Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, , 981 - 999, 29.04.2024
https://doi.org/10.29130/dubited.1320385

Öz

Teşekkür

The authors are thankful to Departments of Chemistry at Düzce, Sakarya and Erzincan Universities for the laboratory facilities.

Kaynakça

  • [1] J. D. Hayes, A.T. Dinkova-Kostova, K. D. Tew, “Oxidative stress in cancer”, Cancer Cells, vol. 38, pp. 167-197, 2020.
  • [2] A. M. Pisoschi, A. Pop, F. Iordache, L.Stanca, G. Predoi, A. I. Serban, “Oxidative stress mitigation by antioxidants-an overview on their chemistry and influences on health status”, European Journal of Medicinal Chemistry, vol. 209, 112891, 2021
  • [3] M. V. Irazabal, V. E. Torres, “Reactive oxygen species and redox signaling in chronic kidney disease”, Cells, vol. 9, 1342, 2020
  • [4] H. Sies, D. P. Jones, “Reactive oxygen species (ROS) as pleiotropic physiological signalling agents”, Nature Reviews Molecular Cell Biology, vol. 21, pp. 363-383, 2020
  • [5] N. Zhang, P. Hu, Y. Wang, Q. Tang, Q. Zheng, Z. Wang, Y. He, “A reactive oxygen species (ROS) activated hydrogen sulfide (H2S) donor with self- reporting fluorescence”, ACS Sensors, vol. 5, pp. 319-326, 2020
  • [6] Singh A, Kukreti R, Saso L, Kukreti S. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules.; vol. 24(8), pp. 1583, 2019.
  • [7] Bartosz, G. Reactive oxygen species: Destroyers or messengers?, Biochemical Pharmacology, Vol77,(8), pp.1303-1315, 2009.
  • [8] Xu, D., Hu, M.J., Wang, Y.Q., Cui, Y.L. Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules vol.24, pp.1123, 2019.
  • [9] Gulcin, I. Antioxidants and antioxidant methods: An updated overview. Arch Toxicol., Vol.94, pp. 651-715, 2020.
  • [10] D. Yancheva, E. Velcheva, Z. Glavcheva, B. Stamboliyska, A. Smelcerovic, Insights in the radical scavenging mechanism of syringaldehyde and generation of its anion, Journal of Molecular Structure, Vol. 1108, pp. 552-559, 2016.
  • [11] Chmiel M, Stompor-Gorący M. The Spectrum of Pharmacological Actions of Syringetin and Its Natural Derivatives-A Summary Review. Nutrients. Vol.14(23), pp. 5157, 2022. https://doi.org/10.3390/nu14235157.
  • [12] Zhou, W.; Yang, L.; Deng, K.; Xu, G.; Wang, Y.; Ni, Q.; Zhang, Y. Investigation of isoflavone constituents from tuber of Apiosamericana Medik and its protective effect against oxidative damage on RIN-m5F cells. Food Chem. Vol. 405, pp.134655, 2023.
  • [13] Bozkurt, A., Mustafa, G., Tarık, A., Adile, O., Murat, S., Mesut, K., Yıldıray, K., Coskun, S., & Murat, C. Syringaldehyde exerts neuroprotective effect on cerebral ischemia injury in rats through anti-oxidative and anti-apoptotic properties. Neural Regeneration Research. 9(21), pp 1884-1890, 2014. doi: 10.4103/1673-5374.145353
  • [14] Meshcheryakova, S.A., Kayumova, A.F., Kang, Y., Shumadalova, A., Vinogradova, Y.E., Khuzin, D.A., Ziyakaeva, K.R., Kiseleva, O.D., Gabdulkhakova, I., Beylerli, O., Gareev, I.F., Sufianov, A.A., Sufianova, G.Z., Ahmad, A., Yang, G., & Guo, Z. The Effect Of Whole Blood And Bone Marrow With The Addition Of Pyrimidine-2,4(1h,3h)-Dione Thietanyl Derivatives On Free Radical Oxidation. Curr Med Chem. Vol.30(17), pp.1993-2004, 2023 doi: 10.2174/0929867329666220805125638.
  • [15] Lee DH, Folsom AR, Harnack L, Halliwell B, Jacobs DR Jr. Does supplemental vitamin C increase cardiovascular disease risk in women with diabetes? Am J Clin Nutr. Vol.80(5), pp.1194-200, 2004. doi: 10.1093/ajcn/80.5.1194. PMID: 15531665.
  • [16] Akman, T.C, Simsek, S., Kayir, Ö., Zeynep, A., Aksit H., Genc, N. LC-ESI-MS/MS Chemical Characterization, Antioxidant and Antidiabetic Properties of Propolis Extracted with Organic Solvents from Eastern Anatolia Region. Chem. Biodiversity. Vol.20, e202201189, 2023.
  • [17] Nikolaos Nenadis, Olga Lazaridou, and Maria Z. Tsimidou Journal of Agricultural and Food Chemistry. Vol.55 (14), pp.5452-5460, 2007. doi: 10.1021/jf070473q
  • [18] Grimme S, Antony J, Schwabe T, Mück-Lichtenfeld C. Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio)organic molecules. Org Biomol Chem. Vol. 5(5), pp.741-58, 2007. doi: 10.1039/b615319b. Epub 2007 Jan 26. PMID: 17315059.
  • [19] Mendoza Huizar, L. H., Rios-Reyes, C. H., Maturano, O., Robles, J., Rodriguez, J. A. "Chemical reactivity of quinclorac employing the HSAB local principle - Fukui function" Open Chemistry, vol. 13, no. 1, pp. 000010151520150008. 2015. https://doi.org/10.1515/chem-2015-0008
  • [20] Tasheh, N.S., Fouegue, A.D.T., Ghogomu, J.N., Investigation of the Antioxidant and UV Absorption Properties of 2-(2’-hydroxy-5’-methylphenyl)-benzotriazole and Its Ortho-Substituted Derivatives via DFT/TD-DFT, Comput. Chem. 09 (2021) 161–196. https://doi.org/10.4236/cc.2021.93010.
  • [21] Kenchappa, Yadav D. Bodke, A. Chandrashekar, Sandeep Telkar, K.S. Manjunatha, M. Aruna Sindhe, Synthesis of some 2, 6-bis (1-coumarin-2-yl)-4-(4-substituted phenyl) pyridine derivatives as potent biological agents, Arabian Journal of Chemistry, Vol. 10, pp. S1336-S1344, 2017.
  • [22] Marsden S. Blois, Antioxidant Determinations by the Use of a Stable Free Radical, Nature, Vol. 181, pp 1199-1200, 1958.
  • [23] R Re, N Pellegrini, A Proteggente, A Pannala, M Yang, C Rice-Evans. Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic Biol Med. Vol. 9-10 pp1231-1237, 1999.
  • [24] Neese, F. Software update: The ORCA program system-Version 5.0, WIREs Comput. Mol. Sci. Vol.12, pp. 1–15, 2022. https://doi.org/10.1002/wcms.1606
  • [25] Becke, A.D. Density‐functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98. 5648–5652, 1993. https://doi.org/10.1063/1.464913.
  • [26 Lee, C., Yang, W., Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B. 37.785–789, 1988. https://doi.org/10.1103/PhysRevB.37.785.
  • [27] Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields, J. Phys. Chem. 98. 11623–11627, 1994 https://doi.org/10.1021/j100096a001.
  • [28] Vosko, S.H., Wilk, L., Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys. 58. 1200–1211, 1980. https://doi.org/10.1139/p80-159.
  • [29] Weigend, F., Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, Phys. Chem. Chem. Phys. 7. pp.3297, 2005. https://doi.org/10.1039/b508541a.
  • [30] Grimme, S., Antony, J., Ehrlich, S., Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. Vol.132, 154104.2010. https://doi.org/10.1063/1.3382344
  • [31] Grimme, S., Ehrlich, S., Goerigk, L. Effect of the damping function in dispersion corrected density functional theory, J. Comput. Chem. 32. 1456–1465. 2011. https://doi.org/10.1002/jcc.21759.
  • [32] Neese, F., Wennmohs, F., Hansen, A., Becker, U. Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange, Chem. Phys. 356. 98–109. 2009. https://doi.org/10.1016/j.chemphys.2008.10.036.
  • [33] Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn, Phys. Chem. Chem. Phys. Vol. 8, pp.1057, 2006. https://doi.org/10.1039/b515623h.
  • [34] Barone, V., Cossi, M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model, J. Phys. Chem. A. Vol. 102, pp.1995–2001, 1998. https://doi.org/10.1021/jp9716997.
  • [35] Cornell T, Hutchison GR. Version 1.2.0. Avogadro Chemistry; Last modified July 24, 2018. Accessed January 1, 2023. http:// avogadro.cc
  • [36] Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E.,Hutchison, G.R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4, 17 (2012). https://doi.org/10.1186/1758-2946-4-17
  • [37] Knizia, G. Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts. J. Chem. Theory Comput. 9, 4834–4843. 2013.
  • [38] Knizia, G. & Klein, J. E. M. N. Electron Flow in Reaction Mechanisms—Revealed from First Principles. Angew. Chem. Int. Ed. 54, 5518–5522. 2015.
  • [39] Gázquez, J.L., Cedillo, A., Vela, A. Electrodonating and Electroaccepting Powers, J. Phys. Chem. A. 111, 1966–1970, 2007. https://doi.org/10.1021/jp065459f.
  • [40] Zhong, Y., Shahidi, F. 12 - Methods for the assessment of antioxidant activity in foods11This chapter is reproduced to a large extent from an article in press by the authors in the Journal of Functional Foods., in: F.B.T.-H. of A. for F.P. Shahidi (Ed.), Woodhead Publ. Ser. Food Sci. Technol. Nutr., Woodhead Publishing, 2015: pp. 287–333. https://doi.org/https://doi.org/10.1016/B978-1-78242-089-7.00012-9.
  • [41] Li, Y., Evans, J.N.S. The Fukui Function: A Key Concept Linking Frontier Molecular Orbital Theory and the Hard-Soft-Acid-Base Principle, J. Am. Chem. Soc. 117, 7756–7759, 1995. https://doi.org/10.1021/ja00134a021.
  • [42] Chattaraj, P.K., Cedillo, A., Parr, R.G. Variational method for determining the Fukui function and chemical hardness of an electronic system, J. Chem. Phys. 103, 7645–7646, 1995. https://doi.org/10.1063/1.470284.
  • [43] Vela, A., Gazquez, J.L. A relationship between the static dipole polarizability, the global softness, and the fukui function, J. Am. Chem. Soc. 112,1490–1492, 1990. https://doi.org/10.1021/ja00160a029.
  • [44] Flores-Moreno, R., Melin, J., Ortiz, J. V., Merino, G. Efficient evaluation of analytic Fukui functions, J. Chem. Phys. Vol. 129, 224105, 2008. https://doi.org/10.1063/1.3036926.
  • [45] Flores-Moreno, R. Symmetry Conservation in Fukui Functions, J. Chem. Theory Comput. Vol.6, 48–54, 2010. https://doi.org/10.1021/ct9002527
  • [46] Brus, L.E. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites, J. Chem. Phys. 79, pp.5566–5571, 1983. https://doi.org/10.1063/1.445676.
  • [47] Cederbaum, L.S., Domcke, W., Schirmer, J., Von Niessen, W., Diercksen, G.H.F., Kraemer, W.P. Correlation effects in the ionization of hydrocarbons, J. Chem. Phys. Vol.69, pp.1591–1603, 1978. https://doi.org/10.1063/1.436733
  • [48] Szabo A., Ostlund, N. S. Modern Quantum Chemistry Introduction to Advanced Electronic Structure Theory, Dover Publications, New York, 1996.
  • [49] Parr, R.G., Weitao, Y. Density-Functional Theory of Atoms and Molecules, Oxford University Press, 1995. https://doi.org/10.1093/oso/9780195092769.001.0001. [50] Cindrić M, Sović I, Mioč M, Hok L, Boček I, Roškarić P, Butković K, Martin-Kleiner I, Starčević K, Vianello R, Kralj, M., Hranjec, M. Experimental and Computational Study of the Antioxidative Potential of Novel Nitro and Amino Substituted Benzimidazole/Benzothiazole-2-Carboxamides with Antiproliferative Activity. Antioxidants. Vol.8(10), pp. 477, 2019, https://doi.org/10.3390/antiox8100477
  • [51] Soobrattee, M.A., Neergheen, V.S., Luximon-Ramma A., Aruoma O.I., Bahorun T. Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis.Vol.579, pp. 579:200–213, 2005. https://doi.org/10.1016/j.mrfmmm.2005.03.023
  • [52] Musatat, AB, Atahan, A, Ergün, A, Çıkrıkcı, K, Gençer, N, Arslan, O, et al. Synthesis, enzyme inhibition, and molecular docking studies of a novel chalcone series bearing benzothiazole scaffold. Biotechnol Appl Biochem. Vol.70, pp.1357– 1370, 2023. https://doi.org/10.1002/bab.2445
  • [53] P.M. Becker, Antireduction: an ancient strategy fit for future, Biosci. Rep. 36 (2016). https://doi.org/10.1042/BSR2016008
  • [54] Macías-Hernández, E.C., Romero-Chávez, M. M., Mojica-Sánchez, J.P., Pineda-Urbina, K., Martínez, S.T.M., Jimenez-Ruiz, E. I., Via, L. D., Ramos-Organillo, Á. Synthesis and characterization of new monothiooxalamides containing pyridine nuclei with promising antiproliferative and antioxidant activity, Journal of Molecular Structure, Vol.1265, pp.133360, 2022. https://doi.org/10.1016/j.molstruc.2022.133360.

Siringaldehit Bazlı Yeni 2,4,6-Triarilpiridin Türevlerinin Antioksidan Aktiviteleri ve Teorik Profili

Yıl 2024, , 981 - 999, 29.04.2024
https://doi.org/10.29130/dubited.1320385

Öz

Siringaldehitten türetilen sekiz adet yeni 2,4,6-triarilpiridin tasarlandı ve tek basamaklı multi-komponent yöntemle sentezlendi. Bu bileşiklerin antioksidan aktiviteleri bilinen referans bileşiklerle kıyaslanarak değerlendirildi. Daha sonra, B3LYP teorisi ve SVP, TVZP temel setleri kullanılarak, sentezlenen bileşikler için kapsamlı bir teorik kuantum hesaplama yaklaşımı oluşturuldu ve radikal yakalama potansiyelini tanımlayan Fukui indeksleri adlı elektronik yapı tanımlayıcı parametreler belirlendi. Son olarak, teorik ve deneysel sonuçlar karşılaştırılarak yapı-etkinlik ilişkisi ortaya konuldu. Sonuç olarak, elde edilen bileşiklerin antioksidan aktivite potansiyeli teorik bir yaklaşımla da desteklendi.

Kaynakça

  • [1] J. D. Hayes, A.T. Dinkova-Kostova, K. D. Tew, “Oxidative stress in cancer”, Cancer Cells, vol. 38, pp. 167-197, 2020.
  • [2] A. M. Pisoschi, A. Pop, F. Iordache, L.Stanca, G. Predoi, A. I. Serban, “Oxidative stress mitigation by antioxidants-an overview on their chemistry and influences on health status”, European Journal of Medicinal Chemistry, vol. 209, 112891, 2021
  • [3] M. V. Irazabal, V. E. Torres, “Reactive oxygen species and redox signaling in chronic kidney disease”, Cells, vol. 9, 1342, 2020
  • [4] H. Sies, D. P. Jones, “Reactive oxygen species (ROS) as pleiotropic physiological signalling agents”, Nature Reviews Molecular Cell Biology, vol. 21, pp. 363-383, 2020
  • [5] N. Zhang, P. Hu, Y. Wang, Q. Tang, Q. Zheng, Z. Wang, Y. He, “A reactive oxygen species (ROS) activated hydrogen sulfide (H2S) donor with self- reporting fluorescence”, ACS Sensors, vol. 5, pp. 319-326, 2020
  • [6] Singh A, Kukreti R, Saso L, Kukreti S. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules.; vol. 24(8), pp. 1583, 2019.
  • [7] Bartosz, G. Reactive oxygen species: Destroyers or messengers?, Biochemical Pharmacology, Vol77,(8), pp.1303-1315, 2009.
  • [8] Xu, D., Hu, M.J., Wang, Y.Q., Cui, Y.L. Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules vol.24, pp.1123, 2019.
  • [9] Gulcin, I. Antioxidants and antioxidant methods: An updated overview. Arch Toxicol., Vol.94, pp. 651-715, 2020.
  • [10] D. Yancheva, E. Velcheva, Z. Glavcheva, B. Stamboliyska, A. Smelcerovic, Insights in the radical scavenging mechanism of syringaldehyde and generation of its anion, Journal of Molecular Structure, Vol. 1108, pp. 552-559, 2016.
  • [11] Chmiel M, Stompor-Gorący M. The Spectrum of Pharmacological Actions of Syringetin and Its Natural Derivatives-A Summary Review. Nutrients. Vol.14(23), pp. 5157, 2022. https://doi.org/10.3390/nu14235157.
  • [12] Zhou, W.; Yang, L.; Deng, K.; Xu, G.; Wang, Y.; Ni, Q.; Zhang, Y. Investigation of isoflavone constituents from tuber of Apiosamericana Medik and its protective effect against oxidative damage on RIN-m5F cells. Food Chem. Vol. 405, pp.134655, 2023.
  • [13] Bozkurt, A., Mustafa, G., Tarık, A., Adile, O., Murat, S., Mesut, K., Yıldıray, K., Coskun, S., & Murat, C. Syringaldehyde exerts neuroprotective effect on cerebral ischemia injury in rats through anti-oxidative and anti-apoptotic properties. Neural Regeneration Research. 9(21), pp 1884-1890, 2014. doi: 10.4103/1673-5374.145353
  • [14] Meshcheryakova, S.A., Kayumova, A.F., Kang, Y., Shumadalova, A., Vinogradova, Y.E., Khuzin, D.A., Ziyakaeva, K.R., Kiseleva, O.D., Gabdulkhakova, I., Beylerli, O., Gareev, I.F., Sufianov, A.A., Sufianova, G.Z., Ahmad, A., Yang, G., & Guo, Z. The Effect Of Whole Blood And Bone Marrow With The Addition Of Pyrimidine-2,4(1h,3h)-Dione Thietanyl Derivatives On Free Radical Oxidation. Curr Med Chem. Vol.30(17), pp.1993-2004, 2023 doi: 10.2174/0929867329666220805125638.
  • [15] Lee DH, Folsom AR, Harnack L, Halliwell B, Jacobs DR Jr. Does supplemental vitamin C increase cardiovascular disease risk in women with diabetes? Am J Clin Nutr. Vol.80(5), pp.1194-200, 2004. doi: 10.1093/ajcn/80.5.1194. PMID: 15531665.
  • [16] Akman, T.C, Simsek, S., Kayir, Ö., Zeynep, A., Aksit H., Genc, N. LC-ESI-MS/MS Chemical Characterization, Antioxidant and Antidiabetic Properties of Propolis Extracted with Organic Solvents from Eastern Anatolia Region. Chem. Biodiversity. Vol.20, e202201189, 2023.
  • [17] Nikolaos Nenadis, Olga Lazaridou, and Maria Z. Tsimidou Journal of Agricultural and Food Chemistry. Vol.55 (14), pp.5452-5460, 2007. doi: 10.1021/jf070473q
  • [18] Grimme S, Antony J, Schwabe T, Mück-Lichtenfeld C. Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio)organic molecules. Org Biomol Chem. Vol. 5(5), pp.741-58, 2007. doi: 10.1039/b615319b. Epub 2007 Jan 26. PMID: 17315059.
  • [19] Mendoza Huizar, L. H., Rios-Reyes, C. H., Maturano, O., Robles, J., Rodriguez, J. A. "Chemical reactivity of quinclorac employing the HSAB local principle - Fukui function" Open Chemistry, vol. 13, no. 1, pp. 000010151520150008. 2015. https://doi.org/10.1515/chem-2015-0008
  • [20] Tasheh, N.S., Fouegue, A.D.T., Ghogomu, J.N., Investigation of the Antioxidant and UV Absorption Properties of 2-(2’-hydroxy-5’-methylphenyl)-benzotriazole and Its Ortho-Substituted Derivatives via DFT/TD-DFT, Comput. Chem. 09 (2021) 161–196. https://doi.org/10.4236/cc.2021.93010.
  • [21] Kenchappa, Yadav D. Bodke, A. Chandrashekar, Sandeep Telkar, K.S. Manjunatha, M. Aruna Sindhe, Synthesis of some 2, 6-bis (1-coumarin-2-yl)-4-(4-substituted phenyl) pyridine derivatives as potent biological agents, Arabian Journal of Chemistry, Vol. 10, pp. S1336-S1344, 2017.
  • [22] Marsden S. Blois, Antioxidant Determinations by the Use of a Stable Free Radical, Nature, Vol. 181, pp 1199-1200, 1958.
  • [23] R Re, N Pellegrini, A Proteggente, A Pannala, M Yang, C Rice-Evans. Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic Biol Med. Vol. 9-10 pp1231-1237, 1999.
  • [24] Neese, F. Software update: The ORCA program system-Version 5.0, WIREs Comput. Mol. Sci. Vol.12, pp. 1–15, 2022. https://doi.org/10.1002/wcms.1606
  • [25] Becke, A.D. Density‐functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98. 5648–5652, 1993. https://doi.org/10.1063/1.464913.
  • [26 Lee, C., Yang, W., Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B. 37.785–789, 1988. https://doi.org/10.1103/PhysRevB.37.785.
  • [27] Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields, J. Phys. Chem. 98. 11623–11627, 1994 https://doi.org/10.1021/j100096a001.
  • [28] Vosko, S.H., Wilk, L., Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys. 58. 1200–1211, 1980. https://doi.org/10.1139/p80-159.
  • [29] Weigend, F., Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, Phys. Chem. Chem. Phys. 7. pp.3297, 2005. https://doi.org/10.1039/b508541a.
  • [30] Grimme, S., Antony, J., Ehrlich, S., Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. Vol.132, 154104.2010. https://doi.org/10.1063/1.3382344
  • [31] Grimme, S., Ehrlich, S., Goerigk, L. Effect of the damping function in dispersion corrected density functional theory, J. Comput. Chem. 32. 1456–1465. 2011. https://doi.org/10.1002/jcc.21759.
  • [32] Neese, F., Wennmohs, F., Hansen, A., Becker, U. Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange, Chem. Phys. 356. 98–109. 2009. https://doi.org/10.1016/j.chemphys.2008.10.036.
  • [33] Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn, Phys. Chem. Chem. Phys. Vol. 8, pp.1057, 2006. https://doi.org/10.1039/b515623h.
  • [34] Barone, V., Cossi, M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model, J. Phys. Chem. A. Vol. 102, pp.1995–2001, 1998. https://doi.org/10.1021/jp9716997.
  • [35] Cornell T, Hutchison GR. Version 1.2.0. Avogadro Chemistry; Last modified July 24, 2018. Accessed January 1, 2023. http:// avogadro.cc
  • [36] Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E.,Hutchison, G.R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4, 17 (2012). https://doi.org/10.1186/1758-2946-4-17
  • [37] Knizia, G. Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts. J. Chem. Theory Comput. 9, 4834–4843. 2013.
  • [38] Knizia, G. & Klein, J. E. M. N. Electron Flow in Reaction Mechanisms—Revealed from First Principles. Angew. Chem. Int. Ed. 54, 5518–5522. 2015.
  • [39] Gázquez, J.L., Cedillo, A., Vela, A. Electrodonating and Electroaccepting Powers, J. Phys. Chem. A. 111, 1966–1970, 2007. https://doi.org/10.1021/jp065459f.
  • [40] Zhong, Y., Shahidi, F. 12 - Methods for the assessment of antioxidant activity in foods11This chapter is reproduced to a large extent from an article in press by the authors in the Journal of Functional Foods., in: F.B.T.-H. of A. for F.P. Shahidi (Ed.), Woodhead Publ. Ser. Food Sci. Technol. Nutr., Woodhead Publishing, 2015: pp. 287–333. https://doi.org/https://doi.org/10.1016/B978-1-78242-089-7.00012-9.
  • [41] Li, Y., Evans, J.N.S. The Fukui Function: A Key Concept Linking Frontier Molecular Orbital Theory and the Hard-Soft-Acid-Base Principle, J. Am. Chem. Soc. 117, 7756–7759, 1995. https://doi.org/10.1021/ja00134a021.
  • [42] Chattaraj, P.K., Cedillo, A., Parr, R.G. Variational method for determining the Fukui function and chemical hardness of an electronic system, J. Chem. Phys. 103, 7645–7646, 1995. https://doi.org/10.1063/1.470284.
  • [43] Vela, A., Gazquez, J.L. A relationship between the static dipole polarizability, the global softness, and the fukui function, J. Am. Chem. Soc. 112,1490–1492, 1990. https://doi.org/10.1021/ja00160a029.
  • [44] Flores-Moreno, R., Melin, J., Ortiz, J. V., Merino, G. Efficient evaluation of analytic Fukui functions, J. Chem. Phys. Vol. 129, 224105, 2008. https://doi.org/10.1063/1.3036926.
  • [45] Flores-Moreno, R. Symmetry Conservation in Fukui Functions, J. Chem. Theory Comput. Vol.6, 48–54, 2010. https://doi.org/10.1021/ct9002527
  • [46] Brus, L.E. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites, J. Chem. Phys. 79, pp.5566–5571, 1983. https://doi.org/10.1063/1.445676.
  • [47] Cederbaum, L.S., Domcke, W., Schirmer, J., Von Niessen, W., Diercksen, G.H.F., Kraemer, W.P. Correlation effects in the ionization of hydrocarbons, J. Chem. Phys. Vol.69, pp.1591–1603, 1978. https://doi.org/10.1063/1.436733
  • [48] Szabo A., Ostlund, N. S. Modern Quantum Chemistry Introduction to Advanced Electronic Structure Theory, Dover Publications, New York, 1996.
  • [49] Parr, R.G., Weitao, Y. Density-Functional Theory of Atoms and Molecules, Oxford University Press, 1995. https://doi.org/10.1093/oso/9780195092769.001.0001. [50] Cindrić M, Sović I, Mioč M, Hok L, Boček I, Roškarić P, Butković K, Martin-Kleiner I, Starčević K, Vianello R, Kralj, M., Hranjec, M. Experimental and Computational Study of the Antioxidative Potential of Novel Nitro and Amino Substituted Benzimidazole/Benzothiazole-2-Carboxamides with Antiproliferative Activity. Antioxidants. Vol.8(10), pp. 477, 2019, https://doi.org/10.3390/antiox8100477
  • [51] Soobrattee, M.A., Neergheen, V.S., Luximon-Ramma A., Aruoma O.I., Bahorun T. Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis.Vol.579, pp. 579:200–213, 2005. https://doi.org/10.1016/j.mrfmmm.2005.03.023
  • [52] Musatat, AB, Atahan, A, Ergün, A, Çıkrıkcı, K, Gençer, N, Arslan, O, et al. Synthesis, enzyme inhibition, and molecular docking studies of a novel chalcone series bearing benzothiazole scaffold. Biotechnol Appl Biochem. Vol.70, pp.1357– 1370, 2023. https://doi.org/10.1002/bab.2445
  • [53] P.M. Becker, Antireduction: an ancient strategy fit for future, Biosci. Rep. 36 (2016). https://doi.org/10.1042/BSR2016008
  • [54] Macías-Hernández, E.C., Romero-Chávez, M. M., Mojica-Sánchez, J.P., Pineda-Urbina, K., Martínez, S.T.M., Jimenez-Ruiz, E. I., Via, L. D., Ramos-Organillo, Á. Synthesis and characterization of new monothiooxalamides containing pyridine nuclei with promising antiproliferative and antioxidant activity, Journal of Molecular Structure, Vol.1265, pp.133360, 2022. https://doi.org/10.1016/j.molstruc.2022.133360.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Enerji Üretimi, Dönüşüm ve Depolama (Kimyasal ve Elektiksel hariç)
Bölüm Makaleler
Yazarlar

Esra Nur Albayrak 0009-0000-6672-6566

Samed Şimşek 0000-0001-8451-3425

Ahmad Badreddin Musatat 0000-0002-4137-4901

Zeynep Akşit 0000-0002-0349-0223

Hüseyin Akşit 0000-0002-1509-851X

Alparslan Atahan 0000-0001-8904-9377

Yayımlanma Tarihi 29 Nisan 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Albayrak, E. N., Şimşek, S., Musatat, A. B., Akşit, Z., vd. (2024). Siringaldehit Bazlı Yeni 2,4,6-Triarilpiridin Türevlerinin Antioksidan Aktiviteleri ve Teorik Profili. Duzce University Journal of Science and Technology, 12(2), 981-999. https://doi.org/10.29130/dubited.1320385
AMA Albayrak EN, Şimşek S, Musatat AB, Akşit Z, Akşit H, Atahan A. Siringaldehit Bazlı Yeni 2,4,6-Triarilpiridin Türevlerinin Antioksidan Aktiviteleri ve Teorik Profili. DÜBİTED. Nisan 2024;12(2):981-999. doi:10.29130/dubited.1320385
Chicago Albayrak, Esra Nur, Samed Şimşek, Ahmad Badreddin Musatat, Zeynep Akşit, Hüseyin Akşit, ve Alparslan Atahan. “Siringaldehit Bazlı Yeni 2,4,6-Triarilpiridin Türevlerinin Antioksidan Aktiviteleri Ve Teorik Profili”. Duzce University Journal of Science and Technology 12, sy. 2 (Nisan 2024): 981-99. https://doi.org/10.29130/dubited.1320385.
EndNote Albayrak EN, Şimşek S, Musatat AB, Akşit Z, Akşit H, Atahan A (01 Nisan 2024) Siringaldehit Bazlı Yeni 2,4,6-Triarilpiridin Türevlerinin Antioksidan Aktiviteleri ve Teorik Profili. Duzce University Journal of Science and Technology 12 2 981–999.
IEEE E. N. Albayrak, S. Şimşek, A. B. Musatat, Z. Akşit, H. Akşit, ve A. Atahan, “Siringaldehit Bazlı Yeni 2,4,6-Triarilpiridin Türevlerinin Antioksidan Aktiviteleri ve Teorik Profili”, DÜBİTED, c. 12, sy. 2, ss. 981–999, 2024, doi: 10.29130/dubited.1320385.
ISNAD Albayrak, Esra Nur vd. “Siringaldehit Bazlı Yeni 2,4,6-Triarilpiridin Türevlerinin Antioksidan Aktiviteleri Ve Teorik Profili”. Duzce University Journal of Science and Technology 12/2 (Nisan 2024), 981-999. https://doi.org/10.29130/dubited.1320385.
JAMA Albayrak EN, Şimşek S, Musatat AB, Akşit Z, Akşit H, Atahan A. Siringaldehit Bazlı Yeni 2,4,6-Triarilpiridin Türevlerinin Antioksidan Aktiviteleri ve Teorik Profili. DÜBİTED. 2024;12:981–999.
MLA Albayrak, Esra Nur vd. “Siringaldehit Bazlı Yeni 2,4,6-Triarilpiridin Türevlerinin Antioksidan Aktiviteleri Ve Teorik Profili”. Duzce University Journal of Science and Technology, c. 12, sy. 2, 2024, ss. 981-99, doi:10.29130/dubited.1320385.
Vancouver Albayrak EN, Şimşek S, Musatat AB, Akşit Z, Akşit H, Atahan A. Siringaldehit Bazlı Yeni 2,4,6-Triarilpiridin Türevlerinin Antioksidan Aktiviteleri ve Teorik Profili. DÜBİTED. 2024;12(2):981-99.