Araştırma Makalesi
BibTex RIS Kaynak Göster

Internet of Things (IoT) Based Smart Self Curing Concrete Production

Yıl 2021, Cilt: 8 Sayı: 1, 245 - 253, 31.01.2021
https://doi.org/10.31202/ecjse.831009

Öz

In this study, the curing of the poured concrete with the Internet of Things (IoT) based smart irrigation system was carried out in order to prevent cracking by shrinkage during the hydration process. For this purpose, moisture sensors are placed on the surface of fresh concrete in different regions. In case of a decrease in the concrete surface moisture, the current moisture condition was detected by the sensors and the water motors were automatically activated and the irrigation process was carried out on the entire concrete surface with the water spray device placed on the concrete surface. When the humidity level reaches a sufficient level, it is detected by the sensors and the irrigation process is stopped automatically. These transactions are monitored on the internet with wireless network technology during the entire application period. Thus, the curing process, which has to be done from the casting of the concrete until it gains sufficient strength, especially in the summer months, is ensured to remain damp automatically and automatically without the need for a person to wait in the area. Thus, better quality concrete production has been achieved compared to conventional concrete curing methods.

Kaynakça

  • [1] Özalp, F., Şengül Ö., Taşdemir, M.A., Kür Koşulları ve Tecrit Malzemesinin Betonun Geçirimlilik ve Mekanik Özeliklerine Etkisi, Hazır Beton, Temmuz - Ağustos, 2015, 69-74.
  • [2] Erdoğan, T.Y., “Beton”, O.D.T.Ü., Ankara, 2003
  • [3] Bullard, J.W., Jennings, H.M., Livingston, R.A., Nonat, A., Scherer, G.W., Schweitzer, J.S., Scrivener, K.L., Thomas, J.J., Mechanisms of cement hydration, Cement and Concrete Research, 2011, 41(12), 1208-1223.
  • [4] Ings, J. B., Brown P.W., Frohnsdorff, G., Early hydration of large single crystals of tricalcium silicate, Cement and Concrete Research, 1983, 13, 843-848.
  • [5] Garrault, S., Finot, E., Lesniewska, E., Nonat, A., Study of C-S-H growth on C3S surface during its early hydration, Mater. Structures, 2005, 38, 435-442. [6] ASTM C192 / C192M, Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory (www.astm.org)
  • [7] ASTM C31 / C31M, Standard Practice for Making and Curing Concrete Test Specimens in the Field (www.astm.org)
  • [8] Montaser, A., Moselhi, O., RFID indoor location identification for construction projects, Automation in Construction, 2014, 39, 167–179.
  • [9] Cai, H., Andoh, A.R., Su, X., Li, S., A boundary condition based algorithm for locatingconstruction site objects using RFID and GPS, Adv. Eng. Inform., 2014, 28, 455–468.
  • [10] Zhou, S, Deng, F, Yu, L, Li, B, Wu, X, Yin, B, A Novel Passive Wireless Sensor for Concrete Humidity Monitoring, Sensors, 2016, 16(9), 1-15.
  • [11] Caizzone, S., Giampaolo, E.D., Wireless Passive RFID Crack Width Sensor for Structural Health Monitoring. IEEE Sensors Journal 2015, 15, 6767–6774.
  • [12] Leon-Salas, W., Halmen, C., A RFID Sensor for Corrosion Monitoring in Concrete. IEEE Sensors Journal, 2015, 16, 32–42.
  • [13] Kamoi, A., Okamoto, Y., Vavilov, V., Study on Detection Limit of Buried Defects in Concrete Structures by Using Infrared Thermography. Key Engineering Materials 2004, 270–273, 1549–1555.
  • [14] González-orge, H.; Gonzalez-Aguilera, D.; Rodriguez-Gonzalvez, P. Monitoring biological crusts in civil engineering structures using intensity data from terrestrial laser scanners. Construction and Building Materials 2012, 31, 119–128.
  • [15] Ravet, F., Briffod, F., Glisic, B., Nikle, M., Inaudi, D., Submillimeter crack detection with Brillouin-based fiber-optic sensors. IEEE Sensors Journal, 2009, 9, 1391–1396.
  • [16] Ramakrishnan, M., Rajan, G., Semenova, Y., Farrell, G., Hybrid Fiber Optic Sensor System for Measuring the Strain, Temperature, and Thermal Strain of Composite Materials. IEEE Sensors Journal, 2014, 14, 2571–2578
  • [17] Abdelgawad, A., Yelamarthi, K., Internet of Things (IoT) Platform for Structure Health Monitoring, Wireless Communications and Mobile Computing, 2017, Article ID 6560797, 1-10
  • [18] Misra, D., Das, G., Das, D., An IoT based building health monitoring system supported by cloud, Journal of Reliable Intelligent Environments, 2020, 6, 41–152.
  • [19] Sundmaeker, H., Guillemin, P., Friess, P., Woelfflé, S., Vision and challenges for realising the Internet of Things. Cluster of European Research Projects on the Internet of Things, European Commision, 2010, 3(3), 34-36.
  • [20] Phanish, D., Garver, P., Matalkah, G., Landes T., Shen F., Dumond J., Abler R., Zhu D., Dong X., Wang Y., Coyle, E.J., A wireless sensor network for monitoring the structural health of a football stadium. 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT) (471-477).
  • [21] Hossain M., Muhammad G., Cloud-assisted industrial internet of things (IIoT)–enabled framework for health monitoring. Computer Networks, (2016), 101, 192-202.

Nesnelerin İnterneti (IoT) Tabanlı Kendini Kürleyen Akıllı Beton Üretimi

Yıl 2021, Cilt: 8 Sayı: 1, 245 - 253, 31.01.2021
https://doi.org/10.31202/ecjse.831009

Öz

Bu çalışmada, yerine dökülen betonların hidratasyon sürecinde rötre yaparak çatlamalarını önlemek için Nesnelerin İnterneti (IoT) tabanlı akıllı sulama sistemiyle kürlenmesi gerçekleştirilmiştir. Bu amaçla, taze betonun farklı bölgelerinde yüzeyine nem sensörleri yerleştirilmiştir. Beton yüzey neminin azalması durumunda mevcut nem durumu sensörler tarafından algılanmış ve su motorları otomatik olarak aktif hale gelerek beton yüzeyine yerleştirilmiş olan su püskürtme cihazıyla sulama işlemi tüm beton yüzeyine yapılmıştır. Nem değeri yeterli seviyeye ulaştığında yine sensörler tarafından algılanarak sulama işlemi otomatik olarak kesilmiştir. Bu işlemler tüm uygulama süresinde kablosuz ağ teknolojisi ile internetten izlenmesi sağlanmıştır. Böylece, özellikle yaz aylarında betonun dökümünden itibaren yeterli dayanım kazanıncaya kadar yapılması gereken kür işlemi sensörler yardımıyla ve alanda bir kişinin beklemesine gerek kalmadan ototmatik olarak sürekli nemli kalması sağlanmıştır. Böylece klasik beton kürleme yöntemlerine göre daha kaliteli beton üretimi sağlanmıştır.

Kaynakça

  • [1] Özalp, F., Şengül Ö., Taşdemir, M.A., Kür Koşulları ve Tecrit Malzemesinin Betonun Geçirimlilik ve Mekanik Özeliklerine Etkisi, Hazır Beton, Temmuz - Ağustos, 2015, 69-74.
  • [2] Erdoğan, T.Y., “Beton”, O.D.T.Ü., Ankara, 2003
  • [3] Bullard, J.W., Jennings, H.M., Livingston, R.A., Nonat, A., Scherer, G.W., Schweitzer, J.S., Scrivener, K.L., Thomas, J.J., Mechanisms of cement hydration, Cement and Concrete Research, 2011, 41(12), 1208-1223.
  • [4] Ings, J. B., Brown P.W., Frohnsdorff, G., Early hydration of large single crystals of tricalcium silicate, Cement and Concrete Research, 1983, 13, 843-848.
  • [5] Garrault, S., Finot, E., Lesniewska, E., Nonat, A., Study of C-S-H growth on C3S surface during its early hydration, Mater. Structures, 2005, 38, 435-442. [6] ASTM C192 / C192M, Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory (www.astm.org)
  • [7] ASTM C31 / C31M, Standard Practice for Making and Curing Concrete Test Specimens in the Field (www.astm.org)
  • [8] Montaser, A., Moselhi, O., RFID indoor location identification for construction projects, Automation in Construction, 2014, 39, 167–179.
  • [9] Cai, H., Andoh, A.R., Su, X., Li, S., A boundary condition based algorithm for locatingconstruction site objects using RFID and GPS, Adv. Eng. Inform., 2014, 28, 455–468.
  • [10] Zhou, S, Deng, F, Yu, L, Li, B, Wu, X, Yin, B, A Novel Passive Wireless Sensor for Concrete Humidity Monitoring, Sensors, 2016, 16(9), 1-15.
  • [11] Caizzone, S., Giampaolo, E.D., Wireless Passive RFID Crack Width Sensor for Structural Health Monitoring. IEEE Sensors Journal 2015, 15, 6767–6774.
  • [12] Leon-Salas, W., Halmen, C., A RFID Sensor for Corrosion Monitoring in Concrete. IEEE Sensors Journal, 2015, 16, 32–42.
  • [13] Kamoi, A., Okamoto, Y., Vavilov, V., Study on Detection Limit of Buried Defects in Concrete Structures by Using Infrared Thermography. Key Engineering Materials 2004, 270–273, 1549–1555.
  • [14] González-orge, H.; Gonzalez-Aguilera, D.; Rodriguez-Gonzalvez, P. Monitoring biological crusts in civil engineering structures using intensity data from terrestrial laser scanners. Construction and Building Materials 2012, 31, 119–128.
  • [15] Ravet, F., Briffod, F., Glisic, B., Nikle, M., Inaudi, D., Submillimeter crack detection with Brillouin-based fiber-optic sensors. IEEE Sensors Journal, 2009, 9, 1391–1396.
  • [16] Ramakrishnan, M., Rajan, G., Semenova, Y., Farrell, G., Hybrid Fiber Optic Sensor System for Measuring the Strain, Temperature, and Thermal Strain of Composite Materials. IEEE Sensors Journal, 2014, 14, 2571–2578
  • [17] Abdelgawad, A., Yelamarthi, K., Internet of Things (IoT) Platform for Structure Health Monitoring, Wireless Communications and Mobile Computing, 2017, Article ID 6560797, 1-10
  • [18] Misra, D., Das, G., Das, D., An IoT based building health monitoring system supported by cloud, Journal of Reliable Intelligent Environments, 2020, 6, 41–152.
  • [19] Sundmaeker, H., Guillemin, P., Friess, P., Woelfflé, S., Vision and challenges for realising the Internet of Things. Cluster of European Research Projects on the Internet of Things, European Commision, 2010, 3(3), 34-36.
  • [20] Phanish, D., Garver, P., Matalkah, G., Landes T., Shen F., Dumond J., Abler R., Zhu D., Dong X., Wang Y., Coyle, E.J., A wireless sensor network for monitoring the structural health of a football stadium. 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT) (471-477).
  • [21] Hossain M., Muhammad G., Cloud-assisted industrial internet of things (IIoT)–enabled framework for health monitoring. Computer Networks, (2016), 101, 192-202.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Tayfun Uygunoğlu 0000-0003-4382-8257

İlker Bekir Topçu

Yayımlanma Tarihi 31 Ocak 2021
Gönderilme Tarihi 25 Kasım 2020
Kabul Tarihi 27 Aralık 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 8 Sayı: 1

Kaynak Göster

IEEE T. Uygunoğlu ve İ. B. Topçu, “Nesnelerin İnterneti (IoT) Tabanlı Kendini Kürleyen Akıllı Beton Üretimi”, ECJSE, c. 8, sy. 1, ss. 245–253, 2021, doi: 10.31202/ecjse.831009.

Cited By

BETON TEKNOLOJİSİNDEKİ YENİ GELİŞMELER
Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi
https://doi.org/10.31796/ogummf.1348428