Araştırma Makalesi
BibTex RIS Kaynak Göster

Bazı Tatlı Su Alglerinden Farklı Yöntemler Kullanılarak Üretilen Ekstraktların Antimikrobiyal Etkisinin Belirlenmesi

Yıl 2024, Cilt: 7 Sayı: 2, 107 - 116, 31.12.2024
https://doi.org/10.56728/dustad.1542958

Öz

Algler, içerdikleri birçok metabolit sayesinde tarım, kozmetik, tıp, endüstri ve daha birçok alanda kullanılabilen organizmalardır. Alglerin binlerce türü bulunmaktadır. Bazı alg türleri ise hala gizemini korumaktadır. Bu çalışmada; üç farklı alg türünden (Ulothrix zonata, Fontinalis antipyretica ve Spirogyra gracilis), iki farklı yöntemle; su, etanol, metanol ve eter kullanılarak elde edilen ekstraktların (18 farklı grup) antimikrobiyal aktiviteleri (Clostridium perfringens, Enterococcus faecalis, Escherichia coli, E. coli O157:H7, Listeria monocytogenes Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus agalactiae'ye karşı) disk difüzyon yöntemi ile incelenmiştir. Elde edilen sonuçlara göre; her bir alg türünün, ekstraktın elde edilme yönteminin ve kullanılan çözücü türünün antimikrobiyal özellikler üzerinde etkili olduğu görülmüştür. Özellikle Soxhlet cihazı kullanılarak elde edilen ekstraktların (Yöntem B) seçilen mikroorganizmalar üzerinde daha fazla antimikrobiyal etki gösterdiği ve bu yöntemde çözücü olarak eterin kullanıldığı ekstraktlarda antimikrobiyal etkinin daha yüksek olduğu belirlenmiştir.

Etik Beyan

Etik kurul izni gerektirmemektedir.

Destekleyen Kurum

Firat University Scientific Research Projects Coordination Office (FUBAP)

Proje Numarası

SUF.22.02.

Kaynakça

  • Abedin, R.M., & Taha, H.M. (2008). Antibacterial and antifungal activity of cyanobacteria and green microalgae. Evaluation of medium components by Plackett-Burman design for antimicrobial activity of Spirulina platensis. Global Journal of Biotechnology and Biochemistry, 3(1), 22-31.
  • Aktar, S., & Cebe, G.E. (2010). General spesifications, using areas of algae and their importance on pharmacy. Journal of Faculty of Pharmacy of Ankara University, 39(3), 237-264. https://doi.org/10.1501/Eczfak_0000000568).
  • Ayhanci, T., Durna, S., Aydemir, O., Koroglu, M., & Altındiş, M. (2020). Antibiotic Sensitivity of Streptococcus agalactiae StrainsIsolated from Clinical Samples. Journal of Biotechnology and Strategic Health Research, 4(1), 20-25. https://doi.org/10.34084/bshr.706295
  • Bhowmick, S., Mazumdar, A., Moulick, A., & Adam, V. (2020). Algal metabolites: An inevitable substitute for antibiotics. Biotechnology Advances, 43, 107571. 1-17. https://doi.org/10.1016/j.biotechadv.2020.107571
  • Ciftci, İ.H., Cetinkaya, Z., Aktepe, O.C., Arslan, F., & Altindiş, M. (2005). Antibiotic Susceptibility of Pseudomonas aeruginosa Strains Isolated from Clinical Specimens. Maltepe Medical Journal, 35(2), 98-102.
  • Demirel, Z. (2006). Investigation of Antimicrobial and Antioxidant Properties of Green Microalgae (Chlorophyta) Scenedesmus protuberans fris. Isolated from Lake Eğirdir. Master Thesis, Ege University, Institute of Science and Technology.
  • Diane, G. N., Koopmansb, M., Verhoefb, L., Duizerb, E., Aidara-Kanec, A., Sprongb, H., & Opsteghb, M. (2010) Food-borne diseases - The challenges of 20 years ago still persist while new ones continue to emerge. International Journal of Food Microbiology, 139(1); 3-15. https://doi.org/10.1016/j.ijfoodmicro.2010.01.021
  • Durgun, M. E. (2018). Determination of Antimicrobial and Antioxidant Properties of Cladophora fracta (Müller ex Vahl) Kützing Algae Extract in Vitro. Master Thesis, Firat University, Institute of Science and Technology.
  • Eom, S.H., Kim, Y. M., Kim, & S. K. (2012). Antimicrobial effect of phlorotannins from marine brown algae. Food and Chemical Toxicology, 50(9), 3251-3255. https://doi.org/10.1016/j.fct.2012.06.028
  • Erol, I. (2007). Food Hygiene and Microbiology. Pozitif Printing, Ankara, Turkey,
  • Etll, H. (1983). Chlorophyta I, Protomonadina. Süßwasserflora von Mitteleuropa. Stuttgart: Gustav Fisher-Verlag,
  • Farasat, M., Khavari-Nejad, R. A., Nabavi, S. M. B, & Namjooyan, F. (2013). Antioxidant properties of some filamentous green algae (Chaetomorpha Genus). Brazilian Archives of Biology And Technology, 56, 921-927. https://doi.org/10.1590/S1516-89132013000600005
  • Foster, T. J. (2017). Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiology Reviews, 41(3), 430-449. https://doi.org/10.1093/femsre/fux007
  • Gokpınar, S., Işık, O., Göksan, T., Durmaz, Y., Uslu, L., Burcu, A.K., Önalan, S.K., & Akdogan, P. (2013). Studies in Algal Biotechnology. Yunus Research Bulletin, 4, 21-26. https://doi.org/10.17693/yunusae.v2013i21903.235409
  • Gümüş, B., & Unlüsayın, M. (2016). Determination of antimicrobial activity of two macro algae extracts. Ege Journal of Fisheries and Aquatic Sciences, 33(4), 389-395. https://doi.org/10.12714/egejfas.2016.33.4.13
  • Gündüz, T., Arisoy, A., Algün, U., & Ozbakkaloglu, B. (2004). In-vitro Efficacy of Aminoglycosides against Pseudomonas aeruginosa Strains. Ankem Dergisi, 18(4), 224-227.
  • Huber-Pestalozzi, G. (1968). Das Phytoplankton des Süßwassers. Systematic and Biologie. Teil. III. Stuttgart: Schweizer. Verlag.
  • Hustedt, F. (1932). Die Susswasser Flora Mitteleuropas Bacillariophyta Heft 10: a pascher Verlag von Gustav Fisher Pub. Jena. Germany.
  • Ince, N., Geyik, M. F., Ozdemir, D., & Danis, A. (2014). A comparison of the antibiotic susceptibility rates of Pseudomonas aeruginosa strains causing hospital acquired ınfections according to years. Ankem Dergisi, 28(3), 94-99. https://doi.org/10.5222/ankem.2014.094
  • Kaba, N., & Caglak, E. (2006). The usage of sea algae in human nutrition. E. U. Journal of Fisheries & Aquatic Sciences, 23(2), 243-246.
  • Kausalya, M., & Rao, G.N. (2015). Antimicrobial activity of marine algae. Journal of Algal Biomass Utilization, 6(1), 78-87.
  • Keskinkaya, H. B., Gümüş, N. E., Aşıkkutlu, B., Akkoz, C., Okudan, E. S. … Karakurt, S. (2020). Macro and Trace Element Levels of Green Algae Codium fragile (Suringar) Hariot 1889 From Dardanelles (Canakkale/Turkey). Anatolian Journal of Forest Research, 6(2), 55-61
  • Kolanjinathan, K., & Stella, D. (2009). Antibacterial activity of marine macro algae against human pathogens. Recent Research in Science and Technology, 1(1), 20–22.
  • Krammer, K., & Lange-Bertalot, H. (1991). Süßwasser-flora von Mitteleuropas, Bacillariophyceae, Band2/3, 3. Teil: Centrales, Fragilariaceae, Eunotaceae. Stuttgart: Gustav Fischer Verlag.
  • Lee, S. Y., Kim, J. H., Song, E. J., Kim, K. B., Hong, Y. K., Lim, S. M. … Ahn, D. (2009). H. Investigation of antimicrobial activity of brown algae extracts and the thermal and pH effects on their activity. Food Science and Biotechnology, 18(2), 506-512.
  • Lee, S. Y., Song, E. J., Kim, K. B., Lim, S. I., Hong, Y. K., & Ahn, D. H. (2011). Antimicrobial activity of Myagropsis myagroides and interaction with food composition. Food Science and Biotechnology, 20, 85-92. https://doi.org/10.1007/s10068-011-0012-y
  • Muslu, M., & Gökçay, G. F. (2020). An Alternative Resource for Supporting Health and Sustainable Nutrition: Algae. Journal of Health Sciences and Research SABAD, 2(3), 221-237. https://doi.org/10.46413/boneyusbad.795543
  • NCCLS. (1993). Performance standards for antimicrobial disc susceptibility tests. Approved standard NCCLS Publications M2-A5. Villanova, PA, US.
  • Nshimiyumukiza, O., Kang, S. K., Kim, H. J., Lee, E. H., Han, H. N., Kim, Y. … Kim, Y. M. (2015). Synergistic Antibacterial Activity of Ecklonia cava (Phaeophyceae: Laminariales) against Listeria monocytogenes (Bacillales: Listeriaceae). Fisheries and Aquatic Sciences, 18(1), 1-6. https://doi.org/10.5657/FAS.2015.0001
  • Oner, S. Z., Kaleli, I., Demir, M., Ergun, M., Calışskan, A., & Ergin, C. (2022). Antibiotic Resistance of Pseudomonas aeruginosa Isolates and Change Over the Years. Ankem Dergisi, 36(1), 9-15. https://doi.org/10.54962/ankemderg.1107814
  • Pabuccu, K., & Yucer, T. D. (2022). Antibacterial and Antifungal Effects of Extracts of Spirogyra aequinoctialis Prepared with Different Solvents. Kahramanmaraş Sütçü İmam University Journal of Agriculture and Nature, 25(5), 927-932. https://doi.org/10.18016/ksutarimdoga.vi.979361
  • Pakingking, J. R., Usero, R., de Jesus-Ayson, E. G., Caipang, C. M., & Logronio, D. J. (2022). Phytochemical composition, antioxidant, and antibacterial activity of the Philippine marine green alga (Ulva pertusa). International Aquatic Research, 14(1), 51-62. https://doi.org/10.22034/IAR.2022.1946410.1217
  • Prakash, J. W., Marimuthu, J., & Jeeva, S. (2011). Antimicrobial activity of certain fresh water microalgae from Thamirabarani River, Tamil Nadu, South India. Asian Pacific Journal of Tropical Biomedicine, 1(2), 170-173. https://doi.org/10.1016/S2221-1691(11)60149-4
  • Prashantkumar, P., Angadi, S. B., & Vidyasagar, G. M. (2006). Antimicrobial activity of blue-green and green algae. Indian Journal of Pharmaceutical Sciences, 68(5), 647-648.
  • Prescott, G. W. (1982). Algae of the Western Great Lakes Area. Germany, Koenigstein: Otto Koeltz Science Pub.
  • Rengasamy, K. R., Kulkarni, M. G., Stirk, W. A., & Van Staden, J. (2014). Bioactive metabolites and value-added products from marine macroalgae. Seafood Processing By-Products: Trends and Applications, 423-454. Rodríguez-Bernaldo de Quirós, A., Frecha-Ferreiro, S., Vidal-Pérez, A. M., & López-Hernández, J. (2010).
  • Antioxidant compounds in edible brown seaweeds. European Food Research and Technology, 231, 495-498. https://doi.org/10.1007/s00217-010-1295-6
  • Round, F.E., & Chapman, D. J. (1987). Progress in phycological research. 5, Biogress Ltd. Bristol. Sasidharan, S., Darah, I., & Noordin, M. K. M. J. (2010). In vitro antimicrobial activity against Pseudomonas aeruginosa and acute oral toxicity of marine algae Gracilaria changii. New Biotechnology, 27(4), 390-396. https://doi.org/10.1016/j.nbt.2010.02.002
  • Savaroglu, F., İşçen, C. F., Vatan, A.P., Kabadere, S., Ilhan, S., & Uyar, R. (2011). Determination of antimicrobial and antiproliferative activities of the aquatic moss Fontinalis antipyretica Hedw. Turkish Journal of Biology, 35(3), 361-369. https://doi.org/10.3906/biy- 906-46
  • Savcı, U., Sahin, M., Toprak, S., & Sungur, M. (2018). Antimicrobial resistance pattern of Streptococcus agalactiae strains: five years evaluation of single center. Journal of Health Sciences and Medicine, 1(2), 25-28. https://doi.org/10.32322/jhsm.425661
  • Sert, M. (2014). Investigation of the presence of Clostridium perfringens in some foods. Ankara University Graduate School of Natural and Applied Sciences, Department of Food Engineering, Ankara, Turkey.
  • Shannon, E., & Abu-Ghannam, N. (2016). Antibacterial derivatives of marine algae: An overview of pharmacological mechanisms and applications. Marine Drugs, 14(4), 81. https://doi.org/10.3390/md14040081
  • Taskın, E., Ozturk, M., & Kurt, O. (2007). Antibacterial activities of some marine algae from the Aegean Sea (Turkey). African Journal of Biotechnology, 6(24), 2746-2751.
  • Taylor, T. A., & Unakal, C. G. (2022). Staphylococcus aureus. In StatPearls [Internet]. StatPearls Publishing.
  • Tuney, I., Cadirci, B. H., Unal, D., & Sukatar, A. (2007). Locational and organic solvent variation in antimicrobial activities of crude extracts of marine algae from the coast of Izmir (Turkey). Fresenius Environmental Bulletin, 16(4), 428.
  • Tuney, I., Cadirci, B. H., Unal, D., & Sukatar, A. (2006). Antimicrobial activities of the extracts of marine algae from the coast of Urla (Izmir, Turkey). Turkish Journal of Biology, 30(3), 171-175.

Determination of Antimicrobial Effect of Extracts Produced from Some Freshwater Algae Using Different Methods

Yıl 2024, Cilt: 7 Sayı: 2, 107 - 116, 31.12.2024
https://doi.org/10.56728/dustad.1542958

Öz

Algae are organisms that can be used in agriculture, cosmetics, medicine, industry and many other areas thanks to the many metabolites they contain. There are thousands of species of algae. Some algae species still remain a mystery. In this study, the antimicrobial activity (against Clostridium perfringens, Enterococcus faecalis, Escherichia coli, E. coli O157:H7, Listeria monocytogenes, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus agalactiae) of extracts (18 different groups) obtained from three different algal species (Ulothrix zonata, Fontinalis antipyretica and Spirogyra gracilis) by two different methods using water, ethanol, methanol and ether were studied by disc diffusion method. According to the results obtained; each algae species, the method of extraction of the extract and the type of solvent used were found to be effective on the antimicrobial properties. In particular the extracts obtained by using the Soxhlet device (Method B) showed more antimicrobial activity against the selected microorganisms, and in this method, it was observed that the antimicrobial activityt was higher in the extracts in which ether was used as solvent.

Proje Numarası

SUF.22.02.

Kaynakça

  • Abedin, R.M., & Taha, H.M. (2008). Antibacterial and antifungal activity of cyanobacteria and green microalgae. Evaluation of medium components by Plackett-Burman design for antimicrobial activity of Spirulina platensis. Global Journal of Biotechnology and Biochemistry, 3(1), 22-31.
  • Aktar, S., & Cebe, G.E. (2010). General spesifications, using areas of algae and their importance on pharmacy. Journal of Faculty of Pharmacy of Ankara University, 39(3), 237-264. https://doi.org/10.1501/Eczfak_0000000568).
  • Ayhanci, T., Durna, S., Aydemir, O., Koroglu, M., & Altındiş, M. (2020). Antibiotic Sensitivity of Streptococcus agalactiae StrainsIsolated from Clinical Samples. Journal of Biotechnology and Strategic Health Research, 4(1), 20-25. https://doi.org/10.34084/bshr.706295
  • Bhowmick, S., Mazumdar, A., Moulick, A., & Adam, V. (2020). Algal metabolites: An inevitable substitute for antibiotics. Biotechnology Advances, 43, 107571. 1-17. https://doi.org/10.1016/j.biotechadv.2020.107571
  • Ciftci, İ.H., Cetinkaya, Z., Aktepe, O.C., Arslan, F., & Altindiş, M. (2005). Antibiotic Susceptibility of Pseudomonas aeruginosa Strains Isolated from Clinical Specimens. Maltepe Medical Journal, 35(2), 98-102.
  • Demirel, Z. (2006). Investigation of Antimicrobial and Antioxidant Properties of Green Microalgae (Chlorophyta) Scenedesmus protuberans fris. Isolated from Lake Eğirdir. Master Thesis, Ege University, Institute of Science and Technology.
  • Diane, G. N., Koopmansb, M., Verhoefb, L., Duizerb, E., Aidara-Kanec, A., Sprongb, H., & Opsteghb, M. (2010) Food-borne diseases - The challenges of 20 years ago still persist while new ones continue to emerge. International Journal of Food Microbiology, 139(1); 3-15. https://doi.org/10.1016/j.ijfoodmicro.2010.01.021
  • Durgun, M. E. (2018). Determination of Antimicrobial and Antioxidant Properties of Cladophora fracta (Müller ex Vahl) Kützing Algae Extract in Vitro. Master Thesis, Firat University, Institute of Science and Technology.
  • Eom, S.H., Kim, Y. M., Kim, & S. K. (2012). Antimicrobial effect of phlorotannins from marine brown algae. Food and Chemical Toxicology, 50(9), 3251-3255. https://doi.org/10.1016/j.fct.2012.06.028
  • Erol, I. (2007). Food Hygiene and Microbiology. Pozitif Printing, Ankara, Turkey,
  • Etll, H. (1983). Chlorophyta I, Protomonadina. Süßwasserflora von Mitteleuropa. Stuttgart: Gustav Fisher-Verlag,
  • Farasat, M., Khavari-Nejad, R. A., Nabavi, S. M. B, & Namjooyan, F. (2013). Antioxidant properties of some filamentous green algae (Chaetomorpha Genus). Brazilian Archives of Biology And Technology, 56, 921-927. https://doi.org/10.1590/S1516-89132013000600005
  • Foster, T. J. (2017). Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiology Reviews, 41(3), 430-449. https://doi.org/10.1093/femsre/fux007
  • Gokpınar, S., Işık, O., Göksan, T., Durmaz, Y., Uslu, L., Burcu, A.K., Önalan, S.K., & Akdogan, P. (2013). Studies in Algal Biotechnology. Yunus Research Bulletin, 4, 21-26. https://doi.org/10.17693/yunusae.v2013i21903.235409
  • Gümüş, B., & Unlüsayın, M. (2016). Determination of antimicrobial activity of two macro algae extracts. Ege Journal of Fisheries and Aquatic Sciences, 33(4), 389-395. https://doi.org/10.12714/egejfas.2016.33.4.13
  • Gündüz, T., Arisoy, A., Algün, U., & Ozbakkaloglu, B. (2004). In-vitro Efficacy of Aminoglycosides against Pseudomonas aeruginosa Strains. Ankem Dergisi, 18(4), 224-227.
  • Huber-Pestalozzi, G. (1968). Das Phytoplankton des Süßwassers. Systematic and Biologie. Teil. III. Stuttgart: Schweizer. Verlag.
  • Hustedt, F. (1932). Die Susswasser Flora Mitteleuropas Bacillariophyta Heft 10: a pascher Verlag von Gustav Fisher Pub. Jena. Germany.
  • Ince, N., Geyik, M. F., Ozdemir, D., & Danis, A. (2014). A comparison of the antibiotic susceptibility rates of Pseudomonas aeruginosa strains causing hospital acquired ınfections according to years. Ankem Dergisi, 28(3), 94-99. https://doi.org/10.5222/ankem.2014.094
  • Kaba, N., & Caglak, E. (2006). The usage of sea algae in human nutrition. E. U. Journal of Fisheries & Aquatic Sciences, 23(2), 243-246.
  • Kausalya, M., & Rao, G.N. (2015). Antimicrobial activity of marine algae. Journal of Algal Biomass Utilization, 6(1), 78-87.
  • Keskinkaya, H. B., Gümüş, N. E., Aşıkkutlu, B., Akkoz, C., Okudan, E. S. … Karakurt, S. (2020). Macro and Trace Element Levels of Green Algae Codium fragile (Suringar) Hariot 1889 From Dardanelles (Canakkale/Turkey). Anatolian Journal of Forest Research, 6(2), 55-61
  • Kolanjinathan, K., & Stella, D. (2009). Antibacterial activity of marine macro algae against human pathogens. Recent Research in Science and Technology, 1(1), 20–22.
  • Krammer, K., & Lange-Bertalot, H. (1991). Süßwasser-flora von Mitteleuropas, Bacillariophyceae, Band2/3, 3. Teil: Centrales, Fragilariaceae, Eunotaceae. Stuttgart: Gustav Fischer Verlag.
  • Lee, S. Y., Kim, J. H., Song, E. J., Kim, K. B., Hong, Y. K., Lim, S. M. … Ahn, D. (2009). H. Investigation of antimicrobial activity of brown algae extracts and the thermal and pH effects on their activity. Food Science and Biotechnology, 18(2), 506-512.
  • Lee, S. Y., Song, E. J., Kim, K. B., Lim, S. I., Hong, Y. K., & Ahn, D. H. (2011). Antimicrobial activity of Myagropsis myagroides and interaction with food composition. Food Science and Biotechnology, 20, 85-92. https://doi.org/10.1007/s10068-011-0012-y
  • Muslu, M., & Gökçay, G. F. (2020). An Alternative Resource for Supporting Health and Sustainable Nutrition: Algae. Journal of Health Sciences and Research SABAD, 2(3), 221-237. https://doi.org/10.46413/boneyusbad.795543
  • NCCLS. (1993). Performance standards for antimicrobial disc susceptibility tests. Approved standard NCCLS Publications M2-A5. Villanova, PA, US.
  • Nshimiyumukiza, O., Kang, S. K., Kim, H. J., Lee, E. H., Han, H. N., Kim, Y. … Kim, Y. M. (2015). Synergistic Antibacterial Activity of Ecklonia cava (Phaeophyceae: Laminariales) against Listeria monocytogenes (Bacillales: Listeriaceae). Fisheries and Aquatic Sciences, 18(1), 1-6. https://doi.org/10.5657/FAS.2015.0001
  • Oner, S. Z., Kaleli, I., Demir, M., Ergun, M., Calışskan, A., & Ergin, C. (2022). Antibiotic Resistance of Pseudomonas aeruginosa Isolates and Change Over the Years. Ankem Dergisi, 36(1), 9-15. https://doi.org/10.54962/ankemderg.1107814
  • Pabuccu, K., & Yucer, T. D. (2022). Antibacterial and Antifungal Effects of Extracts of Spirogyra aequinoctialis Prepared with Different Solvents. Kahramanmaraş Sütçü İmam University Journal of Agriculture and Nature, 25(5), 927-932. https://doi.org/10.18016/ksutarimdoga.vi.979361
  • Pakingking, J. R., Usero, R., de Jesus-Ayson, E. G., Caipang, C. M., & Logronio, D. J. (2022). Phytochemical composition, antioxidant, and antibacterial activity of the Philippine marine green alga (Ulva pertusa). International Aquatic Research, 14(1), 51-62. https://doi.org/10.22034/IAR.2022.1946410.1217
  • Prakash, J. W., Marimuthu, J., & Jeeva, S. (2011). Antimicrobial activity of certain fresh water microalgae from Thamirabarani River, Tamil Nadu, South India. Asian Pacific Journal of Tropical Biomedicine, 1(2), 170-173. https://doi.org/10.1016/S2221-1691(11)60149-4
  • Prashantkumar, P., Angadi, S. B., & Vidyasagar, G. M. (2006). Antimicrobial activity of blue-green and green algae. Indian Journal of Pharmaceutical Sciences, 68(5), 647-648.
  • Prescott, G. W. (1982). Algae of the Western Great Lakes Area. Germany, Koenigstein: Otto Koeltz Science Pub.
  • Rengasamy, K. R., Kulkarni, M. G., Stirk, W. A., & Van Staden, J. (2014). Bioactive metabolites and value-added products from marine macroalgae. Seafood Processing By-Products: Trends and Applications, 423-454. Rodríguez-Bernaldo de Quirós, A., Frecha-Ferreiro, S., Vidal-Pérez, A. M., & López-Hernández, J. (2010).
  • Antioxidant compounds in edible brown seaweeds. European Food Research and Technology, 231, 495-498. https://doi.org/10.1007/s00217-010-1295-6
  • Round, F.E., & Chapman, D. J. (1987). Progress in phycological research. 5, Biogress Ltd. Bristol. Sasidharan, S., Darah, I., & Noordin, M. K. M. J. (2010). In vitro antimicrobial activity against Pseudomonas aeruginosa and acute oral toxicity of marine algae Gracilaria changii. New Biotechnology, 27(4), 390-396. https://doi.org/10.1016/j.nbt.2010.02.002
  • Savaroglu, F., İşçen, C. F., Vatan, A.P., Kabadere, S., Ilhan, S., & Uyar, R. (2011). Determination of antimicrobial and antiproliferative activities of the aquatic moss Fontinalis antipyretica Hedw. Turkish Journal of Biology, 35(3), 361-369. https://doi.org/10.3906/biy- 906-46
  • Savcı, U., Sahin, M., Toprak, S., & Sungur, M. (2018). Antimicrobial resistance pattern of Streptococcus agalactiae strains: five years evaluation of single center. Journal of Health Sciences and Medicine, 1(2), 25-28. https://doi.org/10.32322/jhsm.425661
  • Sert, M. (2014). Investigation of the presence of Clostridium perfringens in some foods. Ankara University Graduate School of Natural and Applied Sciences, Department of Food Engineering, Ankara, Turkey.
  • Shannon, E., & Abu-Ghannam, N. (2016). Antibacterial derivatives of marine algae: An overview of pharmacological mechanisms and applications. Marine Drugs, 14(4), 81. https://doi.org/10.3390/md14040081
  • Taskın, E., Ozturk, M., & Kurt, O. (2007). Antibacterial activities of some marine algae from the Aegean Sea (Turkey). African Journal of Biotechnology, 6(24), 2746-2751.
  • Taylor, T. A., & Unakal, C. G. (2022). Staphylococcus aureus. In StatPearls [Internet]. StatPearls Publishing.
  • Tuney, I., Cadirci, B. H., Unal, D., & Sukatar, A. (2007). Locational and organic solvent variation in antimicrobial activities of crude extracts of marine algae from the coast of Izmir (Turkey). Fresenius Environmental Bulletin, 16(4), 428.
  • Tuney, I., Cadirci, B. H., Unal, D., & Sukatar, A. (2006). Antimicrobial activities of the extracts of marine algae from the coast of Urla (Izmir, Turkey). Turkish Journal of Biology, 30(3), 171-175.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Bilimi (Diğer)
Bölüm Makaleler
Yazarlar

Emine Özpolat

Murat Sapmaz

Proje Numarası SUF.22.02.
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 3 Eylül 2024
Kabul Tarihi 2 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: 2

Kaynak Göster

APA Özpolat, E., & Sapmaz, M. (2024). Determination of Antimicrobial Effect of Extracts Produced from Some Freshwater Algae Using Different Methods. Dünya Sağlık Ve Tabiat Bilimleri Dergisi, 7(2), 107-116. https://doi.org/10.56728/dustad.1542958