-3508.
  • Wade, M., & Hoelle, J. (2020). A Review of Edible Insect Industrialization: Scales of Production and Implications for Sustainability. Environmental Research Letters, 15(12), 123013.
  • Barbi, S., Macavei, L.I., Fuso, A., Luparelli, A.V., Caligiani, A., Ferrari, A.M., Maistrello, L. & Montorsi, M. (2020). Valorization of Seasonal Agri-Food Leftovers Through Insects. Science of the Total Environ, 709, 136209.
  • Kim, T. K., Cha, J. Y., Yong, H. I., Jang, H. W., Jung, S., & Choi, Y. S. (2022). Application of Edible Insects as Novel Protein Sources and Strategies for Improving Their Processing. Food Science of Animal Resources, 42(3), 372.
  • Kaymaz, E., & Ulema, Ş. (2020). Yenilebilir Böceklerin Menülerde Kullanılması Üzerine Bir Araştırma-Kapadokya Örneği. Journal of Travel and Tourism Research, (14), 46-63.
  • Van Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G., & Vantomme, P. (2013). Edible Insects: Future Prospects for Food and Feed Security (No. 171). Food and agriculture organization of the United Nations.
  • Skotnicka, M., Karwowska, K., Kłobukowski, F., Borkowska, A., & Pieszko, M. (2021). Possibilities of the Development of Edible Insect-Based Foods in Europe. Foods, 10(4), 766.
  • Alamu, O. T., Amao, A. O., Nwokedi, C. I., Oke, O. A. & Lawa, I. O. (2012). Diversity and Nutritional Status of Edible Insects in Nigeria: A Rewiew. International Journal of Biodiversity and Conservation, 5 (4), 215-222.
  • Gao, Y., Zhao, Y. J., Xu, M. L., & Shi, S. S. (2021). Clanis bilineata tsingtauica: A Sustainable Edible Insect Resource. Sustainability, 13(22), 12533.
  • FAO (2020). Insects for Food and Feed. The Contribution of Insects to Food Security, Livelihoods and the Environment. http://www.fao.org/edible-insects/en/ (Erişim: 26.05.2022).
  • Mintah, B. K., He, R., Agyekum, A. A., Dabbour, M., Golly, M. K., & Ma, H. (2020). Edible Insect Protein for Food Applications: Extraction, Composition, and Functional Properties. Journal of Food Process Engineering, 43(4), e13362.
  • Gravel, A., & Doyen, A. (2020). The Use of Edible Insect Proteins in Food: Challenges and Issues Related to Their Functional Properties. Innovative Food Science & Emerging Technologies, 59, 102272.
  • Borges, M. M., da Costa, D. V., Trombete, F. M., &Câmara, A. K. F. I. (2022). Edible Insects as a Sustainable Alternative to Food Products: An Insight into Quality Aspects of Reformulated Bakery and Meat Products. Current Opinion in Food Science, 100864.
  • Güneş E., Özkan M. & Şahin G.R. (2018). Güncel Turizm Araştırmaları. İKSAD Yayınevi, Ankara, 156-168.
  • Magara, H. J., Niassy, S., Ayieko, M. A., Mukundamago, M., Egonyu, J. P., Tanga, C. M., ... & Ekesi, S. (2021). Edible Crickets (Orthoptera) Around the World: Distribution, Nutritional Value, and Other Benefits—A Review. Frontiers in nutrition, 7, 257.
  • Jansson, A. and Berggren, Å. (2015). Insects as Food-Something for the Future 1st ed. Sweedish University of Agricultural Sciences. Uppsala, 14-20.
  • Özen, E. Z. (2018). Gastronomi ve Yiyecek Tarihi. Detay Yayıncılık, Ankara, 310-327.
  • Kemsawasd, V., Inthachat, W., Suttisansanee, U., & Temviriyanukul, P. (2022). Road to the Red Carpet of Edible Crickets Through Integration into the Human Food Chain with Biofunctions and Sustainability: A Review. International Journal of Molecular Sciences, 23(3), 1801.
  • da Silva Lucas, A. J., de Oliveira, L. M., da Rocha, M., & Prentice, C. (2020). Edible Insects: An Alternative of Nutritional, Functional and Bioactive Compounds. Food chemistry, 311, 126022.
  • Schmidt, A., Call, L. M., Macheiner, L., & Mayer, H. K. (2019). Determination of Vitamin B12 in Four Edible Insect Species by Immunoaffinity and Ultra-High Performance Liquid Chromatography. Food chemistry, 281, 124-129.
  • Köhler, R., Kariuki, L., Lambert, C., & Biesalski, H. K. (2019). Protein, Amino Acid and Mineral Composition of Some Edible Insects from Thailand. Journal of Asia-Pacific Entomology, 22(1), 372-378.
  • Manditsera, F. A., Luning, P. A., Fogliano, V., & Lakemond, C. M. (2019). Effect of Domestic Cooking Methods on Protein Digestibility and Mineral Bioaccessibility of Wild Harvested Adult Edible Insects. Food Research International, 121, 404-411.
  • Elhassan, M., Wendin, K., Olsson, V., & Langton, M. (2019). Quality Aspects of Insects as Food—Nutritional, Sensory, and Related Concepts. Foods, 8(3), 95.
  • Son, Y. J., Hwang, I. K., Nho, C. W., Kim, S. M., & Kim, S. H. (2021). Determination of Carbohydrate Composition in Mealworm (Tenebrio Molitor L.) Larvae and Characterization of Mealworm Chitin and Chitosan. Foods, 10(3), 640.
  • Smith, R., Pryor, R., (2019). Enabling the Exploitation of Insects as a Sustainable Source of Protein for Animal Feed and Human Nutrition, 46th University of Nottingham Feed Conference, United Kingdom, 5, 1.
  • Jozefiak, D., & Engberg, R.M. (2015). Insect as Poultry Feed. 20th European symposium on Poultry Nutrition, Prague, Czech Republic, 24, 27.
  • Pyo, S. J., Kang, D. G., Jung, C., & Sohn, H. Y. (2020). Anti-thrombotic, Antioxidant and Haemolysis Activities of Six Edible Insect Species. Foods, 9(4), 401.
  • Gessner, D. K., Schwarz, A., Meyer, S., Wen, G., Most, E., Zorn, H., & Eder, K. (2019). Insect Meal as Alternative Protein Source Exerts Pronounced Lipid-Lowering Effects in Hyperlipidemic Obese Zucker Rats. The Journal of Nutrition, 149(4), 566-577.
  • Kuntadi, K., Adalina, Y., & Maharani, K. E. (2018). Nutritional Compositions of Six Edible Insects in Java. Indonesian journal of forestry research, 5(1), 57-68.
  • Kröncke, N., Grebenteuch, S., Keil, C., Demtröder, S., Kroh, L., Thünemann, A. F., & Haase, H. (2019). Effect of Different Drying Methods on Nutrient Quality of the Yellow Mealworm (Tenebrio molitor L.). Insects, 10(4), 84.
  • Papastavropoulou, K., Koupa, A., Kritikou, E., Kostakis, M., & Proestos, C. (2021). Edible Insects: Benefits and Potential Risk for Consumers and the Food Industry. Biointerface Res Appl Chem, 12, 5131-49.
  • Hong, J., Han, T., & Kim, Y. Y. (2020). Mealworm (Tenebrio molitor Larvae) as an Alternative Protein Source for Monogastric Animal: A Review. Animals, 10(11), 2068.
  • Lenaerts, S., Van Der Borght, M., Callens, A., & Van Campenhout, L. (2018). Suitability of Microwave Drying for Mealworms (Tenebrio Molitor) as Alternative to Freeze Drying: Impact on Nutritional Quality and Colour. Food chemistry, 254, 129-136.
  • Barragan-Fonseca, K. B., Dicke, M., & van Loon, J. J. (2017). Nutritional Value of the Black Soldier Fly (Hermetiaillucens L.) and Its Suitability as Animal Feed–A Review. Journal of Insects as Food and Feed, 3(2), 105-120.
  • Sevilmiş, U., Seydosoglu, S., Ayaşan, T., Bilgili, E., & Sevilmiş, D. (2019). Siyah Asker Sineğinin (Hermetiaillucens L.) Yem Kaynağı Olarak Değerlendirilmesi. Journal of the Institute of Science and Technology, 9(4), 2379-2389.
  • Giannetto, A., Oliva, S., Riolo, K., Savastano, D., Parrino, V., Cappello, T., & Mauceri, A. (2020). Waste Valorization Via Hermetia illucens to Produce Protein-Rich Biomass for Feed: Insight into the Critical Nutrient Taurine. Animals, 10(9), 1710.
  • Matin, N., Utterback, P., & Parsons, C. M. (2021). True Metabolizable Energy and Amino Acid Digestibility in Black Soldier Fly Larvae Meals, Cricket Meal, and Mealworms Using a Precision-Fed Rooster Assay. Poultry science, 100(7), 101146.
  • Barragán-Fonsec, K. B. (2018). Flies Are What They Eat: Tailoring Nutrition of Black Soldier Fly (Hermetia illucens L.) for Larval Biomass Production and Fitness. Doctoral Dissertation, Wageningen University and Research, 19-45.
  • Kouřimská, L. & Adámková, A. (2016). Nutritional and Sensory Quality of Edible Insects. NFS Journal, 4, 22-26.
  • Karaman, R., & Bozok, D. (2019). Alternatif Besin Kaynağı Olarak Çekirge: Nitel Bir Uygulama. Journal of Tourism and Gastronomy Studies, 7(3), 1573-1587.
  • Purschke, B., Tanzmeister, H., Meinlschmidt, P., Baumgartner, S., Lauter, K., & Jäger, H. (2018). Recovery of Soluble Proteins from Migratory locust (Locusta migratoria) and Characterisation of Their Compositional and Techno-functional properties. Food Research International, 106, 271-279.
  • Paul, A., Frederich, M., Uyttenbroeck, R., Hatt, S., Malik, P., Lebecque, S., ... & Danthine, S. (2016). Grasshoppers as a Food Source? A Review. Biotechnologie, Agronomie, Société et Environnement, 20, 337-352.
  • Meyer-Rochow, V. B., Gahukar, R. T., Ghosh, S., & Jung, C. (2021). Chemical Composition, Nutrient Quality and Acceptability of Edible Insects Are Affected by Species, Developmental Stage, Gender, Diet, and Processing Method. Foods, 10(5), 1036.
  • Malinga, G. M., Acur, A., Ocen, P., Holm, S., Rutaro, K., Ochaya, S., & Roininen, H. (2022). Growth and Reproductive Performance of Edible Grasshopper (Ruspoliadifferens) on Different Artificial Diets. Journal of Economic Entomology, 115(3), 724-730.
  • Hirunyophat, P., Chalermchaiwat, P., On‐nom, N., & Prinyawiwatkul, W. (2021). Selected Nutritional Quality and Physicochemical Properties of Silkworm Pupae (Frozen or Powdered) from Two Species. International Journal of Food Science & Technology, 56(7), 3578-3587.
  • Rodríguez-Ortega, A., Pino-Moreno, J. M., Ángeles-Campos, S. C., García-Pérez, Á., Barrón-Yánez, R. M., & Callejas-Hernández, J. (2016). Valornutritivo de Larvas Y Pupas de Gusano de Seda (Bombyx Mori) (Lepidoptera: Bombycidae). Revista Colombiana de Entomología, 42(1), 69-74.
  • Tomotake, H., Katagiri, M., & Yamato, M. (2010). Silkworm Pupae (Bombyx mori) Are New Sources of High Quality Protein and Lipid. Journal of nutritional science and vitaminology, 56(6), 446-448.
  • Longvah, T., Manghtya, K., & Qadri, S. S. (2012). Eri Silkworm: A Source of Edible Oil with A High Content Of Α‐Linolenic Acid and of Significant Nutritional Value. Journal of the Science of Food and Agriculture, 92(9), 1988-1993.
  • Kowalczewski, P. Ł., Gumienna, M., Rybicka, I., Górna, B., Sarbak, P., Dziedzic, K., & Kmiecik, D. (2021). Nutritional Value and Biological Activity of Gluten-Free Bread Enriched with Cricket Powder. Molecules, 26(4), 1184.
  • Cruz-López, S. O., Álvarez-Cisneros, Y. M., Domínguez-Soberanes, J., Escalona-Buendía, H. B., & Sánchez, C. N. (2022). Physicochemical and Sensory Characteristics of Sausages Made with Grasshopper (Sphenarium Purpurascens) Flour. Foods, 11(5), 704.
  • Biró, B., Fodor, R., Szedljak, I., Pásztor-Huszár, K., & Gere, A. (2019). Buckwheat-Pasta Enriched with Silkworm Powder: Technological Analysis and Sensory Evaluation. LWT, 116, 108542.
  • Roncolini, A., Milanović, V., Aquilanti, L., Cardinali, F., Garofalo, C., Sabbatini, R., ... & Osimani, A. (2020). Lesser Mealworm (Alphitobius diaperinus) Powder as A Novel Baking Ingredient for Manufacturing High-Protein, Mineral-Dense Snacks. Food Research International, 131, 109031.
  • Igual, M., García-Segovia, P., & Martínez-Monzó, J. (2021). Amino Acids Release from Enriched Bread with Edible Insect or Pea Protein During in Vitro Gastrointestinal Digestion. International Journal of Gastronomy and Food Science, 24, 100351.
  • Biró, B., Sipos, M. A., Kovács, A., Badak-Kerti, K., Pásztor-Huszár, K., & Gere, A. (2020). Cricket-Enriched Oat Biscuit: Technological Analysis and Sensory Evaluation. Foods, 9(11), 1561.
  • Oonincx, D. G., Laurent, S., Veenenbos, M. E., & van Loon, J. J. (2020). Dietary Enrichment of Edible Insects with Omega 3 Fatty Acids. Insect science, 27(3), 500-509.
  • Akande, A. O., Jolayemi, O. S., Adelugba, V. A., & Akande, S. T. (2020). Silkworm Pupae (Bombyx mori) and Locusts as Alternative Protein Sources for High-Energy Biscuits. Journal of Asia-Pacific Entomology, 23(1), 234-241.
  • Montevecchi, G., Licciardello, F., Masino, F., Miron, L. T., & Antonelli, A. (2021). Fortification of Wheat Flour with Black Soldier Fly Prepupae. Evaluation of Technological and Nutritional Parameters of the Intermediate Doughs and Final Baked Products. Innovative Food Science & Emerging Technologies, 69, 102666.
  • Kim, T. K., Yong, H. I., Cha, J. Y., Park, S. Y., Jung, S., & Choi, Y. S. (2022). Drying-Induced Restructured Jerky Analog Developed Using a Combination of Edible Insect Protein and Textured Vegetable Protein. Food Chemistry, 373, 131519.
  • David-Birman, T., Romano, A., Aga, A., Pascoviche, D., Davidovich-Pinhas, M., & Lesmes, U. (2022). Impact of Silkworm Pupae (Bombyx mori) Powder on Cream Foaming, Ice Cream Properties and Palatability. Innovative Food Science & Emerging Technologies, 75, 102874.
  • Sriprablom, J., Kitthawee, S., & Suphantharika, M. (2022). Functional and Physicochemical Properties of Cookies Enriched with Edible Insect (Tenebrio molitor And Zophobas atratus) Powders. Journal of Food Measurement and Characterization, 16(3), 2181-2190.
Toplam 84 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Selen Seyhan 0000-0001-6354-4687

Emine Nakilcioğlu 0000-0003-4334-2900

Yayımlanma Tarihi 31 Aralık 2022
Gönderilme Tarihi 18 Ağustos 2022
Kabul Tarihi 2 Aralık 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Seyhan, S., & Nakilcioğlu, E. (2022). Sürdürülebilir Beslenme Kapsamında Yenilebilir Böcekler. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9(2), 1166-1178. https://doi.org/10.35193/bseufbd.1163805