Araştırma Makalesi
BibTex RIS Kaynak Göster

İlkokul ve Ortaokul Matematik Öğretim Programlarında Kesir Öğrenme Çıktılarının Öğrenme Rotaları İle İncelenmesi

Yıl 2025, Sayı: 66, 3822 - 3845, 29.12.2025
https://doi.org/10.53444/deubefd.1597025

Öz

Bu çalışmanın amacı güncel matematik dersi öğretim programlarında (ilkokul ve ortaokul) yer alan kesirler konusundaki öğrenme çıktılarını öğrenme rotalarına göre incelemektir. Çalışma doğası gereği bir doküman inceleme olup, ilkokul ve ortaokul kademelerindeki güncel matematik dersi öğretim programları dokümanlar olarak seçilmiştir. İlkokul ve ortaokul öğretim programlarında verilen kesirler ile ilgili öğrenme çıktıları öğrenme rotaları seviyelerine göre betimsel olarak analiz edilmiştir. Verilerin analizinden elde edilen bulgular, kesir öğretiminde öğretim programlarında konuların kronolojik sırası ile öğrenme rotalarında verilen sıranın genel olarak uyumlu olduğunu göstermiştir. Ancak bulgular, kesir aritmetiğine ilişkin öğrenme çıktılarının paydası eşit olmayan kesirleri toplama ve çıkarma ve kesirlerde çarpma ve bölme işlemleri için açıkça yapılandırılmadığını göstermiştir. Kesir aritmetiğine dair çıktıların, programda yer almakla beraber problem çözmeye dair öğrenme çıktılarının altında üstü kapalı olarak yer aldığı görülmüştür. Sonuç olarak ilkokul ve ortaokul matematik öğretim programlarında kesir öğretiminin genel manada bilimsel perspektifle uyumlu olduğu söylenebilir. Bununla beraber, kesir aritmetiği ile ilgili aşamaların açıkça yapılandırılmamış olmasının hem ders materyallerini tasarlayanlar için hem de öğretmenler için zorluklara neden olabileceği görülmüştür. Bu bakımdan programda yapılacak küçük çaplı güncellemelerin veya ek açıklamaların yapılması önerilmiştir.

Kaynakça

  • Alacacı, C. (2010). Öğrencilerin kesirler konusundaki kavram yanılgıları. E. Bingölbali & M.F. Özmantar (Eds.) Matematiksel zorluklar ve çözüm önerileri içinde, (ss. 63-95). Pegem Akademi.
  • Altıparmak, K., & Palabıyık, E. (2019). 1-8. sınıf kesirler, kesirlerle işlemler ve ondalık gösterim alt öğrenme alanlarına ait kazanımların yenilenmiş bloom taksonomisi'ne göre incelenmesi. İlkogretim Online, 18(1). https://doi.org/10.17051/ilkonline.2019.527183
  • Asil-Güzel, A., Güzel, M. & Coşkun, M. (2023). İlkokul ve ortaokul matematik öğretim programı’nın uzunluk ölçme kazanımlarının öğrenme rotalarına göre incelenmesi. Cumhuriyet Uluslararası Eğitim Dergisi, 12(3), 527-537. https://doi.org/10.30703/cije.1204418
  • Bailey, D. H., Hoard, M. K., Nugent, L., & Geary, D. C. (2012). Competence with fractions predicts gains in mathematics achievement. Journal of Experimental Child Psychology, 113, 447–455. https://doi.org/10.1016/j.jecp.2012.06.004
  • Battista, M. T. (2003). Levels of sophistication in elementary students’ reasoning about length. International Group for the Psychology of Mathematics Education, 2, 73–80. http://files.eric.ed.gov/fulltext/ED500905.pdf.
  • Battista, M. T. (2006). Understanding the development of students' thinking about length. Teaching Children Mathematics, 13(3), 140-146. https://doi.org/10.5951/TCM.13.3.0140
  • Battista, M. T., (2012). Cognition-based assessment & teaching of geometric shapes: Building on students' reasoning. Heinemann.
  • Bingölbali, E., & Özmantar, M. F. (2014). İlköğretimde matematiksel zorluklar ve çözüm önerileri (4. baskı). Pegem Akademi.
  • Booth, J. L., & Newton, K. J. (2012). Fractions: Could they really be the gatekeeper’s doorman? Contemporary Educational Psychology, 37, 247–253. https://doi.org/10.1016/j.cedpsych.2012.07.001
  • Bowen, G.A. (2009), Document analysis as a qualitative research method, Qualitative Research Journal, 9(2), 27-40. https://doi.org/10.3316/QRJ0902027
  • Bozkurt, A. , Özmantar, M. F. & Güzel, M. (2018). Uzunluk ölçme ve farklı uzunlukları karşılaştırmaya dair öğrenci düşünüşlerinin incelenmesi. International Journal of Educational Studies in Mathematics , 5(2) , 39-55 .
  • Büyüköztürk, S. (2018). Sosyal Bilimler İçin Veri Analizi El Kitabı. Pegem Akademi.
  • Byrnes, J. P., & Wasik, B. A. (1991). Role of conceptual knowledge in mathematical procedural learning. Developmental Psychology, 27(5), 777-786.
  • Campbell-Phillips, S. (2020). Education and curriculum reform: The impact they have on learning. Budapest International Research and Critics in Linguistics and Education (BirLE) Journal, 3(2), 1074-1082. https://doi.org/10.33258/birle.v3i2.1036
  • Ceylan, M., & Aslan, D. (2023). Comparison of the learning trajectories approach and Turkiye’s National Early Childhood Education Program in teaching mathematics. International Journal of Educational Studies in Mathematics, 10(1), 26–40. https://doi.org/10.17278/ijesim.1141506
  • Clarke, T., Ayres, P., & Sweller, J. (2005). The impact of sequencing and prior knowledge on learning mathematics through spreadsheet applications. Educational Technology Research and Development, 53(3), 15-24. https://doi.org/10.1007/BF02504794
  • Clements, D. H., & Sarama, J. (2021). Learning and Teaching Early Math: The Learning Trajectories Approach (3rd ed.). Routledge. https://doi.org/10.4324/9781003083528
  • Clements, D., & Sarama, J. (2007). Early childhood mathematics learning. In F. K. Lester Jr. (Ed.), Second Handbook of Research On Mathematics Teaching And Learning (Vol. 1, pp. 461-555). Information Age Publishing.
  • Cobb, P., & Yackel, E. (1996). Constructivist, emergent, and sociocultural perspectives in the context of developmental research. Educational Psychologist, 31(3-4), 175-190. https://doi.org/10.1080/00461520.1996.9653265
  • Confrey, J., Maloney, A. P., Nguyen, K. H., Mojica, G., & Myers, M. (2009). Equipartitioning/splitting as a foundation of rational number reasoning using learning trajectories. In Tzekaki, M., Kaldrimidou, M. & Sakonidis, H. (Eds.), Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 345–352).
  • Confrey, J., Maloney, A.P. & Corley, A.K. (2014). Learning trajectories: a framework for connecting standards with curriculum. ZDM Mathematics Education. 46, 719–733 https://doi.org/10.1007/s11858-014-0598-7
  • Cramer, K., & Wyberg, T. (2009). Efficacy of Different Concrete Models for Teaching the Part-Whole Construct for Fractions. Mathematical Thinking and Learning, 11(4), 226–257. https://doi.org/10.1080/10986060903246479
  • Creswell, J., & Plano Clark, V. (2011) Designing and Conducting Mixed Methods Research. (2nd ed.) SAGE Publications.
  • Department for Education. (2021). National curriculum in England: Mathematics programmes of study. https://www.gov.uk/government/publications/national-curriculum-in-england-mathematics-programmes-of-study
  • DeWolf, M., & Vosniadou, S. (2015). The representation of fraction magnitudes and the whole number bias reconsidered. Learning and Instruction, 37, 39–49. https://doi.org/10.1016/j.learninstruc.2014.07.002
  • DeWolf, M., Vosniadou, S. (2011). The whole number bias in fraction magnitude comparisons with adults. In Carlson, L.Hoelscher, C., & Shipley, TF. (Eds.) Proceedings of the 33rd Annual Conference of The Cognitive Science Society. (pp. 1751-1756). Cognitive Science Society.
  • English, L., & Halford, G. (1995). Mathematics education: Models and processes. Mahwah, NJ: Lawrence Erlbaum. https://doi.org/10.4324/9780203052884
  • Ernest, P. (2018). The philosophy of mathematics education: an overview. In P. Ernest. (Ed.) The Philosophy of Mathematics Education Today. ICME-13 Monographs. Springer. https://doi.org/10.1007/978-3-319-77760-3_2
  • Eroğlu, D., Camcı, F., & Tanışlı, D. (2019). Hypothetical learning trajectory to the development of sixth grade students’ knowledge about fractions and addition-subtraction in fractions. PAU Journal of Education, 45, 116-143. https://doi.org/10.9779/PUJE.2018.225
  • Foley, T., & Cawley, J. (2003). About the mathematics of division: Implications for students with learning disabilities. Exceptionality, 11, 131-150. https://doi.org/10.1207/s15327035ex1103_02
  • Güzel M. ve Asil-Güzel A. (baskıda) 2018 ve 2024 Yılları İlkokul Matematik Öğretim Programında Uzamsal Ölçme: Öğrenme Rotaları Çerçevesinde Bir İnceleme. Çukurova Üniversitesi Eğitim Fakültesi Dergisi.
  • Hallett, D., Nunes, T., & Bryant, P. (2010). Individual differences in conceptual and procedural knowledge when learning fractions. Journal of Educational Psychology, 102, 395–406. https://doi.org/10.1037/a0017486
  • Hıdıroğlu, Ç. N., & Tuncel, I. (2019). Ortaokul Beşinci Sınıf Matematik Dersi Öğretim Programının Kesirler Ünitesinin Değerlendirilmesi. Akdeniz Eğitim Araştırmaları Dergisi. 13(27), 313–365. https://doi.org/10.29329/mjer.2019.185.14
  • Johanning, D. I. (2008). Learning to use fractions: Examining middle school students' emerging fraction literacy. Journal for Research in Mathematics Education, 39(3), 281-310. https://doi.org/10.2307/30034971
  • Kıral. B., (2020). Nitel bir veri analiz yöntemi olarak doküman analizi. Siirt Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 8(15), 170-189.
  • Koc, Y., Isiksal, M., & Bulut, S. (2007). Elementary school curriculum reform in Turkey. International Education Journal, 8(1), 30-39.
  • Lamon, S. J. (2007). Rational numbers and proportional reasoning: Toward a theoretical framework for research. In F. Lester (Ed.) Second Handbook of Research on Mathematics Teaching and Learning, (pp. 629-668). Information Age Publishing.
  • Lamon, S. J. (2020). Teaching Fractions and Ratios for Understanding: Essential Content Knowledge and Instructional Strategies for Teachers. Routledge. https://doi.org/10.4324/9781003008057
  • Lenz, K., Dreher, A., Holzäpfel, L., & Wittmann, G. (2020). Are conceptual knowledge and procedural knowledge empirically separable? The case of fractions. British Journal of Educational Psychology, 90(3), 809–829. https://doi.org/10.1111/bjep.12333
  • Lin, C.-Y., Becker, J., Byun, M.-R., Yang, D.-C., & Huang, T.-W. (2013). Preservice teachers’ conceptual and procedural knowledge of fraction operations: A comparative study of the United States and Taiwan. School Science and Mathematics, 113(1), 41–51. https://doi.org/10.1111/j.1949-8594.2012.00173.x
  • Lortie-Forgues, H., Tian, J., & Siegler, R. S. (2015). Why is learning fraction and decimal arithmetic so difficult? Developmental Review, 38, 201-221. https://doi.org/10.1016/j.dr.2015.07.008
  • Lovin, L. H., Stevens, A. L., Siegfried, J., Wilkins, J. L., & Norton, A. (2018). Pre-K-8 prospective teachers’ understanding of fractions: An extension of fractions schemes and operations research. Journal of Mathematics Teacher Education, 21, 207-235. https://doi.org/10.1007/s10857-016-9357-8
  • Maloney, A. P., & Confrey, J. (2010). The construction, refinement, and early validation of the equipartitioning learning trajectory. In K. Gomez, L. Lyons, & J. Radinsky (Eds.) Proceedings of 9th International Conference of the Learning Sciences. (pp. 968 - 975) International Society of the Learning Sciences.
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative Data Analysis: An Expanded Source Book (2nd ed.). Sage Publications.
  • Millî Eğitim Bakanlığı (2009). İlköğretim Matematik Dersi 1-5. Sınıflar Öğretim Programı. MEB Talim ve Terbiye Kurulu Başkanlığı
  • Millî Eğitim Bakanlığı (2013). Ortaokul Matematik Dersi Öğretim Programı (5, 6, 7, ve 8. sınıflar). MEB Talim ve Terbiye Kurulu Başkanlığı
  • Millî Eğitim Bakanlığı (2024a). İlkokul Matematik Dersi Öğretim Programı (1,2, 3 ve 4. Sınıflar). Türkiye yüzyılı maarif modeli. MEB Talim ve Terbiye Kurulu Başkanlığı
  • Millî Eğitim Bakanlığı (2024b). Ortaokul Matematik Dersi Öğretim Programı (5, 6, 7, ve 8. sınıflar). Türkiye yüzyılı maarif modeli. MEB Talim ve Terbiye Kurulu Başkanlığı
  • Ministry of Education (2013). Mathematics Syllabus Primary One To Six. Ministry of Education.
  • National Council of Teachers of Mathematics (2000). Principles and Standards for School Mathematics. NCTM.
  • Ni, Y., & Zhou, Y. D. (2005). Teaching and learning fraction and rational numbers: The origins and implications of whole number bias. Educational Psychologist, 40(1), 27-52. https://doi.org/10.1207/s15326985ep4001_3
  • Osana, H. P., & Royea, D. A. (2011). Obstacles and challenges in preservice teachers’ explorations with fractions: A view from a small-scale intervention study. The Journal of Mathematical Behavior, 30(4), 333-352. https://doi.org/10.1016/j.jmathb.2011.07.001
  • Ritchie, S. J., & Bates, T. C. (2013). Enduring links from childhood mathematics and reading achievement to adult socioeconomic status. Psychological Science, 24, 1301–1308. https://doi.org/10.1177/0956797612466268
  • Rittle-Johnson, B., Schneider, M., & Star, J. R. (2015). Not a one-way street: Bidirectional relations between procedural and conceptual knowledge of mathematics. Educational Psychology Review, 27, 587-597. https://doi.org/10.1007/s10648-015-9302-x
  • Rittle-Johnson, B., Siegler, R. S., & Alibali, M. W. (2001). Developing conceptual understanding and procedural skill in mathematics: An iterative process. Journal of Educational Psychology, 93(2), 346. https://doi.org/10.1037/0022-0663.93.2.346
  • Sarama, J., & Clements, D. H. (2024, September 20). Learn fractions. Learning and Teaching with Learning Trajectories, https://www.learningtrajectories.org/math/learning trajectories/fractions
  • Schneider, M., & Stern, E. (2010). The developmental relations between conceptual and procedural knowledge: A multimethod approach. Developmental Psychology, 46(1), 178–192. https://doi.org/10.1037/a0016701
  • Schneider, M., & Stern, E. (2005). Conceptual and procedural knowledge of a mathematics problem: Their measurement and their causal interrelations. In B. G. Bara, L. Barsalou, & M. Bucciarelli (Eds.), Proceedings of the 27th Annual Meeting of The Cognitive Science Society, 21–23 July 2005, Stresa, Italy (Vol. 27, pp. 1955–1960). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Siebert, D., & Gaskin, N. (2006). Creating, naming, and justifying fractions. Teaching Children Mathematics, 12(8), 394-400. https://doi.org/10.2307/41198803
  • Siegler, R. S., & Pyke, A. A. (2013). Developmental and individual differences in understanding of fractions. Developmental Psychology, 49(10), 1994–2004. https://doi.org/10.1037/a0031200
  • Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, 26(2), 114-145. https://doi.org/10.5951/jresematheduc.26.2.0114
  • Stafylidou, S., & Vosniadou, S. (2004). The development of students’ understanding of the numerical value of fractions. Learning and Instruction, 14, 503–518. https://doi.org/10.1016/j.learninstruc.2004.06.015
  • Thompson, P. W. (2020). Constructivism in mathematics education. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 127–134). Springer.
  • Usiskin, Z. P. (2007). Some thoughts about fractions. Mathematics Teaching in the Middle School, 12(7), 370-373. https://doi.org/10.5951/MTMS.12.7.0370
  • Vamvakoussi, X., Van Dooren, W., & Verschaffel, L. (2012). Naturally biased? In search for reaction time evidence for a natural number bias in adults. The Journal of Mathematical Behavior, 31(3), 344-355. https://doi.org/10.1016/j.jmathb.2012.02.001
  • Vosniadou, S., Vamvakoussi, X., & Skopeliti, I. (2008). The framework theory approach to conceptual change. In S. Vosniadou (Ed.), International Handbook of Research On Conceptual Change (pp. 3–34). Erlbaum.
  • Vygotsky, L. S. (1978). Internalization of higher psychological functions. In M. Cole, V. John-Steiner, S. Scribner & E. Souberman (Eds.), Mind in Society (pp. 52–57). Harvard University Press.
  • Yanık, H.B. (2013). Rasyonel sayılar. İ.Ö. Zembat, M.F. Özmantar, E. Bingölbali, H. Şandır, & A. Delice. (Eds.). Tanımları ve Tarihsel Gelişimleriyle Matematiksel Kavramlar içinde (ss. 95-110). Pegem Akademi.
  • Yenilmez, K., & Sölpük, N. (2014). Matematik Dersi Öğretim Programı İle İlgili Tezlerin İncelenmesi (2004-2013), Eğitim ve Öğretim Araştırmaları Dergisi, 3(2), 33-42.
  • Zembat, İ. Ö. (2010). A micro-curricular analysis of unified mathematics curricula in Turkey. ZDM, 42, 443-455. https://doi.org/10.1007/s11858-010-0236-y

Investigating Fractions Acquisition in Primary and Secondary Mathematics Curricula via Learning Trajectories

Yıl 2025, Sayı: 66, 3822 - 3845, 29.12.2025
https://doi.org/10.53444/deubefd.1597025

Öz

The purpose of this study is to examine the learning outcomes related to fractions in contemporary primary and secondary mathematics curricula through the learning trajectories. The study is, by its nature, a document analysis, with current primary and secondary mathematics curricula selected as the documents. The learning outcomes related to fractions presented in these curricula were descriptively analyzed according to the levels of learning trajectories. The findings revealed that the chronological order of topics in the curricula generally aligns with the sequence provided in the learning trajectories for teaching fractions. However, the findings also indicated that the learning outcomes concerning fraction arithmetic were not explicitly structured for addition and subtraction of fractions with different denominators, as well as multiplication and division of fractions. It was observed that while the outcomes related to fraction arithmetic are included in the curriculum, they are implicitly placed under the learning outcomes for problem-solving. We conclude that the teaching of fractions in primary and secondary mathematics curricula is broadly aligned with a scientific perspective. Nonetheless, the lack of explicit structuring of the stages related to fraction arithmetic could pose challenges for both material designers and teachers. In this respect, minor updates or additional clarifications in the curriculum are recommended.

Kaynakça

  • Alacacı, C. (2010). Öğrencilerin kesirler konusundaki kavram yanılgıları. E. Bingölbali & M.F. Özmantar (Eds.) Matematiksel zorluklar ve çözüm önerileri içinde, (ss. 63-95). Pegem Akademi.
  • Altıparmak, K., & Palabıyık, E. (2019). 1-8. sınıf kesirler, kesirlerle işlemler ve ondalık gösterim alt öğrenme alanlarına ait kazanımların yenilenmiş bloom taksonomisi'ne göre incelenmesi. İlkogretim Online, 18(1). https://doi.org/10.17051/ilkonline.2019.527183
  • Asil-Güzel, A., Güzel, M. & Coşkun, M. (2023). İlkokul ve ortaokul matematik öğretim programı’nın uzunluk ölçme kazanımlarının öğrenme rotalarına göre incelenmesi. Cumhuriyet Uluslararası Eğitim Dergisi, 12(3), 527-537. https://doi.org/10.30703/cije.1204418
  • Bailey, D. H., Hoard, M. K., Nugent, L., & Geary, D. C. (2012). Competence with fractions predicts gains in mathematics achievement. Journal of Experimental Child Psychology, 113, 447–455. https://doi.org/10.1016/j.jecp.2012.06.004
  • Battista, M. T. (2003). Levels of sophistication in elementary students’ reasoning about length. International Group for the Psychology of Mathematics Education, 2, 73–80. http://files.eric.ed.gov/fulltext/ED500905.pdf.
  • Battista, M. T. (2006). Understanding the development of students' thinking about length. Teaching Children Mathematics, 13(3), 140-146. https://doi.org/10.5951/TCM.13.3.0140
  • Battista, M. T., (2012). Cognition-based assessment & teaching of geometric shapes: Building on students' reasoning. Heinemann.
  • Bingölbali, E., & Özmantar, M. F. (2014). İlköğretimde matematiksel zorluklar ve çözüm önerileri (4. baskı). Pegem Akademi.
  • Booth, J. L., & Newton, K. J. (2012). Fractions: Could they really be the gatekeeper’s doorman? Contemporary Educational Psychology, 37, 247–253. https://doi.org/10.1016/j.cedpsych.2012.07.001
  • Bowen, G.A. (2009), Document analysis as a qualitative research method, Qualitative Research Journal, 9(2), 27-40. https://doi.org/10.3316/QRJ0902027
  • Bozkurt, A. , Özmantar, M. F. & Güzel, M. (2018). Uzunluk ölçme ve farklı uzunlukları karşılaştırmaya dair öğrenci düşünüşlerinin incelenmesi. International Journal of Educational Studies in Mathematics , 5(2) , 39-55 .
  • Büyüköztürk, S. (2018). Sosyal Bilimler İçin Veri Analizi El Kitabı. Pegem Akademi.
  • Byrnes, J. P., & Wasik, B. A. (1991). Role of conceptual knowledge in mathematical procedural learning. Developmental Psychology, 27(5), 777-786.
  • Campbell-Phillips, S. (2020). Education and curriculum reform: The impact they have on learning. Budapest International Research and Critics in Linguistics and Education (BirLE) Journal, 3(2), 1074-1082. https://doi.org/10.33258/birle.v3i2.1036
  • Ceylan, M., & Aslan, D. (2023). Comparison of the learning trajectories approach and Turkiye’s National Early Childhood Education Program in teaching mathematics. International Journal of Educational Studies in Mathematics, 10(1), 26–40. https://doi.org/10.17278/ijesim.1141506
  • Clarke, T., Ayres, P., & Sweller, J. (2005). The impact of sequencing and prior knowledge on learning mathematics through spreadsheet applications. Educational Technology Research and Development, 53(3), 15-24. https://doi.org/10.1007/BF02504794
  • Clements, D. H., & Sarama, J. (2021). Learning and Teaching Early Math: The Learning Trajectories Approach (3rd ed.). Routledge. https://doi.org/10.4324/9781003083528
  • Clements, D., & Sarama, J. (2007). Early childhood mathematics learning. In F. K. Lester Jr. (Ed.), Second Handbook of Research On Mathematics Teaching And Learning (Vol. 1, pp. 461-555). Information Age Publishing.
  • Cobb, P., & Yackel, E. (1996). Constructivist, emergent, and sociocultural perspectives in the context of developmental research. Educational Psychologist, 31(3-4), 175-190. https://doi.org/10.1080/00461520.1996.9653265
  • Confrey, J., Maloney, A. P., Nguyen, K. H., Mojica, G., & Myers, M. (2009). Equipartitioning/splitting as a foundation of rational number reasoning using learning trajectories. In Tzekaki, M., Kaldrimidou, M. & Sakonidis, H. (Eds.), Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 345–352).
  • Confrey, J., Maloney, A.P. & Corley, A.K. (2014). Learning trajectories: a framework for connecting standards with curriculum. ZDM Mathematics Education. 46, 719–733 https://doi.org/10.1007/s11858-014-0598-7
  • Cramer, K., & Wyberg, T. (2009). Efficacy of Different Concrete Models for Teaching the Part-Whole Construct for Fractions. Mathematical Thinking and Learning, 11(4), 226–257. https://doi.org/10.1080/10986060903246479
  • Creswell, J., & Plano Clark, V. (2011) Designing and Conducting Mixed Methods Research. (2nd ed.) SAGE Publications.
  • Department for Education. (2021). National curriculum in England: Mathematics programmes of study. https://www.gov.uk/government/publications/national-curriculum-in-england-mathematics-programmes-of-study
  • DeWolf, M., & Vosniadou, S. (2015). The representation of fraction magnitudes and the whole number bias reconsidered. Learning and Instruction, 37, 39–49. https://doi.org/10.1016/j.learninstruc.2014.07.002
  • DeWolf, M., Vosniadou, S. (2011). The whole number bias in fraction magnitude comparisons with adults. In Carlson, L.Hoelscher, C., & Shipley, TF. (Eds.) Proceedings of the 33rd Annual Conference of The Cognitive Science Society. (pp. 1751-1756). Cognitive Science Society.
  • English, L., & Halford, G. (1995). Mathematics education: Models and processes. Mahwah, NJ: Lawrence Erlbaum. https://doi.org/10.4324/9780203052884
  • Ernest, P. (2018). The philosophy of mathematics education: an overview. In P. Ernest. (Ed.) The Philosophy of Mathematics Education Today. ICME-13 Monographs. Springer. https://doi.org/10.1007/978-3-319-77760-3_2
  • Eroğlu, D., Camcı, F., & Tanışlı, D. (2019). Hypothetical learning trajectory to the development of sixth grade students’ knowledge about fractions and addition-subtraction in fractions. PAU Journal of Education, 45, 116-143. https://doi.org/10.9779/PUJE.2018.225
  • Foley, T., & Cawley, J. (2003). About the mathematics of division: Implications for students with learning disabilities. Exceptionality, 11, 131-150. https://doi.org/10.1207/s15327035ex1103_02
  • Güzel M. ve Asil-Güzel A. (baskıda) 2018 ve 2024 Yılları İlkokul Matematik Öğretim Programında Uzamsal Ölçme: Öğrenme Rotaları Çerçevesinde Bir İnceleme. Çukurova Üniversitesi Eğitim Fakültesi Dergisi.
  • Hallett, D., Nunes, T., & Bryant, P. (2010). Individual differences in conceptual and procedural knowledge when learning fractions. Journal of Educational Psychology, 102, 395–406. https://doi.org/10.1037/a0017486
  • Hıdıroğlu, Ç. N., & Tuncel, I. (2019). Ortaokul Beşinci Sınıf Matematik Dersi Öğretim Programının Kesirler Ünitesinin Değerlendirilmesi. Akdeniz Eğitim Araştırmaları Dergisi. 13(27), 313–365. https://doi.org/10.29329/mjer.2019.185.14
  • Johanning, D. I. (2008). Learning to use fractions: Examining middle school students' emerging fraction literacy. Journal for Research in Mathematics Education, 39(3), 281-310. https://doi.org/10.2307/30034971
  • Kıral. B., (2020). Nitel bir veri analiz yöntemi olarak doküman analizi. Siirt Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 8(15), 170-189.
  • Koc, Y., Isiksal, M., & Bulut, S. (2007). Elementary school curriculum reform in Turkey. International Education Journal, 8(1), 30-39.
  • Lamon, S. J. (2007). Rational numbers and proportional reasoning: Toward a theoretical framework for research. In F. Lester (Ed.) Second Handbook of Research on Mathematics Teaching and Learning, (pp. 629-668). Information Age Publishing.
  • Lamon, S. J. (2020). Teaching Fractions and Ratios for Understanding: Essential Content Knowledge and Instructional Strategies for Teachers. Routledge. https://doi.org/10.4324/9781003008057
  • Lenz, K., Dreher, A., Holzäpfel, L., & Wittmann, G. (2020). Are conceptual knowledge and procedural knowledge empirically separable? The case of fractions. British Journal of Educational Psychology, 90(3), 809–829. https://doi.org/10.1111/bjep.12333
  • Lin, C.-Y., Becker, J., Byun, M.-R., Yang, D.-C., & Huang, T.-W. (2013). Preservice teachers’ conceptual and procedural knowledge of fraction operations: A comparative study of the United States and Taiwan. School Science and Mathematics, 113(1), 41–51. https://doi.org/10.1111/j.1949-8594.2012.00173.x
  • Lortie-Forgues, H., Tian, J., & Siegler, R. S. (2015). Why is learning fraction and decimal arithmetic so difficult? Developmental Review, 38, 201-221. https://doi.org/10.1016/j.dr.2015.07.008
  • Lovin, L. H., Stevens, A. L., Siegfried, J., Wilkins, J. L., & Norton, A. (2018). Pre-K-8 prospective teachers’ understanding of fractions: An extension of fractions schemes and operations research. Journal of Mathematics Teacher Education, 21, 207-235. https://doi.org/10.1007/s10857-016-9357-8
  • Maloney, A. P., & Confrey, J. (2010). The construction, refinement, and early validation of the equipartitioning learning trajectory. In K. Gomez, L. Lyons, & J. Radinsky (Eds.) Proceedings of 9th International Conference of the Learning Sciences. (pp. 968 - 975) International Society of the Learning Sciences.
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative Data Analysis: An Expanded Source Book (2nd ed.). Sage Publications.
  • Millî Eğitim Bakanlığı (2009). İlköğretim Matematik Dersi 1-5. Sınıflar Öğretim Programı. MEB Talim ve Terbiye Kurulu Başkanlığı
  • Millî Eğitim Bakanlığı (2013). Ortaokul Matematik Dersi Öğretim Programı (5, 6, 7, ve 8. sınıflar). MEB Talim ve Terbiye Kurulu Başkanlığı
  • Millî Eğitim Bakanlığı (2024a). İlkokul Matematik Dersi Öğretim Programı (1,2, 3 ve 4. Sınıflar). Türkiye yüzyılı maarif modeli. MEB Talim ve Terbiye Kurulu Başkanlığı
  • Millî Eğitim Bakanlığı (2024b). Ortaokul Matematik Dersi Öğretim Programı (5, 6, 7, ve 8. sınıflar). Türkiye yüzyılı maarif modeli. MEB Talim ve Terbiye Kurulu Başkanlığı
  • Ministry of Education (2013). Mathematics Syllabus Primary One To Six. Ministry of Education.
  • National Council of Teachers of Mathematics (2000). Principles and Standards for School Mathematics. NCTM.
  • Ni, Y., & Zhou, Y. D. (2005). Teaching and learning fraction and rational numbers: The origins and implications of whole number bias. Educational Psychologist, 40(1), 27-52. https://doi.org/10.1207/s15326985ep4001_3
  • Osana, H. P., & Royea, D. A. (2011). Obstacles and challenges in preservice teachers’ explorations with fractions: A view from a small-scale intervention study. The Journal of Mathematical Behavior, 30(4), 333-352. https://doi.org/10.1016/j.jmathb.2011.07.001
  • Ritchie, S. J., & Bates, T. C. (2013). Enduring links from childhood mathematics and reading achievement to adult socioeconomic status. Psychological Science, 24, 1301–1308. https://doi.org/10.1177/0956797612466268
  • Rittle-Johnson, B., Schneider, M., & Star, J. R. (2015). Not a one-way street: Bidirectional relations between procedural and conceptual knowledge of mathematics. Educational Psychology Review, 27, 587-597. https://doi.org/10.1007/s10648-015-9302-x
  • Rittle-Johnson, B., Siegler, R. S., & Alibali, M. W. (2001). Developing conceptual understanding and procedural skill in mathematics: An iterative process. Journal of Educational Psychology, 93(2), 346. https://doi.org/10.1037/0022-0663.93.2.346
  • Sarama, J., & Clements, D. H. (2024, September 20). Learn fractions. Learning and Teaching with Learning Trajectories, https://www.learningtrajectories.org/math/learning trajectories/fractions
  • Schneider, M., & Stern, E. (2010). The developmental relations between conceptual and procedural knowledge: A multimethod approach. Developmental Psychology, 46(1), 178–192. https://doi.org/10.1037/a0016701
  • Schneider, M., & Stern, E. (2005). Conceptual and procedural knowledge of a mathematics problem: Their measurement and their causal interrelations. In B. G. Bara, L. Barsalou, & M. Bucciarelli (Eds.), Proceedings of the 27th Annual Meeting of The Cognitive Science Society, 21–23 July 2005, Stresa, Italy (Vol. 27, pp. 1955–1960). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Siebert, D., & Gaskin, N. (2006). Creating, naming, and justifying fractions. Teaching Children Mathematics, 12(8), 394-400. https://doi.org/10.2307/41198803
  • Siegler, R. S., & Pyke, A. A. (2013). Developmental and individual differences in understanding of fractions. Developmental Psychology, 49(10), 1994–2004. https://doi.org/10.1037/a0031200
  • Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, 26(2), 114-145. https://doi.org/10.5951/jresematheduc.26.2.0114
  • Stafylidou, S., & Vosniadou, S. (2004). The development of students’ understanding of the numerical value of fractions. Learning and Instruction, 14, 503–518. https://doi.org/10.1016/j.learninstruc.2004.06.015
  • Thompson, P. W. (2020). Constructivism in mathematics education. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 127–134). Springer.
  • Usiskin, Z. P. (2007). Some thoughts about fractions. Mathematics Teaching in the Middle School, 12(7), 370-373. https://doi.org/10.5951/MTMS.12.7.0370
  • Vamvakoussi, X., Van Dooren, W., & Verschaffel, L. (2012). Naturally biased? In search for reaction time evidence for a natural number bias in adults. The Journal of Mathematical Behavior, 31(3), 344-355. https://doi.org/10.1016/j.jmathb.2012.02.001
  • Vosniadou, S., Vamvakoussi, X., & Skopeliti, I. (2008). The framework theory approach to conceptual change. In S. Vosniadou (Ed.), International Handbook of Research On Conceptual Change (pp. 3–34). Erlbaum.
  • Vygotsky, L. S. (1978). Internalization of higher psychological functions. In M. Cole, V. John-Steiner, S. Scribner & E. Souberman (Eds.), Mind in Society (pp. 52–57). Harvard University Press.
  • Yanık, H.B. (2013). Rasyonel sayılar. İ.Ö. Zembat, M.F. Özmantar, E. Bingölbali, H. Şandır, & A. Delice. (Eds.). Tanımları ve Tarihsel Gelişimleriyle Matematiksel Kavramlar içinde (ss. 95-110). Pegem Akademi.
  • Yenilmez, K., & Sölpük, N. (2014). Matematik Dersi Öğretim Programı İle İlgili Tezlerin İncelenmesi (2004-2013), Eğitim ve Öğretim Araştırmaları Dergisi, 3(2), 33-42.
  • Zembat, İ. Ö. (2010). A micro-curricular analysis of unified mathematics curricula in Turkey. ZDM, 42, 443-455. https://doi.org/10.1007/s11858-010-0236-y
Toplam 70 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Matematik Eğitimi
Bölüm Araştırma Makalesi
Yazarlar

Ayşe Asil Güzel 0000-0002-2698-9852

Mehmet Güzel 0000-0003-1551-9641

Gönderilme Tarihi 5 Aralık 2024
Kabul Tarihi 21 Kasım 2025
Yayımlanma Tarihi 29 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Sayı: 66

Kaynak Göster

APA Asil Güzel, A., & Güzel, M. (2025). İlkokul ve Ortaokul Matematik Öğretim Programlarında Kesir Öğrenme Çıktılarının Öğrenme Rotaları İle İncelenmesi. Dokuz Eylül Üniversitesi Buca Eğitim Fakültesi Dergisi(66), 3822-3845. https://doi.org/10.53444/deubefd.1597025