Araştırma Makalesi
BibTex RIS Kaynak Göster

STEM Eğitimi Yaklaşımının Özellikleri ve Değerlendirilmesi

Yıl 2020, Cilt: 37 , 155 - 175, 17.12.2020

Öz

Eğitim alanında son zamanlarda yapılan reformlar, STEM eğitimi yaklaşımının birey ve toplum hayatındaki önemini daha çok ön plana çıkarmaktadır. STEM eğitimi yaklaşımının tanımı, özellikleri ve farklılıkları ile ilgili olarak alan yazında net açıklamalar yapan çalışmalar sınırlı sayıdadır. Bu çalışmanın amacı var olan alan yazına dayanılarak STEM eğitimi yaklaşımının tanımını yapmak, özelliklerini belirlemek, ve STEM ile birlikte ele alınan üç eğitimsel yaklaşım ile farklılıklarını ortaya koymaktır. Bu bir derleme çalışması olup yapılan alan yazın taramasında çalışmaların belirlenmesinde herhangi bir ön kriter kullanılmamış, ilgili olduğu düşünülen tüm çalışmalar veri tabanlarından bu araştırma kapsamında okunmuş ve değerlendirilmeye alınmıştır. STEM eğitimi yaklaşımına ait 10 özellik belirlenmiş ve açıklanmıştır. Ayrıca STEM eğitimi yaklaşımının teorik çerçevesi olan mühendislik tasarım süreci detaylı bir şekilde açıklanmıştır. Bununla birlikte alan yazında STEM eğitimi yaklaşımı ile birlikte kullanılan proje tabanlı öğrenme, probleme dayalı öğrenme ve deneysel etkinlikler ile öğrenme ile olan benzerlik ve farklılıkları ortaya konmuştur. Çalışmanın sonuçlarına göre, STEM eğitimi yaklaşımı ile diğer yaklaşımlar arasında problem durumunu sunmada, problem durumuna çözüm bulmada ve uygulama süreçlerinde farklılıklar olduğu görülmüştür. Proje tabanlı öğrenmede süreçten ziyade ortaya bir ürünün çıkması daha önemlidir. STEM eğitimi yaklaşımında problemin çözümüne ulaşmada farklı disiplinlerin bütünleşik olarak bir tasarım için kullanılması önemliyken, probleme dayalı öğrenmede problemin çözümüne ulaşmada tek bir disiplinin kullanılması yeterli olabilir. STEM eğitimi yaklaşımının sadece bir deneysel etkinlikler süreci olmadığı, ancak STEM eğitimi yaklaşımının uygulama sürecinde deneylerden yararlanılabileceği sonucuna ulaşılmıştır.

Kaynakça

  • Adams, A. E., Miller, B. G., Saul, M. ve Pegg, J. (2014). Supporting elementary pre-service teachers to teach STEM through place-based teaching and learning experiences. Electronic Journal of Science Education, 18(5), 5.
  • Alparslan, C., Tekkaya, C. ve Geban, Ö. (2003). Using the conceptual change instruction to improve learning. Journal of Biological Education, 37(3), 133-137.
  • Altan, E.B. (2017). Disipliner Yapıdaki Derslerde STEM Eğitimi: Tasarım Temelli Öğrenme ve Probleme Dayalı STEM Uygulamaları. S. Çepni (Haz.), Kuramdan Uygulamaya STEM Eğitimi (s. 165-197). Ankara, Pegem Akademi.
  • Aranda, M. L., Lie, R., Guzey, S. S., akarsu, M., Johnston, A. ve Moore, T. J. (2020). Examining teacher talk in an engineering design-based science curricular unit. Research in Science Education, 50(2), 469-487.
  • Aranda, M. L., Lie, R. ve Guzey, S. S. (2020). Productive thinking in middle school science students’ design conversations in a design-based engineering challenge. International Journal of Technology and Design Education, 30(1), 67-81.
  • Atman, C. J., Adams, R. S., Cardella, M. E., Turns, J., Mosborg, S. ve Saleem, J. (2007). Engineering design processes: A comparison of students and expert practitioners. Journal of Engineering Education, 96(4), 359–379. http://doi.org/10.1002/j.2168-9830.2007.tb00945.x.
  • Aydın-Günbatar, S. (2019). Fen, teknoloji, mühendislik ve matematik (Fetemm) Yaklaşımı ve Fetemm’e uygun etkinlik hazırlama rehberi. H. Artun ve S. Aydın-Günbatar (Haz.), Çağdaş yaklaşımlarla destekli Fen öğretimi: Teoriden uygulamaya etkinlik rehberi (s. 2-22). Pegem A Yayıncılık.
  • Başbay, M. (2011). Proje tabanlı öğrenme. Ö. Demirel (Haz.), Eğitimde yeni yönelimler (s. 67-79). Ankara: Pegem Akademi.
  • Beane, J. A. (1995). Curriculum integration and the disciplines of knowledge. The Phi Delta Kappan, 76(8), 616-622.
  • Benitti, F. B. V. ve Spolaôr, N. (2017). How have robots supported STEM teaching?. M. S. Khine (Haz.), Robotics in STEM education (s. 103-129). Springer, Cham.
  • Berkel, H. J. M. V. ve Schmidt, H. G. (2000). Motivation to commit oneself as a determinant of achievement in problem-based learning. Higher Education, 40(2), 231-242.
  • Bers, M. U. ve Portsmore, M. (2005). Teaching partnerships: Early childhood and engineering students teaching math and science through robotics. Journal of Science Education and Technology, 14(1), 59-73.
  • Blumenfeld, P. C., Soloway, E., Marx, R. W., Krajcik, J. S., Guzdial, M. ve Palincsar, A. (1991). Motivating project- based learning: Sustaining the doing, supporting the learning. Educational Psychologist, 26(3&4), 369–398.
  • Bodner, G. ve Elmas, R. (2020). The impact of inquiry-based, group-work approaches to instruction on both students and their peer leaders. European Journal of Science and Mathematics Education, 8(1), 51-66.
  • Boud, D. ve Feletti, G. I. (1997). The challenge of problem based learning. (2. baskı). London: Kogan Page Limited.
  • Brophy, S., Klein, S., Portsmore, M. ve Rogers, C. (2008). Advancing engineering education in P‐12 classrooms. Journal of Engineering Education, 97(3), 369-387.
  • Brown, R., Brown, J., Reardon, K. ve Merrill, C. (2011). Understanding STEM: Current perceptions. Technology and Engineering Teacher, 70(6), 5.
  • Bukhari, S., Bashir, A. K. ve Malik, K. M. (2018). Semantic web in the age of big data: A perspective. https://doi.org/10.31219/osf.io/mwjtq. 18 Eylül 2020 tarihinde file:///C:/Users/Armada/Desktop/Semantic%20web%20in%20the%20Age%20of%20Big%20Data_%20A%20Perspective_revised_final.pdf adresinden alınmıştır.
  • Buxton, C. A. ve Provenzo, Jr., E. F. (2012). Place-based science teaching and learning: 40 activities for k–8 classrooms. Thousand Oaks CA: SAGE Publications, Inc.
  • Bülbül, M. Ş., Elmas, R. ve Eryılmaz, A. (2019). Fizik ve kimya disiplinleri için ilgi çekici olan bağlamların bağlam disiplin ilişkisi kapsamında belirlenmesi. Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi, 50, 451-479.
  • Bybee, R. W. (2010). What is STEM? Science, 329, 996. doi: 10.1126/science.1194998
  • Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. Arlington, VA: NSTA Press.
  • Cantrell, P., Pekcan, G., Itani, A. ve Velasquez‐Bryant, N. (2006). The effects of engineering modules on student learning in middle school science classrooms. Journal of Engineering Education, 95(4), 301-309.
  • Carlsen, W. S. (1998). Engineering design in the classroom: Is it good science education or is it revolting? Research in Science Education, 28(1), 51-63.
  • Chiu, J. L., Malcolm, P. T., Hecht, D., DeJaegher, C. J., Pan, E. A., Bradley, M. ve Burghardt, M. D. (2013). WISEngineering: Supporting pre college engineering design and mathematical understanding. Computers & Education, 67, 142-155.
  • Christiaans, H. H. C. M. ve Dorst, K. H. (1992). Cognitive models in industrial design engineering: A protocol study. Design Theory and Methodology, 42(1), 131-140.
  • Chung, J. C. C. ve Chow , S. M. K. (2004). Promoting student learning through a student centred problem-based learning subject curriculum. Innovations in Education and Teaching International, 41 (2), 157-168.
  • Chung C., Cartwright C. ve DeRose J. (2017) Robotics festival and competitions designed for STEM+C education. In M. Khine (Haz.), Robotics in STEM education. Springer, Cham.
  • Clark, R. E. (2001). Learning from media: Arguments, analysis, and evidence. Greenwich, CT: Information Age Publishers.
  • Clark, R. E., Kirschner, P. A. ve Sweller, J. (2012). Putting students on the path to learning: The case for fully guided instruction. American Educator, 36, 6-11.
  • Crismond, D. P. ve Adams, R. S. (2012). The informed design teaching and learning matrix. Journal of Engineering Education, 101(4), 738–797. http://doi.org/10.1002/j.2168-9830.2012.tb01127.x
  • Cross, N. (2001). Designerly ways of knowing: Design discipline versus design science. Design issues, 17(3), 49-55.
  • Cross, N. ve Cross, A. C. (1998). Expertise in engineering design. Research in Engineering Design, 10(3), 141–149. http://doi.org/10.1007/BF01607156
  • Çağıltay, K. ve Göktaş, Y. (2013). Öğretim teknolojilerinin temelleri: Teoriler, araştırmalar, eğilimler. Pegem Akademi.
  • Çakır, R. ve Ozan, C.E. (2018). FeTeMM etkinliklerinin 7. sınıf öğrencilerinin akademik başarıları, yansıtıcı düşünme becerileri ve motivasyonlarına etkisi. Gazi Eğitim Fakültesi Dergisi 38(3), 1077-1100.
  • Çakır, Z., Yalçın, S. A. ve Yalçın, P. (2019). Montessori yaklaşımı temelli stem etkinliklerinin okul öncesi öğretmen adaylarının yaratıcılık becerilerine etkisi. Uluslararası Bİlimsel Araştırmalar Dergisi. 4(2), 392-409.
  • Carroll, M. (2019). Stretch, dream, and do - a 21st century design thinking & STEM journey. Journal of Research in STEM Education, 1(1), 59-70.
  • Çevik, M. (2018). Impacts of the project based (PBL) science, technology, engineering and mathematics (STEM) education on academic achievement and career interests of vocational high school students. Pegem Eğitim ve Öğretim Dergisi, 8(2), 281-306.
  • Çorlu, M. S., Capraro, R. M. ve Capraro, M. M. (2014). Introducing STEM education: Implications for educating our teachers in the age of innovation. Education and Science, 39(171), 74-85.
  • Diffily, D. (2002). Project-based learning: Meeting social studies standards and the needs of gifted learners. Gifted Child Today, 25(3), 40-59.
  • Doğanay, K. (2018). Probleme dayalı STEM etki̇nli̇kleriyle gerçekleşti̇ri̇len bi̇li̇m fuarlarının ortaokul öğrenci̇leri̇ni̇n fen bi̇li̇mleri̇ dersi̇ akademi̇k başarılarına ve fen tutumlarına etki̇si̇ (Yayımlanmamış yüksek lisans tezi). Kastamonu: Kastamonu Üniversitesi FBE.
  • Dym, C. L., Agogino, A. M., Eris, O., Frey, D. D. ve Leifer, L. J. (2005). Engineering design thinking, teaching, and learning. Journal of Engineering Education, 94(1), 103-120.
  • Ehrlich, T. (1998). Reinventing John Dewey's pedagogy as a university discipline. The Elementary School Journal, 98(5): 489-509.
  • Elmas, R. ve Geban, Ö. (2012). Web 2.0 tools for 21st century teachers. International Online Journal of Educational Sciences, 4(1), 243-254.
  • Elmas, R., Akın, F. N. ve Geban, Ö. (2013). Ask a scientist website: Trends in chemistry questions in Turkey. The Asia-Pacific Education Researcher, 22(4), 559-569.
  • Elmas, R. ve Eryılmaz, A. (2015). How to write good quality contextual science questions: Criteria and myths. Journal of Theoretical Educational Science, 8(4), 564-580.
  • Elmas, R. ve Geban, Ö. (2016). The effect of context based chemistry instruction on 9th grade students' understanding of cleaning agents topic and their attitude toward environment. Education and Science, 41(185), 33-50.
  • Elmas, R. (2020). Bağlamın anlamı ve nitelikleri ve öğrencilerin fen eğitiminde bağlam tercihleri. Türkiye Kimya Derneği Dergisi Kısım C: Kimya Eğitimi, 5(1), 53-70.
  • Erdem, M. (2002). Proje tabanlı öğrenme. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 22, 172-179.
  • Eroğlu, S. ve Bektaş, O. (2016). STEM eğitimi almış fen bilimleri öğretmenlerinin stem temelli ders etkinlikleri hakkındaki görüşleri. Eğitimde Nitel Araştırmalar Dergisi, 4(3), 43-67.
  • Fırat, O. Z. ve Fırat, S. Ü. (2017). Endüstri 4.0 yolculuğunda trendler ve robotlar. İstanbul Üniversitesi İşletme Fakültesi Dergisi, 46(2), 211-223.
  • Fukuyama, M. (2018). Society 5.0: Aiming for a new human-centered society. Japan Spotlight, 1, 47-50.
  • Furner, J. M. ve Kumar, D. D. (2007). The mathematics and science integration argument: a stand for teacher education. Eurasia Journal of Mathematics, Science & Technology Education, 3(3), 185-189.
  • Gencer, A.S. (2015). Fen eğitiminde bilim ve mühendislik uygulaması: fırıldak etkinliği. Araştırma Temelli Etkinlik Dergisi, 5(1), 1-19.
  • Gökbayrak, S. ve Karışan, D. (2017). Altıncı sınıf öğrencilerinin FeTeMM temelli etkinlikler hakkındaki görüşlerinin i̇ncelenmesi. Alan Eğitimi Araştırmaları Dergisi, 3(1), 25-40.
  • Guzey, S. S. ve Aranda, M. (2017). Student participation in engineering practices and discourse: An exploratory case study. Journal of Engineering Education, 106(4), 585-606.
  • Guzey, S. S., Moore, T. J. ve Harwell, M. (2016). Building up STEM: An analysis of teacher-developed engineering design-based stem integration curricular materials. Journal of Pre-College Engineering Education Research (J-PEER), 6(1), Article 2.
  • Gülgün, C., Yılmaz, A. ve Çağlar, A. (2017). Teacher opinions about the qualities required in STEM activities applied in the science course. Journal of Current Researches on Social Sciences, 7(1), 459-478.
  • Gürlen, E.E. (2011). Probleme dayalı öğrenme. Ö.Demirel (Haz.), Eğitimde yeni yönelimler (s. 81-91). Ankara: Pegem Akademi.
  • Han, S., Capraro, R. ve Capraro, M.M. (2015). How science, technology, engineering, and mathematics (STEM) project-based learning (PBL) affects high, middle, and low achievers differently: The impact of student factors on achievement. International Journal of Science and Mathematics Education, 13, 1089–1113.
  • Han, S., Rosli, R., Capraro, M.M. ve Capraro, R.M. (2016). The effect of science, technology, engineering and mathematics (stem) project based learning (pbl) on students’ achievement in four mathematics topics. Journal of Turkish Science Education, 13 (special issue), 3-29.
  • Hermann, M., Pentek, T. ve Otto, B. (2015) Design principles for Industrie 4.0 scenarios: A literature review. Technical Report 1. Technical University of Dortmund and Audi.
  • Jain, V. K. ve Sobek, D. K. (2006). Linking design process to customer satisfaction through virtual design of experiments. Research in Engineering Design, 17(2), 59-71.
  • Johnson, P. A. (1999). Problem-based, cooperative learning in the engineering classroom. Journal of Professional Issues in Engineering Education and Practice, 125(1), 8-11.
  • Johnston, A. C., Akarsu, M., Moore, T. J. ve Guzey, S. S. (2019). Engineering as the integrator: A case study of one middle school science teacher's talk. Journal of Engineering Education, 108(3), 418-440.
  • Korkmaz, H. ve Kaptan. F. (2001). Fen eğitiminde proje tabanlı öğrenme yaklaşımı. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 20, 193-200.
  • Krajcik, J. ve Blumenfeld, P. (2005). Project-based learning. R. Sawyer (Haz.), The cambridge handbook of the learning sciences (s. 317-334). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511816833.020
  • Kuhn, J. ve Müller, A. (2014). Context-based science education by newspaper story problems: A study on motivation and learning effects. Perspectives in Science, 2(1-4), 5-21.
  • Larmer, J. (2014). Project-based learning vs. problem-based learning vs. X-BL. 20.06.2020 tarihinde http://www.edutopia.org/blog/pbl-vs-pbl-vs-xbl-john-larmer adresinden erişilmiştir.
  • McArthur, D., Lewis, M. ve Bishary, M. (2005). The roles of artificial intelligence in education: Current progress and future prospects. Journal of Educational Technology, 1(4), 42-80.
  • Milli Eğitim Bakanlığı (MEB) (2018). Fen bilimleri dersi öğretim programı (ı̇lkokul ve ortaokul 3, 4, 5, 6, 7 ve 8. sınıflar). 05.11.2018 tarihinde http://mufredat.meb.gov.tr/ProgramDetay.aspx?PID=325 adresinden erişilmiştir.
  • Moore, T. J., Glancy, A. W., Tank, K. M., Kersten, J. A., Stohlmann, M. S., Ntow, F. D. ve Smith, K. A. (2013). A framework for implementing quality K-12 engineering education. In 2013 ASEE Annual Conference & Exposition, 23-46.
  • Moore, T. J., Miller, R. L., Lesh, R. A., Stohlmann, M. S. ve Kim, Y. R. (2013). Modeling in engineering: The role of representational fluency in students’ conceptual understanding. Journal of Engineering Education, 102(1), 141- 178.
  • Moore, T. J., Glancy, A. W., Tank, K. M., Kersten, J. A. ve Smith, K. A. (2014). A Framework for quality K-12 engineering education: Research and development. Journal of Pre-College Engineering Education Research, 4(1), 1–13. https://doi.org/10.7771/2157-9288.1069
  • Morrison, J. (2006). TIES STEM education monograph series, attributes of STEM education. Baltimore, MD: TIES.
  • National Academy of Engineering & National Research Council. (2009). Engineering in K-12 education: Understanding the status and improving the prospects. (Haz: L. Katehi, G. Pearson ve M. Feder), National Academy of Sciences. National Academy of Engineering and National Research Council. http://doi.org/10.1017/CBO9781107415324.004
  • National Research Council. (2010). Standards for K-12 engineering education. National Academy of Engineering.
  • National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington D.C.: The National Academies Press.
  • Okan Gökten, P. (2018). Karanlıkta üretim: Yeni çağda maliyetin kapsamı. Muhasebe Bilim Dünyası Dergisi, 20(4), 880-897.
  • Pekbay, C. (2017). Fen teknoloji mühendislik ve matematik etkinliklerinin ortaokul öğrencileri üzerindeki etkileri (Yayımlanmamış doktora tezi). Hacettepe Üniversitesi, Eğitim Bilimleri Enstitüsü, Ankara.
  • Ring, E. A., Dare, E. A., Crotty, E. A. ve Roehrig, G. H. (2017). The evolution of teacher conceptions of STEM education throughout an intensive professional development experience. Journal of Science Teacher Education, 28(5), 444-467.
  • Sanders, M. (2009). STEM, STEM education, STEMmania. The Technology Teacher, 68(4), 20–26.
  • Siew, M. N., Amir, N. ve Chong, C. L. (2015). The perceptions of pre-service and in-service teachers regarding a project-based STEM approach to teaching science. Springer Plus, 4(8), 1-20.
  • Siverling, E. A., Suazo‐Flores, E., Mathis, C. A. ve Moore, T. J. (2019). Students' use of STEM content in design justifications during engineering design‐based STEM integration. School Science and Mathematics, 119(8), 457-474.
  • Slavinec, M., Abersek, B., Gacevic, D. ve Flogie, A. (2019). Monodisciplinarity in science versus transdisciplinarity in STEM education. Journal of Baltic Science Education, 18(3), 435-449.
  • Smyrnaiou, Z., Petropoulou, E. ve Sotiriou, M. (2015). Applying argumentation approach in STEM education: A case study of the European student parliaments project in Greece. American Journal of Educational Research, 3(12), 1618-1628.
  • Sobel, D. (2004). Place-based education: Connecting classrooms & communities (3. baskı). Great Barrington, MA: The Orion Society.
  • Stohlmann, M., Moore, T. J. ve Roehrig, G. H. (2012). Considerations for teaching integrated STEM education. Journal of Pre-College Engineering Education Research (J-PEER), 2(1), 28-34.
  • Sungur, S., Tekkaya, C. ve Geban, Ö. (2006). Improving achievement through problem-based learning. Journal of Biological Education, 40(4), 155-160.
  • Sümen, Ö. Ö. ve Çalışıcı, H. (2019). STEM proje tabanlı öğrenme ortamında sınıf öğretmeni adaylarının geliştirdikleri matematik projelerinin incelenmesi. Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi, 38(1), 238-252.
  • Thibaut, L., Ceuppens, S., De Loof, H., De Meester, J., Goovaerts, L., Struyf, A. ve Hellinckx, L. (2018). Integrated STEM education: A systematic review of instructional practices in secondary education. European Journal of STEM Education, 3(1), 1-12.
  • Tseng, K. H., Chiang, F. K. ve Hsu, W. H. (2008). Interactive processes and learning attitudes in a web-based problem based learning (PBL) platform. Computers in Human Behaviour, 24(3), 940–955.
  • Tuluri, F. (2017). STEM Education by Exploring Robotics. M. S. Khine (Haz.), Robotics in STEM education (s. 195-209). Springer, Cham.
  • Uyanık Aktulun, Ö. ve Elmas, R. (2019). 21. yüzyıl okul öncesi öğretmenleri için sosyal medya araçları: Muhtemel faydalar. Temel Eğitim, 1(4), 6-20.
  • Uysal, E. ve Cebesoy, Ü. B. (2020). Tasarım temelli FeTeMM etkinliklerinin fen bilgisi öğretmen adaylarının bilimsel süreç becerilerine, tutumlarına ve bilgilerine etkisinin incelenmesi. SDU International Journal of Educational Studies, 7(1), 60-81.
  • Wan Husin, W. N. F., Mohamad Arsad, N., Othman, O., Halim, L., Rasul, M. S., Osman, K. ve Iksan, Z. (2016). Fostering students’ 21st century skills through project oriented problem based learning (POPBL) in integrated STEM education program. Asia-Pacific Forum on Science Learning and Teaching, 17 (3).
  • Woods, D. R. (1996). Problem‐based learning for large classes in chemical engineering. New Directions for Teaching and Learning, 68, 91- 99.
  • Yamak, H., Bulut, N. ve Dündar, S. (2014). 5. sınıf öğrencilerinin bilimsel süreç becerileri ile fene karşı tutumlarına FeTeMM etkinliklerinin etkisi . Gazi Eğitim Fakültesi Dergisi, 34(2): 249-265.
  • Yang, M. C. (2005). A study of prototypes, design activity, and design outcome. Design Studies, 26(6), 649–669. http://doi.org/10.1016/j.destud.2005.04.005
  • Yazıcı, C. ve Kültür, C. (2016). Medya mı Yöntem mi? Bitmeyen Tartışma. Çağıltay, K. ve Göktaş, Y. (Haz.) Öğretim teknolojilerinin temelleri (s. 123-140). Pegem Akademi, Ankara.

Characteristics and Evaluation of Stem Education Approach

Yıl 2020, Cilt: 37 , 155 - 175, 17.12.2020

Öz

Recent educational reforms emphasize the importance of the STEM education approach in individual and community life. While asserting that the STEM education approach is so crucial, there is a limited number of studies making clear elucidations in the literature considering its definition, characteristics, and differences. This study addresses how to define the STEM education approach based on the existing literature to ascertain its characteristics and compare it with the other three educational approaches. This is a review study. There were no predetermined criteria for choosing the related sources, and all sources considered to be relevant were read from the online databases and taken into account. 10 characteristics of the STEM education approach were determined and explained. The engineering design process, the theoretical framework of the STEM education approach, is elaborated in detail. Similarities and differences of the STEM education approach with project-based learning, problem-based learning, and learning with experiments activity were compared. The results of the study point to differences between the STEM education approach and other approaches in presenting the problem, finding solutions to the problem, and application processes. In project-based learning, it is more important to have a product to emerge at the end rather than the process itself. In the STEM education approach, it is essential to use different disciplines in an integrated way to achieve the solution. However, it may be sufficient to use one discipline to achieve the solution in problem-based learning. It was concluded that the STEM education approach is not an experimental activity but can benefit from experiments in the STEM education process.

Kaynakça

  • Adams, A. E., Miller, B. G., Saul, M. ve Pegg, J. (2014). Supporting elementary pre-service teachers to teach STEM through place-based teaching and learning experiences. Electronic Journal of Science Education, 18(5), 5.
  • Alparslan, C., Tekkaya, C. ve Geban, Ö. (2003). Using the conceptual change instruction to improve learning. Journal of Biological Education, 37(3), 133-137.
  • Altan, E.B. (2017). Disipliner Yapıdaki Derslerde STEM Eğitimi: Tasarım Temelli Öğrenme ve Probleme Dayalı STEM Uygulamaları. S. Çepni (Haz.), Kuramdan Uygulamaya STEM Eğitimi (s. 165-197). Ankara, Pegem Akademi.
  • Aranda, M. L., Lie, R., Guzey, S. S., akarsu, M., Johnston, A. ve Moore, T. J. (2020). Examining teacher talk in an engineering design-based science curricular unit. Research in Science Education, 50(2), 469-487.
  • Aranda, M. L., Lie, R. ve Guzey, S. S. (2020). Productive thinking in middle school science students’ design conversations in a design-based engineering challenge. International Journal of Technology and Design Education, 30(1), 67-81.
  • Atman, C. J., Adams, R. S., Cardella, M. E., Turns, J., Mosborg, S. ve Saleem, J. (2007). Engineering design processes: A comparison of students and expert practitioners. Journal of Engineering Education, 96(4), 359–379. http://doi.org/10.1002/j.2168-9830.2007.tb00945.x.
  • Aydın-Günbatar, S. (2019). Fen, teknoloji, mühendislik ve matematik (Fetemm) Yaklaşımı ve Fetemm’e uygun etkinlik hazırlama rehberi. H. Artun ve S. Aydın-Günbatar (Haz.), Çağdaş yaklaşımlarla destekli Fen öğretimi: Teoriden uygulamaya etkinlik rehberi (s. 2-22). Pegem A Yayıncılık.
  • Başbay, M. (2011). Proje tabanlı öğrenme. Ö. Demirel (Haz.), Eğitimde yeni yönelimler (s. 67-79). Ankara: Pegem Akademi.
  • Beane, J. A. (1995). Curriculum integration and the disciplines of knowledge. The Phi Delta Kappan, 76(8), 616-622.
  • Benitti, F. B. V. ve Spolaôr, N. (2017). How have robots supported STEM teaching?. M. S. Khine (Haz.), Robotics in STEM education (s. 103-129). Springer, Cham.
  • Berkel, H. J. M. V. ve Schmidt, H. G. (2000). Motivation to commit oneself as a determinant of achievement in problem-based learning. Higher Education, 40(2), 231-242.
  • Bers, M. U. ve Portsmore, M. (2005). Teaching partnerships: Early childhood and engineering students teaching math and science through robotics. Journal of Science Education and Technology, 14(1), 59-73.
  • Blumenfeld, P. C., Soloway, E., Marx, R. W., Krajcik, J. S., Guzdial, M. ve Palincsar, A. (1991). Motivating project- based learning: Sustaining the doing, supporting the learning. Educational Psychologist, 26(3&4), 369–398.
  • Bodner, G. ve Elmas, R. (2020). The impact of inquiry-based, group-work approaches to instruction on both students and their peer leaders. European Journal of Science and Mathematics Education, 8(1), 51-66.
  • Boud, D. ve Feletti, G. I. (1997). The challenge of problem based learning. (2. baskı). London: Kogan Page Limited.
  • Brophy, S., Klein, S., Portsmore, M. ve Rogers, C. (2008). Advancing engineering education in P‐12 classrooms. Journal of Engineering Education, 97(3), 369-387.
  • Brown, R., Brown, J., Reardon, K. ve Merrill, C. (2011). Understanding STEM: Current perceptions. Technology and Engineering Teacher, 70(6), 5.
  • Bukhari, S., Bashir, A. K. ve Malik, K. M. (2018). Semantic web in the age of big data: A perspective. https://doi.org/10.31219/osf.io/mwjtq. 18 Eylül 2020 tarihinde file:///C:/Users/Armada/Desktop/Semantic%20web%20in%20the%20Age%20of%20Big%20Data_%20A%20Perspective_revised_final.pdf adresinden alınmıştır.
  • Buxton, C. A. ve Provenzo, Jr., E. F. (2012). Place-based science teaching and learning: 40 activities for k–8 classrooms. Thousand Oaks CA: SAGE Publications, Inc.
  • Bülbül, M. Ş., Elmas, R. ve Eryılmaz, A. (2019). Fizik ve kimya disiplinleri için ilgi çekici olan bağlamların bağlam disiplin ilişkisi kapsamında belirlenmesi. Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi, 50, 451-479.
  • Bybee, R. W. (2010). What is STEM? Science, 329, 996. doi: 10.1126/science.1194998
  • Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. Arlington, VA: NSTA Press.
  • Cantrell, P., Pekcan, G., Itani, A. ve Velasquez‐Bryant, N. (2006). The effects of engineering modules on student learning in middle school science classrooms. Journal of Engineering Education, 95(4), 301-309.
  • Carlsen, W. S. (1998). Engineering design in the classroom: Is it good science education or is it revolting? Research in Science Education, 28(1), 51-63.
  • Chiu, J. L., Malcolm, P. T., Hecht, D., DeJaegher, C. J., Pan, E. A., Bradley, M. ve Burghardt, M. D. (2013). WISEngineering: Supporting pre college engineering design and mathematical understanding. Computers & Education, 67, 142-155.
  • Christiaans, H. H. C. M. ve Dorst, K. H. (1992). Cognitive models in industrial design engineering: A protocol study. Design Theory and Methodology, 42(1), 131-140.
  • Chung, J. C. C. ve Chow , S. M. K. (2004). Promoting student learning through a student centred problem-based learning subject curriculum. Innovations in Education and Teaching International, 41 (2), 157-168.
  • Chung C., Cartwright C. ve DeRose J. (2017) Robotics festival and competitions designed for STEM+C education. In M. Khine (Haz.), Robotics in STEM education. Springer, Cham.
  • Clark, R. E. (2001). Learning from media: Arguments, analysis, and evidence. Greenwich, CT: Information Age Publishers.
  • Clark, R. E., Kirschner, P. A. ve Sweller, J. (2012). Putting students on the path to learning: The case for fully guided instruction. American Educator, 36, 6-11.
  • Crismond, D. P. ve Adams, R. S. (2012). The informed design teaching and learning matrix. Journal of Engineering Education, 101(4), 738–797. http://doi.org/10.1002/j.2168-9830.2012.tb01127.x
  • Cross, N. (2001). Designerly ways of knowing: Design discipline versus design science. Design issues, 17(3), 49-55.
  • Cross, N. ve Cross, A. C. (1998). Expertise in engineering design. Research in Engineering Design, 10(3), 141–149. http://doi.org/10.1007/BF01607156
  • Çağıltay, K. ve Göktaş, Y. (2013). Öğretim teknolojilerinin temelleri: Teoriler, araştırmalar, eğilimler. Pegem Akademi.
  • Çakır, R. ve Ozan, C.E. (2018). FeTeMM etkinliklerinin 7. sınıf öğrencilerinin akademik başarıları, yansıtıcı düşünme becerileri ve motivasyonlarına etkisi. Gazi Eğitim Fakültesi Dergisi 38(3), 1077-1100.
  • Çakır, Z., Yalçın, S. A. ve Yalçın, P. (2019). Montessori yaklaşımı temelli stem etkinliklerinin okul öncesi öğretmen adaylarının yaratıcılık becerilerine etkisi. Uluslararası Bİlimsel Araştırmalar Dergisi. 4(2), 392-409.
  • Carroll, M. (2019). Stretch, dream, and do - a 21st century design thinking & STEM journey. Journal of Research in STEM Education, 1(1), 59-70.
  • Çevik, M. (2018). Impacts of the project based (PBL) science, technology, engineering and mathematics (STEM) education on academic achievement and career interests of vocational high school students. Pegem Eğitim ve Öğretim Dergisi, 8(2), 281-306.
  • Çorlu, M. S., Capraro, R. M. ve Capraro, M. M. (2014). Introducing STEM education: Implications for educating our teachers in the age of innovation. Education and Science, 39(171), 74-85.
  • Diffily, D. (2002). Project-based learning: Meeting social studies standards and the needs of gifted learners. Gifted Child Today, 25(3), 40-59.
  • Doğanay, K. (2018). Probleme dayalı STEM etki̇nli̇kleriyle gerçekleşti̇ri̇len bi̇li̇m fuarlarının ortaokul öğrenci̇leri̇ni̇n fen bi̇li̇mleri̇ dersi̇ akademi̇k başarılarına ve fen tutumlarına etki̇si̇ (Yayımlanmamış yüksek lisans tezi). Kastamonu: Kastamonu Üniversitesi FBE.
  • Dym, C. L., Agogino, A. M., Eris, O., Frey, D. D. ve Leifer, L. J. (2005). Engineering design thinking, teaching, and learning. Journal of Engineering Education, 94(1), 103-120.
  • Ehrlich, T. (1998). Reinventing John Dewey's pedagogy as a university discipline. The Elementary School Journal, 98(5): 489-509.
  • Elmas, R. ve Geban, Ö. (2012). Web 2.0 tools for 21st century teachers. International Online Journal of Educational Sciences, 4(1), 243-254.
  • Elmas, R., Akın, F. N. ve Geban, Ö. (2013). Ask a scientist website: Trends in chemistry questions in Turkey. The Asia-Pacific Education Researcher, 22(4), 559-569.
  • Elmas, R. ve Eryılmaz, A. (2015). How to write good quality contextual science questions: Criteria and myths. Journal of Theoretical Educational Science, 8(4), 564-580.
  • Elmas, R. ve Geban, Ö. (2016). The effect of context based chemistry instruction on 9th grade students' understanding of cleaning agents topic and their attitude toward environment. Education and Science, 41(185), 33-50.
  • Elmas, R. (2020). Bağlamın anlamı ve nitelikleri ve öğrencilerin fen eğitiminde bağlam tercihleri. Türkiye Kimya Derneği Dergisi Kısım C: Kimya Eğitimi, 5(1), 53-70.
  • Erdem, M. (2002). Proje tabanlı öğrenme. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 22, 172-179.
  • Eroğlu, S. ve Bektaş, O. (2016). STEM eğitimi almış fen bilimleri öğretmenlerinin stem temelli ders etkinlikleri hakkındaki görüşleri. Eğitimde Nitel Araştırmalar Dergisi, 4(3), 43-67.
  • Fırat, O. Z. ve Fırat, S. Ü. (2017). Endüstri 4.0 yolculuğunda trendler ve robotlar. İstanbul Üniversitesi İşletme Fakültesi Dergisi, 46(2), 211-223.
  • Fukuyama, M. (2018). Society 5.0: Aiming for a new human-centered society. Japan Spotlight, 1, 47-50.
  • Furner, J. M. ve Kumar, D. D. (2007). The mathematics and science integration argument: a stand for teacher education. Eurasia Journal of Mathematics, Science & Technology Education, 3(3), 185-189.
  • Gencer, A.S. (2015). Fen eğitiminde bilim ve mühendislik uygulaması: fırıldak etkinliği. Araştırma Temelli Etkinlik Dergisi, 5(1), 1-19.
  • Gökbayrak, S. ve Karışan, D. (2017). Altıncı sınıf öğrencilerinin FeTeMM temelli etkinlikler hakkındaki görüşlerinin i̇ncelenmesi. Alan Eğitimi Araştırmaları Dergisi, 3(1), 25-40.
  • Guzey, S. S. ve Aranda, M. (2017). Student participation in engineering practices and discourse: An exploratory case study. Journal of Engineering Education, 106(4), 585-606.
  • Guzey, S. S., Moore, T. J. ve Harwell, M. (2016). Building up STEM: An analysis of teacher-developed engineering design-based stem integration curricular materials. Journal of Pre-College Engineering Education Research (J-PEER), 6(1), Article 2.
  • Gülgün, C., Yılmaz, A. ve Çağlar, A. (2017). Teacher opinions about the qualities required in STEM activities applied in the science course. Journal of Current Researches on Social Sciences, 7(1), 459-478.
  • Gürlen, E.E. (2011). Probleme dayalı öğrenme. Ö.Demirel (Haz.), Eğitimde yeni yönelimler (s. 81-91). Ankara: Pegem Akademi.
  • Han, S., Capraro, R. ve Capraro, M.M. (2015). How science, technology, engineering, and mathematics (STEM) project-based learning (PBL) affects high, middle, and low achievers differently: The impact of student factors on achievement. International Journal of Science and Mathematics Education, 13, 1089–1113.
  • Han, S., Rosli, R., Capraro, M.M. ve Capraro, R.M. (2016). The effect of science, technology, engineering and mathematics (stem) project based learning (pbl) on students’ achievement in four mathematics topics. Journal of Turkish Science Education, 13 (special issue), 3-29.
  • Hermann, M., Pentek, T. ve Otto, B. (2015) Design principles for Industrie 4.0 scenarios: A literature review. Technical Report 1. Technical University of Dortmund and Audi.
  • Jain, V. K. ve Sobek, D. K. (2006). Linking design process to customer satisfaction through virtual design of experiments. Research in Engineering Design, 17(2), 59-71.
  • Johnson, P. A. (1999). Problem-based, cooperative learning in the engineering classroom. Journal of Professional Issues in Engineering Education and Practice, 125(1), 8-11.
  • Johnston, A. C., Akarsu, M., Moore, T. J. ve Guzey, S. S. (2019). Engineering as the integrator: A case study of one middle school science teacher's talk. Journal of Engineering Education, 108(3), 418-440.
  • Korkmaz, H. ve Kaptan. F. (2001). Fen eğitiminde proje tabanlı öğrenme yaklaşımı. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 20, 193-200.
  • Krajcik, J. ve Blumenfeld, P. (2005). Project-based learning. R. Sawyer (Haz.), The cambridge handbook of the learning sciences (s. 317-334). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511816833.020
  • Kuhn, J. ve Müller, A. (2014). Context-based science education by newspaper story problems: A study on motivation and learning effects. Perspectives in Science, 2(1-4), 5-21.
  • Larmer, J. (2014). Project-based learning vs. problem-based learning vs. X-BL. 20.06.2020 tarihinde http://www.edutopia.org/blog/pbl-vs-pbl-vs-xbl-john-larmer adresinden erişilmiştir.
  • McArthur, D., Lewis, M. ve Bishary, M. (2005). The roles of artificial intelligence in education: Current progress and future prospects. Journal of Educational Technology, 1(4), 42-80.
  • Milli Eğitim Bakanlığı (MEB) (2018). Fen bilimleri dersi öğretim programı (ı̇lkokul ve ortaokul 3, 4, 5, 6, 7 ve 8. sınıflar). 05.11.2018 tarihinde http://mufredat.meb.gov.tr/ProgramDetay.aspx?PID=325 adresinden erişilmiştir.
  • Moore, T. J., Glancy, A. W., Tank, K. M., Kersten, J. A., Stohlmann, M. S., Ntow, F. D. ve Smith, K. A. (2013). A framework for implementing quality K-12 engineering education. In 2013 ASEE Annual Conference & Exposition, 23-46.
  • Moore, T. J., Miller, R. L., Lesh, R. A., Stohlmann, M. S. ve Kim, Y. R. (2013). Modeling in engineering: The role of representational fluency in students’ conceptual understanding. Journal of Engineering Education, 102(1), 141- 178.
  • Moore, T. J., Glancy, A. W., Tank, K. M., Kersten, J. A. ve Smith, K. A. (2014). A Framework for quality K-12 engineering education: Research and development. Journal of Pre-College Engineering Education Research, 4(1), 1–13. https://doi.org/10.7771/2157-9288.1069
  • Morrison, J. (2006). TIES STEM education monograph series, attributes of STEM education. Baltimore, MD: TIES.
  • National Academy of Engineering & National Research Council. (2009). Engineering in K-12 education: Understanding the status and improving the prospects. (Haz: L. Katehi, G. Pearson ve M. Feder), National Academy of Sciences. National Academy of Engineering and National Research Council. http://doi.org/10.1017/CBO9781107415324.004
  • National Research Council. (2010). Standards for K-12 engineering education. National Academy of Engineering.
  • National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington D.C.: The National Academies Press.
  • Okan Gökten, P. (2018). Karanlıkta üretim: Yeni çağda maliyetin kapsamı. Muhasebe Bilim Dünyası Dergisi, 20(4), 880-897.
  • Pekbay, C. (2017). Fen teknoloji mühendislik ve matematik etkinliklerinin ortaokul öğrencileri üzerindeki etkileri (Yayımlanmamış doktora tezi). Hacettepe Üniversitesi, Eğitim Bilimleri Enstitüsü, Ankara.
  • Ring, E. A., Dare, E. A., Crotty, E. A. ve Roehrig, G. H. (2017). The evolution of teacher conceptions of STEM education throughout an intensive professional development experience. Journal of Science Teacher Education, 28(5), 444-467.
  • Sanders, M. (2009). STEM, STEM education, STEMmania. The Technology Teacher, 68(4), 20–26.
  • Siew, M. N., Amir, N. ve Chong, C. L. (2015). The perceptions of pre-service and in-service teachers regarding a project-based STEM approach to teaching science. Springer Plus, 4(8), 1-20.
  • Siverling, E. A., Suazo‐Flores, E., Mathis, C. A. ve Moore, T. J. (2019). Students' use of STEM content in design justifications during engineering design‐based STEM integration. School Science and Mathematics, 119(8), 457-474.
  • Slavinec, M., Abersek, B., Gacevic, D. ve Flogie, A. (2019). Monodisciplinarity in science versus transdisciplinarity in STEM education. Journal of Baltic Science Education, 18(3), 435-449.
  • Smyrnaiou, Z., Petropoulou, E. ve Sotiriou, M. (2015). Applying argumentation approach in STEM education: A case study of the European student parliaments project in Greece. American Journal of Educational Research, 3(12), 1618-1628.
  • Sobel, D. (2004). Place-based education: Connecting classrooms & communities (3. baskı). Great Barrington, MA: The Orion Society.
  • Stohlmann, M., Moore, T. J. ve Roehrig, G. H. (2012). Considerations for teaching integrated STEM education. Journal of Pre-College Engineering Education Research (J-PEER), 2(1), 28-34.
  • Sungur, S., Tekkaya, C. ve Geban, Ö. (2006). Improving achievement through problem-based learning. Journal of Biological Education, 40(4), 155-160.
  • Sümen, Ö. Ö. ve Çalışıcı, H. (2019). STEM proje tabanlı öğrenme ortamında sınıf öğretmeni adaylarının geliştirdikleri matematik projelerinin incelenmesi. Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi, 38(1), 238-252.
  • Thibaut, L., Ceuppens, S., De Loof, H., De Meester, J., Goovaerts, L., Struyf, A. ve Hellinckx, L. (2018). Integrated STEM education: A systematic review of instructional practices in secondary education. European Journal of STEM Education, 3(1), 1-12.
  • Tseng, K. H., Chiang, F. K. ve Hsu, W. H. (2008). Interactive processes and learning attitudes in a web-based problem based learning (PBL) platform. Computers in Human Behaviour, 24(3), 940–955.
  • Tuluri, F. (2017). STEM Education by Exploring Robotics. M. S. Khine (Haz.), Robotics in STEM education (s. 195-209). Springer, Cham.
  • Uyanık Aktulun, Ö. ve Elmas, R. (2019). 21. yüzyıl okul öncesi öğretmenleri için sosyal medya araçları: Muhtemel faydalar. Temel Eğitim, 1(4), 6-20.
  • Uysal, E. ve Cebesoy, Ü. B. (2020). Tasarım temelli FeTeMM etkinliklerinin fen bilgisi öğretmen adaylarının bilimsel süreç becerilerine, tutumlarına ve bilgilerine etkisinin incelenmesi. SDU International Journal of Educational Studies, 7(1), 60-81.
  • Wan Husin, W. N. F., Mohamad Arsad, N., Othman, O., Halim, L., Rasul, M. S., Osman, K. ve Iksan, Z. (2016). Fostering students’ 21st century skills through project oriented problem based learning (POPBL) in integrated STEM education program. Asia-Pacific Forum on Science Learning and Teaching, 17 (3).
  • Woods, D. R. (1996). Problem‐based learning for large classes in chemical engineering. New Directions for Teaching and Learning, 68, 91- 99.
  • Yamak, H., Bulut, N. ve Dündar, S. (2014). 5. sınıf öğrencilerinin bilimsel süreç becerileri ile fene karşı tutumlarına FeTeMM etkinliklerinin etkisi . Gazi Eğitim Fakültesi Dergisi, 34(2): 249-265.
  • Yang, M. C. (2005). A study of prototypes, design activity, and design outcome. Design Studies, 26(6), 649–669. http://doi.org/10.1016/j.destud.2005.04.005
  • Yazıcı, C. ve Kültür, C. (2016). Medya mı Yöntem mi? Bitmeyen Tartışma. Çağıltay, K. ve Göktaş, Y. (Haz.) Öğretim teknolojilerinin temelleri (s. 123-140). Pegem Akademi, Ankara.
Toplam 100 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Özgün Çalışma
Yazarlar

Murat Akarsu Bu kişi benim

Nilüfer Okur Akçay

Rıdvan Elmas 0000-0001-7769-2525

Yayımlanma Tarihi 17 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 37

Kaynak Göster

APA Akarsu, M., Okur Akçay, N., & Elmas, R. (2020). STEM Eğitimi Yaklaşımının Özellikleri ve Değerlendirilmesi. Bogazici University Journal of Education, 37, 155-175.