Araştırma Makalesi
BibTex RIS Kaynak Göster

Seiberg-Witten-Like Equations on 8-Manifolds without Self-Duality

Yıl 2018, , 429 - 433, 28.12.2018
https://doi.org/10.18466/cbayarfbe.448934

Öz

In this paper, SeibergWittenlike equations without selfduality are defined on dimensional manifolds. Then, nontrivial and flat solutions are given to them on . Finally, on realdimensional Kähler manifolds a global solution to these equation is
obtained for a given negative and constant scalar curvature.

Kaynakça

  • Bilge, A.H, Dereli, T, Koçak, Ş, Monopole equations on 8-manifolds with Spin(7) holonomy, Communications in Mathematical Physics, 1999, 203(1), 21-30.
  • Değirmenci, N, Özdemir, N, Seiberg-Witten like equations on 8-dimensionalmanifolds with structure group Spin(7), Journal of Dynamical System and Geometric Theories, 2009, 7(1), 21-39.
  • Donaldson, S.K, Seiberg-Witten equations and 4-manifold topology, Bulletin of the American Mathematical Society, 1996, 33, 45-70.
  • Friedrich, T, Dirac operators in Riemannian geometry; Grauate Studies in Mathematics 25, American Mathematical Society, 2000; pp 211.
  • Karapazar, Ş, Seiberg-Witten equations on 8-dimensional SU(4)-structure, International Journal of Geometric Methods in Modern Physics, 2013, 10(3), 1220032.
  • Morgan, J, Seiberg-Witten Equations and Applications to the topology of Smooth Manifolds; Princeton University Press, 1996; pp 130.
  • Naber, G.L, Topology, geometry, and gauge fields; New York: Springer-Verlag, 1996; pp 437.
  • Salamon, D, Spin geometry and Seiberg-Witten invariants. Zürich: ETH, 1995; pp 599.
  • Witten, E, Monopoles and four manifolds, 1994, Mathematical Research Letters, 1994, 1, 769-796.
Yıl 2018, , 429 - 433, 28.12.2018
https://doi.org/10.18466/cbayarfbe.448934

Öz

Kaynakça

  • Bilge, A.H, Dereli, T, Koçak, Ş, Monopole equations on 8-manifolds with Spin(7) holonomy, Communications in Mathematical Physics, 1999, 203(1), 21-30.
  • Değirmenci, N, Özdemir, N, Seiberg-Witten like equations on 8-dimensionalmanifolds with structure group Spin(7), Journal of Dynamical System and Geometric Theories, 2009, 7(1), 21-39.
  • Donaldson, S.K, Seiberg-Witten equations and 4-manifold topology, Bulletin of the American Mathematical Society, 1996, 33, 45-70.
  • Friedrich, T, Dirac operators in Riemannian geometry; Grauate Studies in Mathematics 25, American Mathematical Society, 2000; pp 211.
  • Karapazar, Ş, Seiberg-Witten equations on 8-dimensional SU(4)-structure, International Journal of Geometric Methods in Modern Physics, 2013, 10(3), 1220032.
  • Morgan, J, Seiberg-Witten Equations and Applications to the topology of Smooth Manifolds; Princeton University Press, 1996; pp 130.
  • Naber, G.L, Topology, geometry, and gauge fields; New York: Springer-Verlag, 1996; pp 437.
  • Salamon, D, Spin geometry and Seiberg-Witten invariants. Zürich: ETH, 1995; pp 599.
  • Witten, E, Monopoles and four manifolds, 1994, Mathematical Research Letters, 1994, 1, 769-796.
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Serhan Eker

Yayımlanma Tarihi 28 Aralık 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Eker, S. (2018). Seiberg-Witten-Like Equations on 8-Manifolds without Self-Duality. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 14(4), 429-433. https://doi.org/10.18466/cbayarfbe.448934
AMA Eker S. Seiberg-Witten-Like Equations on 8-Manifolds without Self-Duality. CBUJOS. Aralık 2018;14(4):429-433. doi:10.18466/cbayarfbe.448934
Chicago Eker, Serhan. “Seiberg-Witten-Like Equations on 8-Manifolds Without Self-Duality”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 14, sy. 4 (Aralık 2018): 429-33. https://doi.org/10.18466/cbayarfbe.448934.
EndNote Eker S (01 Aralık 2018) Seiberg-Witten-Like Equations on 8-Manifolds without Self-Duality. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 14 4 429–433.
IEEE S. Eker, “Seiberg-Witten-Like Equations on 8-Manifolds without Self-Duality”, CBUJOS, c. 14, sy. 4, ss. 429–433, 2018, doi: 10.18466/cbayarfbe.448934.
ISNAD Eker, Serhan. “Seiberg-Witten-Like Equations on 8-Manifolds Without Self-Duality”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 14/4 (Aralık 2018), 429-433. https://doi.org/10.18466/cbayarfbe.448934.
JAMA Eker S. Seiberg-Witten-Like Equations on 8-Manifolds without Self-Duality. CBUJOS. 2018;14:429–433.
MLA Eker, Serhan. “Seiberg-Witten-Like Equations on 8-Manifolds Without Self-Duality”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, c. 14, sy. 4, 2018, ss. 429-33, doi:10.18466/cbayarfbe.448934.
Vancouver Eker S. Seiberg-Witten-Like Equations on 8-Manifolds without Self-Duality. CBUJOS. 2018;14(4):429-33.