Araştırma Makalesi
BibTex RIS Kaynak Göster

Genelleştirilmiş Sylvester Transpoz Matris Denkleminin Simetrik – Ters Simetrik Ayrışım Metodu ile Çözümü

Yıl 2020, , 319 - 328, 28.06.2020
https://doi.org/10.35193/bseufbd.670846

Öz

Bu çalışmada Ax=b lineer denklem sisteminin çözümü için Simetrik-Ters Simetrik Ayrışım (SSS) metodu tanıtıldı. Daha sonra


AXB+CXD+EXT F=M

genelleştirilmiş Sylvester Transpoze matris denkleminin çözümü bu metot kullanılarak ortaya konuldu. Son olarak SSS metodunun performansını resmeden sayısal bir örnek verildi.

Kaynakça

  • Z.Z. Bai, G.H. Golub and M.K. Ng (2003). Hermitian and Skew Hermitian Splitting Methods for Non-Hermitian Positive Definitive Linear Systems, SIAM J. Appl. Math. 24(3), 603-626.
  • Z.Z. Bai, M. Benzi, F. Chen (2011). On preconditioned MHSS iteration methods for complex symmetric linear systems, Numer. Algorithms, 56, 297-317.
  • M. Dehghan, A. Shirilord (2019). A generalized modified Hermitian and Skew Hermitian splitting (GMHSS) method for solving complex Sylvester matrix equation, Appl. Math. Comput. 348, 632-651.
  • M. Hajarian (2018). Biconjugate residual algorithm for solving General Sylvester-transpose matrix equations, Filomat, 32:15, 5307-5318.
  • J.W. Demmel, Applied Numerical Linear Algebra (first edition), Siam, Berkeley (1997).
  • R.A. Horn, C.R. Johnson, Matrix Analysis (second edition), Cambridge University Press, New York (2012).
  • B. Zhou, J. Lam, G.R. Duan (2011). Toward solution of matrix equation X = Af(X)B + C, Linear Algebra Appl. 435, 1370–1398.

On Solution of Generalized Sylvester Transpose Matrix Equation Using Symmetric – Skew Symmetric Splitting Method

Yıl 2020, , 319 - 328, 28.06.2020
https://doi.org/10.35193/bseufbd.670846

Öz

In this study, Symmetric-Skew Symmetric Splitting (SSS) method is introduced to solve the system of linear equations Ax=b. Then, the solution of

AXB+CXD+EXT F=M
generalized Sylvester transpose matrix equation is established by using this method. Lastly, an example is given to illustrate the performance of the SSS method.

Kaynakça

  • Z.Z. Bai, G.H. Golub and M.K. Ng (2003). Hermitian and Skew Hermitian Splitting Methods for Non-Hermitian Positive Definitive Linear Systems, SIAM J. Appl. Math. 24(3), 603-626.
  • Z.Z. Bai, M. Benzi, F. Chen (2011). On preconditioned MHSS iteration methods for complex symmetric linear systems, Numer. Algorithms, 56, 297-317.
  • M. Dehghan, A. Shirilord (2019). A generalized modified Hermitian and Skew Hermitian splitting (GMHSS) method for solving complex Sylvester matrix equation, Appl. Math. Comput. 348, 632-651.
  • M. Hajarian (2018). Biconjugate residual algorithm for solving General Sylvester-transpose matrix equations, Filomat, 32:15, 5307-5318.
  • J.W. Demmel, Applied Numerical Linear Algebra (first edition), Siam, Berkeley (1997).
  • R.A. Horn, C.R. Johnson, Matrix Analysis (second edition), Cambridge University Press, New York (2012).
  • B. Zhou, J. Lam, G.R. Duan (2011). Toward solution of matrix equation X = Af(X)B + C, Linear Algebra Appl. 435, 1370–1398.
Toplam 7 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Murat Sarduvan 0000-0001-7049-8922

Esra Kaplan 0000-0002-1872-1987

Yayımlanma Tarihi 28 Haziran 2020
Gönderilme Tarihi 6 Ocak 2020
Kabul Tarihi 29 Haziran 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Sarduvan, M., & Kaplan, E. (2020). Genelleştirilmiş Sylvester Transpoz Matris Denkleminin Simetrik – Ters Simetrik Ayrışım Metodu ile Çözümü. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 7(1), 319-328. https://doi.org/10.35193/bseufbd.670846