Derleme
BibTex RIS Kaynak Göster

Yer Robotlarıyla Yapılan Uzaktan Siber Saldırılara İlişkin Bir İnceleme

Yıl 2021, Cilt: 8 Sayı: 3, 1286 - 1308, 30.09.2021
https://doi.org/10.31202/ecjse.916532

Öz

Sağlık hizmetleri, hastaların verilerini daha verimli bir şekilde yönetmek için karmaşık sistemler oluşturan çeşitli bilgi işlem cihazları içerirler. Sınırlı işlem gücüne sahip olan, bir iletişim ağına bağlı bilgi işlem cihazları, Nesnelerin İnterneti (IoT) gibi, giyilebilir vücut alanı ağlarının (WBAN) ortaya çıkmasıyla daha yararlı bir hale geldi. Bu cihazlar, hassas sağlık verilerini hastaneler, araştırma kurumları ve sigorta şirketleri gibi ilgili kuruluşlarla paylaşmak için diğer tıbbi cihazlara bağlanır. Sağlık verileri çok hassas olduğundan, bu veriler yetkili kuruluşlar tarafından her zaman erişilebilir olmalı ve diğer kuruluşlar tarafından kullanılamaz olmalıdır. Bununla beraber, COVID-19 salgını sağlık verilerine ek bir değer katmıştır ve bu durum, farklı araçlarla e-sağlık sistemlerine yapılan siber saldırıların sayısını önemli ölçüde artırmıştır. Bu yazıda, e-sağlık sistemlerine yönelik siber saldırlar incelenmiştir. Özellikle IoT tabanlı giyilebilir sağlık cihazlarına yönelik saldırılara odaklanılmıştır. Makalede, potansiyel saldırı yüzeyini göstermek için giyilebilir sağlık cihazlarının mimarisi de işlenmiştir. Makalenin ana katkılarından biri, insansız kara robotları ile giyilebilir e-sağlık cihazlarına yönelik potansiyel siber saldırıları göstermektir. Taktiksel bir kara robotu, e-sağlık sistemlerine çeşitli siber saldırılar gerçekleştirmek için kullanılabilen taşınabilir bir cihazdır. Ayrıca makale, bu kara robotları ile yapılan saldırıların analizlerini de içermektedir.

Kaynakça

  • [1]. Butpheng C., Yeh K., Xiong H., “Security and privacy in IoT-cloud-based e-health systems—a comprehensive review. Symmetry”, 2020, 12:1191.
  • [2]. Ahmed M., A. SSM. B., “False data injection attacks in healthcare”, In Australasian Conference on Data Mining, 192–202, Springer, 2017.
  • [3]. Islam S. M. R., Kwak D., Kabir M. H., Hossain M., Kwak H., “The internet of things for health care: A comprehensive survey”, 2015, IEEE Access, 3:678–708.
  • [4]. Holler J., Tsiatsis V., Mulligan C., Karnouskos S., Avesand S., Boyle D., “From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence”, Academic Press, Inc. 6277 Sea Harbor Drive Orlando, FL, United States, 2014.
  • [5]. Yu L., Lu Y., Zhu X. J,.” Smart hospital based on internet of things”, 2012, Journal of Networks, 7(10).
  • [6]. Efe A., Aksoz E., Hanecioğlu N, Yalman Ş. N., “Smart security of IoT against to ddos attacks”, 2019, International Journal of Innovative Engineering Applications, 2:35 – 43.
  • [7]. Al-Issa Y., Ottom M. A., Tamrawi A., “E-health cloud security challenges: A survey”, 2019, Journal of Healthcare Engineering, 2019:1–15.
  • [8]. Kintzlinger M., Nissim N., “Keep an eye on your personal belongings! the security of personal medical devices and their ecosystems”, 2019, Journal of Biomedical Informatics, 95:103233.
  • [9]. McCall M. K., Skutsch M. M., Honey-Roses J., “Surveillance in the covid-19 normal: Tracking, tracing, and snooping–trade-offs in safety and autonomy in the e-city”, 2021, International Journal of E-Planning Research, 10(2):27–44.
  • [10]. Hiremath S, Yang G., Mankodiya K., “Wearable Internet of things: Concept, architectural components and promises for person-centered healthcare”, 4th International Conference on Wireless Mobile Communication and Healthcare, Athens, Greece, November 3-5, 2014, 304–307, 2014.
  • [11]. Otto C., Milenkovic A., Sanders C., Jovanov E., “System architecture of a wireless body area sensor network for ubiquitous health monitoring”, 2006, Journal of Mobile Multimedia, 1:307–326.
  • [12]. Al-Janabi S., Al-Shourbaji I., Shojafar M., Shamshirband S., “Survey of main challenges (security and privacy) in wireless body area networks for healthcare applications”, 2017, Egyptian Informatics Journal, 18(2):113–122.
  • [13]. Karmakar N. C., Yang Y., Rahim A., “Microwave Sleep Apnoea Monitoring”, Series in BioEngineering, Springer, 2018.
  • [14]. Darwish A., Hassanien A. E., “Wearable and implantable wireless sensor network solutions for healthcare monitoring”, 2011, Sensors, 11(6):5561–5595.
  • [15]. Milenkovic A., Otto C., Jovanov E., “Wireless sensor networks for personal health monitoring: Issues and an implementation”, 2006, Computer Communications, 29:2521–2533.
  • [16]. Fu K., Xu W., “Risks of trusting the physics of sensors”, 2018, Communications of the ACM, 61(2):20–23.
  • [17]. Halperin D., Heydt-Benjamin T. S., Ransford B., Clark S.S., Defend B., Morgan W., Fu K., Kohno T., Maisel W. H., “Pacemakers and implantable cardiac defibrillators: Software radio attacks and zero-power defenses”, In 2008 IEEE Symposium on Security and Privacy (SP 2008), Oakland, California, USA, 129–142, 2008.
  • [18]. Trippel T., Weisse O., Xu W., Honeyman P., Fu K., “Walnut: Waging doubt on the integrity of mems accelerometers with acoustic injection attacks,” In 2017 IEEE European symposium on security and privacy (EuroS&P), Paris, France, 3–18, April 26-28, 2017.
  • [19]. Xue Q., Chuah M. C., “New attacks on RNN based healthcare learning system and their detections”, 2018, Smart Health, 9:144–157.
  • [20]. Ly B., Ly R., “Cybersecurity in unmanned aerial vehicles”, 2020, Journal of Cyber Security Technology, 1–18.
  • [21]. Kristiyanto Y., Ernastuti E., “Analysis of de-authentication attack on IEEE 802.11 connectivity based on IoT technology using external penetration test”, 2020 Communication and Information Technology Journal, 14(1):45–51.
  • [22]. Sethuraman S. C., Vijayakumar V., Walczak S., “Cyber-attacks on healthcare devices using unmanned aerial vehicles”, 2020, Journal of medical systems, 44(1):1–10.
  • [23]. Hanspach M., Goetz M., “On covert acoustical mesh networks in air”, arXiv preprint arXiv:1406.1213, 2014.
  • [24]. Karchowdhury S., Sen M., “Survey on attacks on wireless body area network”, 2019, International Journal of Computational Intelligence & IoT, Forthcoming, 638-644.
  • [25]. Eian I. C., Yong L. K., Li M. J. X., Qi Y. H., Fatima Z., “Cyber-attacks in the era of covid-19 and possible solution domains”, Preprints, 2020.
  • [26]. Khan N. A., Brohi S. N., Zaman N., “Ten deadly cyber security threats amid covid-19 pandemic”, Preprints, 2020.
  • [27]. Kamal M, Aljohani A., Alanazi E., “IoT meets covid-19: Status, challenges, and opportunities”, arXiv preprint arXiv:2007.12268, 2020.
  • [28]. Lallie H. S., Shepherd L. A., Nurse J, Erola A., Epiphaniou G., Maple C., Bellekens X., “Cyber security in the age of covid-19: A timeline and analysis of cyber-crime and cyber-attacks during the pandemic”, arXiv preprint arXiv:2006.11929, 2020.
  • [29]. Gvili Y., “Security analysis of the covid-19 contact tracing specifications by apple inc. and google inc”, IACR Cryptol. ePrint Arch., 2020:428, 2020.
  • [30]. Chamola V., Hassija V., Gupta V., Guizani M., “A comprehensive review of the covid19 pandemic and the role of iot, drones, ai, blockchain, and 5g in managing its impact”, 2020, IEEE Access, 8:90225– 90265.
  • [31]. Rahman A., Hossain M. S., Alrajeh N A., Alsolami F., “Adversarial examples–security threats to covid-19 deep learning systems in medical IoT devices”, 2020, IEEE Internet of Things Journal, 99:1-1.
  • [32]. Pranggono B., Arabo A., “Covid-19 pandemic cybersecurity issues”, 2020, Internet Technology Letters, 4(2):1-6, 2020.
  • [33]. Wueest C., “The continued rise of DDOS attacks. White Paper: Security Response”, Symantec Corporation, 2014.
  • [34]. Mirkovic J., Reiher P., “A taxonomy of DDOS attack and DDOS defense mechanisms”, 2004, ACM SIGCOMM Computer Communication Review, 34(2):39–53.
  • [35]. Pathan A. K., Lee H., Hong C. S., “Security in wireless sensor networks: issues and challenges”, In 2006 8th International Conference Advanced Communication Technology, Phoenix Park, Korea, 1043-1048, 20-22 Feb., 2006.
  • [36]. Chadd A., “Ddos attacks: past, present and future”, 2018, Network Security, 2018(7):13–15.
  • [37]. Zaroo P., “A survey of ddos attacks and some ddos defense mechanisms”, Advanced Information Assurance (CS 626), 2002.
  • [38]. Mpitziopoulos A., Gavalas D., Konstantopoulos C., Pantziou G., “A survey on jamming attacks and countermeasures in WSNS”, 2009, IEEE Communications Surveys & Tutorials, 11(4):42– 56.
  • [39]. Chamola V., Kotesh P., Agarwal A., Gupta N. N., Guizani M., “A comprehensive review of unmanned aerial vehicle attacks and neutralization techniques”, 2021, Ad Hoc Networks, 111:102324.
  • [40]. Chuyang Z., Shang G., Jianyi X., Jianwen H., Qiang L., Kaitong H., Jutao H., Ruiwen M., “Method research and realization of noise fm jamming based on DDS technology”, 2020, Journal of Physics: Conference Series, 1437, 012122.
  • [41]. Zheng F., Haitao L., Yiming Q., “Cognitive anti-jamming receiver under phase noise in high frequency bands”, 2018, Journal of Systems Engineering and Electronics, 29(1):31–38.
  • [42]. Kolias C., Kambourakis G., Stavrou A., Gritzalis S., “Intrusion detection in 802.11 networks: empirical evaluation of threats and a public dataset”, 2015, IEEE Communications Surveys & Tutorials, 18(1):184–208.
  • [43]. Cho E. J., Kim J. H., Hong C. S., “Attack model and detection scheme for botnet on 6lowpan” Management Enabling the Future Internet for Changing Business and New Computing Services, Springer, Berlin, Heidelberg, 515–518, 2009.
  • [44]. Krimmling J., Peter S., “Integration and evaluation of intrusion detection for coap in smart city applications”, In 2014 IEEE Conference on Communications and Network Security, San Francisco, CA, USA, 73–78, 2014.
  • [45]. Gong S., Ochiai H., Esaki H., “Scan based self-anomaly detection: Client-side mitigation of channel-based man-in-the-middle attacks against wi-fi”, In 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC), Madrid, Spain, 1498– 1503, 13-17 July, 2020.
  • [46]. Modi V., Parekh C., “Detection & analysis of evil twin attack in wireless network”, 2017, International Journal of Advanced Research in Computer Science, 8(5).
  • [47]. Das S. K., Kant K., Zhang N., “Handbook on securing cyber-physical critical infrastructure”, Elsevier, 2012.
  • [48]. Zeadally S., Isaac J. T., Baig Z., “Security attacks and solutions in electronic health (e-health) systems”, 2016, Journal of medical systems, 40(12):1– 12.
  • [49]. Al Ameen M., Liu J., Kwak K., “Security and privacy issues in wireless sensor networks for healthcare applications”, 2012, Journal of medical systems, 36(1):93–101.
  • [50]. Muscat I., “What are injection attacks. Dostopno prek” https://www. acunetix. com/blog/articles/injectionattacks, 2017.
  • [51]. Long N., Thomas R., “Trends in denial-of-service attack technology”, CERT Coordination Center, 648–651, 2001.
  • [52]. Perakovic D., Perisa M., Cvitic I., “Analysis of the iot impact on volume of ddos attacks.”, XXXIII Simpozijum o novim tehnologijama u postanskom i telekomunikacionom saobracaju–PosTel, 2015:295–304, 2015.
  • [53]. Mahjabin T., Xiao Y, Sun G, Jiang W., “A survey of distributed denial-of-service attack, prevention, and mitigation techniques”, 2017, International Journal of Distributed Sensor Networks, 13(12):1550147717741463.
  • [54]. Alomari E., Manickam S., Gupta BB., Karuppayah S., Alfaris R., “Botnetbased distributed denial of service (DDOS) attacks on web servers: classification and art”, arXiv preprint arXiv:1208.0403, 2012.
  • [55]. McLaughlin L., “Bot software spreads, causes new worries”, 2004, IEEE Distributed Systems Online, 5(6):1.
  • [56]. Hoque N., Bhattacharyya D. K., Kalita J. K., “Botnet in DDOS attacks: trends and challenges”, 2015, IEEE Communications Surveys & Tutorials, 17(4):2242–2270.
  • [57]. Peng T., Leckie C., Ramamohanarao K., “Protection from distributed denial of service attacks using history-based ip filtering”, In IEEE International Conference on Communications, 2003. ICC ’03., Anchorage, AK, USA, 1:482–486, 20 June, 2003.
  • [58]. Weiler N., “Honeypots for distributed denial-of-service attacks”, In Proceedings. Eleventh IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises, Pittsburgh, PA, USA, 109–114, 12 June, 2002.
  • [59]. Lee T., Wen C., Chang L., Chiang H., Hsieh M., “A lightweight intrusion detection scheme based on energy consumption analysis in 6lowpan”, Advanced Technologies, Embedded and Multimedia for Human-centric Computing, 1205–1213, 2014.
  • [60]. Bindra N., Sood M., “Detecting DDOS attacks using machine learning techniques and contemporary intrusion detection dataset”, Automatic Control and Computer Sciences, 53(5):419–428, 2019.
  • [61]. Al-Gethami K. M., Al-Akhras M. T., Alawairdhi M., “Empirical evaluation of noise influence on supervised machine learning algorithms using intrusion detection datasets”, 2021, Security and Communication Networks, 2021:1-28.
  • [62]. Liu H., Lang B., “Machine learning and deep learning methods for intrusion detection systems: A surve”, 2019, Applied Sciences, 9(20):4396.
  • [63]. Yin C., Zhu Y., Fei J., He X., “A deep learning approach for intrusion detection using recurrent neural networks”, 2017, IEEE Access, 5:21954– 21961.
  • [64]. Khan M. A., Karim M., Kim Y., “A scalable and hybrid intrusion detection system based on the convolutional-lstm network”, 2019, Symmetry, 11(4):583.
  • [65]. Cheng M., Ling Y., Wu W. B., “Time series analysis for jamming attack detection in wireless networks”, In GLOBECOM 2017, IEEE Global Communications Conference, Singapore, 1–7., 4-8 December, 2017.
  • [66]. Dar A. B., Lone A. H., Zahoor S., Khan A. A., Naaz R., “Applicability of mobile contact tracing in fighting pandemic (covid19): Issues, challenges and solutions”, 2020, Computer Science Review, 100307.
  • [67]. Milliken J., Selis V., Yap K. M., Marshall A., “Impact of metric selection on wireless deauthentication dos attack performance”, 2013, IEEE Wireless Communications Letters, 2(5):571–574.
  • [68]. Kolias C., Stavrou A., Voas J., Bojanova I, Kuhn R., “Learning internet of-things security hands-on”, 2016, IEEE Security & Privacy, 14(1):37–46.
  • [69]. Arora A., “Preventing wireless deauthentication attacks over 802.11 networks”, arXiv preprint arXiv:1901.07301, 2018.
  • [70]. Remesh A., Muralidharan D., Raj N., Gopika J., Binu P. K., “Intrusion detection system for IoT devices”, In 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 826–830., 2020.
  • [71]. Park N., Sun K., Foresti S., Butler K., Saxena N., “Security and Privacy in Communication Networks”, Springer SecureCom2020, Washington DC, USA, 21-23 October, 2020.
  • [72]. Zou Y., Wang G., “Intercept behavior analysis of industrial wireless sensor networks in the presence of eavesdropping attack”, 2016, IEEE Transactions on Industrial Informatics, 12(2):780–787.
  • [73]. Li C., Raghunathan A., Jha N. K., “Hijacking an insulin pump: Security attacks and defenses for a diabetes therapy system”, In 2011 IEEE 13th International Conference on e-Health Networking, Applications and Services, Location: Columbia, MO, USA, 150–156., 13-15 June, 2011.
  • [74]. Challa S., Das A. K., Odelu V., Kumar N., Kumari S., Khan M. K., Vasilakos A. V., “An efficient ecc-based provably secure three-factor user authentication and key agreement protocol for wireless healthcare sensor networks”, 2018, Computers Electrical Engineering, 69:534–554.
  • [75]. Yoo H., Song S., Cho N., Kim H., “Low energy on-body communication for BSN”, In 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007), Aachen University, Germany, 15–20, 26-28 March, 2007.
  • [76]. Baldus H., Corroy S., Fazzi A., Klabunde K., Schenk T. “Human-centric connectivity enabled by body-coupled communications”, 2009, IEEE Communications Magazine, 47(6):172–178.
  • [77]. Goel S., Negi R., “Guaranteeing secrecy using artificial noise”, 2008, IEEE transactions on wireless communications, 7(6):2180–2189.
  • [78]. Rabbachin A., Conti A., Win M. Z., “Intentional network interference for denial of wireless eavesdropping”, In 2011 IEEE Global Telecommunications Conference-GLOBECOM 2011, Houston, Texas, USA, 1–6, 5-9 December, 2011.
  • [79]. Tang X., Liu R., Spasojevic P., Poor H. V., “Interference assisted secret communication”, 2011, IEEE Transactions on Information Theory, 57(5):3153–3167.
  • [80]. Tekin E., Yener A., “The gaussian multiple access wire-tap channel: wireless secrecy and cooperative jamming”, In 2007 Information Theory and Applications Workshop, La Jolla, CA, USA, 404–413, 29 Jan.-2 Feb., 2007.
  • [81]. Endo Y., Arkin R. C., Collins T. R., “Tactical mobile robot mission specification and execution”, Georgia Tech, 150-163, 1999.
  • [82]. Donno M. D., Dragoni N., Giaretta A., Spognardi A., “Analysis of DDOS-capable IoT malwares”, 2017 Federated Conference on Computer Science and Information Systems (FedCSIS), Prague, Czech Republic, 807–816, 3-6 September, 2017.
  • [83]. Dulik M., “Network attack using TCP protocol for performing dos and ddos attacks”, In 2019 Communication and Information Technologies (KIT), Tatranské Zruby, SK, 1–6, 9-11 October, 2019.
  • [84]. Bengag A., Moussaoui O., Moussaoui M., “A new ids for detecting jamming attacks in wban”, In 2019 Third International Conference on Intelligent Computing in Data Sciences (ICDS), Marrakech, Morocco, 1–5, 28-30 October, 2019.
  • [85]. Xu W., Ma K., Trappe W., Zhang Y., “Jamming sensor networks: attack and defense strategies”, 2006, IEEE Network, 20(3):41–47.
  • [86]. Namvar N., Saad W., Bahadori N., Kelley B., “Jamming in the internet of things: A game-theoretic perspective”, In IEEE Global Communications Conference (GLOBECOM 2016), Washington, DC, USA, 1–6, 4-8 December, 2016.
  • [87]. Raghuprasad A., Padmanabhan S., Babu M. A., Binu P. K., “Security analysis and prevention of attacks on IoT devices”, In 2020 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 0876–0880, 28-30 July, 2020.
  • [88]. Lovinger N., Gerlich T., Martinasek Z., Malina L., “Detection of wireless fake access points”, 2020 12th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Brno, Czech Republic, 113– 118, 5-7 October, 2020.
  • [89]. Gonzales H., Bauer K., Lindqvist J., McCoy D., Sicker D., “Practical defenses for evil twin attacks in 802.11”, 2010 IEEE Global Telecommunications Conference GLOBECOM 2010, Miami, FL, USA, 1–6, 6-10 December, 2010.
  • [90]. Asaduzzaman M., Majib M. S., Rahman M., “Wi-fi frame classification and feature selection analysis in detecting evil twin attack”, In 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 1704–1707, 5-7 June, 2020.
  • [91]. Damghani H., Damghani L., Hosseinian H., Sharifi R., “Classification of attacks on IoT”, In 4th International Conference on Combinatorics, Cryptography, Computer Science and Computation, Tehran, Iran, 20-21 November, 2019.
  • [92]. Yang W., Zheng Z., Chen G., Tang Y., Wang X., “Security analysis of a distributed networked system under eavesdropping attacks”, 2019, IEEE Transactions on Circuits and Systems II: Express Briefs, 67(7):1254–1258.
  • [93]. Bostami B., Ahmed M., Choudhury S., “False data injection attacks in internet of things”, In Performability in Internet of Things, Springer, 47–58, 2019.
  • [94]. Javaid M., Khan I. H., “Internet of things (IoT) enabled healthcare helps to take the challenges of covid-19 pandemic”, 2021, Journal of Oral Biology and Craniofacial Research, 11(2):209-2014.
  • [95]. Ndiaye M., Oyewobi S. S., AbuMahfouz A. M., Hancke G. P., Kurien A. M., Djouani K., “IoT in the wake of covid-19: A survey on contributions, challenges and evolution”, 2020, IEEE Access, 8:186821–186839.
  • [96]. Scott B. K., Miller G. T, Fonda S. J., Yeaw R. E., Gaudaen J. C., Pavliscsak H. H., Quinn M. T., Pamplin J. C., “Advanced digital health technologies for covid19 and future emergencies”, 2020, Telemedicine and e-Health, 26(10):1226–1233.
  • [97]. Sust P. P., Solans O., Fajardo J. C., Peralta M. M., Rodenas P., Gabalda J, Eroles L. G., Comella A., Munoz C. V., Ribes J. S., “Turning the crisis into an opportunity: digital health strategies deployed during the covid-19 outbreak”, 2020, JMIR public health and surveillance, 6(2):e19106.
  • [98]. Pappot N., Taarnhøj G. A., Pappot H., “Telemedicine and e-health solutions for covid19: patients’ perspective”, 2020, Telemedicine and e-Health, 26(7):847–849.
  • [99]. Abie H., Balasingham I., “Risk-based adaptive security for smart IoT in e-health”, In Proceedings of the 7th International Conference on Body Area Networks, Oslo Norway, 269–275, 24-26 September, 2012.
  • [100]. Blobel B., “Comparing approaches for advanced e-health security infrastructures”, 2007, International journal of medical informatics, 76(5-6):454–459.
  • [101]. Wilkowska W., Ziefle M., “Privacy and data security in e-health: Requirements from the user’s perspective”, 2012, Health informatics journal, 18(3):191–201.
  • [102]. Simpson T. S. L., Lane B., “Security and privacy in e-health: Is it possible?” In 2013 IEEE 15th International Conference on e-Health Networking, Applications and Services, Lisbon, PT, 249–253., 9-12 October, 2013.
  • [103]. Güvernoğlu E., Razbonyalı C., “The Creation of Maze in Order to Hide Data, and the Proposal of Method Based on AES Data Encryption Algorithm”, 2019, El-Cezerî Journal of Science and Engineering, 6(3):668-680.

A Survey on Security Attacks with Remote Ground Robots

Yıl 2021, Cilt: 8 Sayı: 3, 1286 - 1308, 30.09.2021
https://doi.org/10.31202/ecjse.916532

Öz

Contemporary healthcare systems contain diverse computing devices that construct very complex systems to manage patients’ data more efficiently. Connected computing devices, such as the Internet of Things (IoT) that may have limited processing powers, have contributed more than ever with the advent of wearable body area networks (WBAN). These devices are connected to other medical devices to share sensitive health data with corresponding entities like hospitals, research institutions, and insurance companies. Since health data are very sensitive, they should be always available to authorized entities and unavailable to other entities. Moreover, COVID-19 pandemic has added additional value to health data which case increases cyber-attacks on e-health systems with different tools dramatically. In this paper, several cyber-attacks on e-health systems are explored. Particularly, we have focused on attacks to IoT based wearable health devices for body area networks. The paper contains the architecture of wearable health devices to show the potential attack surface. One of the main contributions of the paper is to present cyber-attacks on wearable e-health devices with ground robots. A tactical ground robot is portable devices that may be used to carry out several cyber-attacks on e-health systems. Moreover, the paper contains analyses of the attacks with ground robots.

Kaynakça

  • [1]. Butpheng C., Yeh K., Xiong H., “Security and privacy in IoT-cloud-based e-health systems—a comprehensive review. Symmetry”, 2020, 12:1191.
  • [2]. Ahmed M., A. SSM. B., “False data injection attacks in healthcare”, In Australasian Conference on Data Mining, 192–202, Springer, 2017.
  • [3]. Islam S. M. R., Kwak D., Kabir M. H., Hossain M., Kwak H., “The internet of things for health care: A comprehensive survey”, 2015, IEEE Access, 3:678–708.
  • [4]. Holler J., Tsiatsis V., Mulligan C., Karnouskos S., Avesand S., Boyle D., “From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence”, Academic Press, Inc. 6277 Sea Harbor Drive Orlando, FL, United States, 2014.
  • [5]. Yu L., Lu Y., Zhu X. J,.” Smart hospital based on internet of things”, 2012, Journal of Networks, 7(10).
  • [6]. Efe A., Aksoz E., Hanecioğlu N, Yalman Ş. N., “Smart security of IoT against to ddos attacks”, 2019, International Journal of Innovative Engineering Applications, 2:35 – 43.
  • [7]. Al-Issa Y., Ottom M. A., Tamrawi A., “E-health cloud security challenges: A survey”, 2019, Journal of Healthcare Engineering, 2019:1–15.
  • [8]. Kintzlinger M., Nissim N., “Keep an eye on your personal belongings! the security of personal medical devices and their ecosystems”, 2019, Journal of Biomedical Informatics, 95:103233.
  • [9]. McCall M. K., Skutsch M. M., Honey-Roses J., “Surveillance in the covid-19 normal: Tracking, tracing, and snooping–trade-offs in safety and autonomy in the e-city”, 2021, International Journal of E-Planning Research, 10(2):27–44.
  • [10]. Hiremath S, Yang G., Mankodiya K., “Wearable Internet of things: Concept, architectural components and promises for person-centered healthcare”, 4th International Conference on Wireless Mobile Communication and Healthcare, Athens, Greece, November 3-5, 2014, 304–307, 2014.
  • [11]. Otto C., Milenkovic A., Sanders C., Jovanov E., “System architecture of a wireless body area sensor network for ubiquitous health monitoring”, 2006, Journal of Mobile Multimedia, 1:307–326.
  • [12]. Al-Janabi S., Al-Shourbaji I., Shojafar M., Shamshirband S., “Survey of main challenges (security and privacy) in wireless body area networks for healthcare applications”, 2017, Egyptian Informatics Journal, 18(2):113–122.
  • [13]. Karmakar N. C., Yang Y., Rahim A., “Microwave Sleep Apnoea Monitoring”, Series in BioEngineering, Springer, 2018.
  • [14]. Darwish A., Hassanien A. E., “Wearable and implantable wireless sensor network solutions for healthcare monitoring”, 2011, Sensors, 11(6):5561–5595.
  • [15]. Milenkovic A., Otto C., Jovanov E., “Wireless sensor networks for personal health monitoring: Issues and an implementation”, 2006, Computer Communications, 29:2521–2533.
  • [16]. Fu K., Xu W., “Risks of trusting the physics of sensors”, 2018, Communications of the ACM, 61(2):20–23.
  • [17]. Halperin D., Heydt-Benjamin T. S., Ransford B., Clark S.S., Defend B., Morgan W., Fu K., Kohno T., Maisel W. H., “Pacemakers and implantable cardiac defibrillators: Software radio attacks and zero-power defenses”, In 2008 IEEE Symposium on Security and Privacy (SP 2008), Oakland, California, USA, 129–142, 2008.
  • [18]. Trippel T., Weisse O., Xu W., Honeyman P., Fu K., “Walnut: Waging doubt on the integrity of mems accelerometers with acoustic injection attacks,” In 2017 IEEE European symposium on security and privacy (EuroS&P), Paris, France, 3–18, April 26-28, 2017.
  • [19]. Xue Q., Chuah M. C., “New attacks on RNN based healthcare learning system and their detections”, 2018, Smart Health, 9:144–157.
  • [20]. Ly B., Ly R., “Cybersecurity in unmanned aerial vehicles”, 2020, Journal of Cyber Security Technology, 1–18.
  • [21]. Kristiyanto Y., Ernastuti E., “Analysis of de-authentication attack on IEEE 802.11 connectivity based on IoT technology using external penetration test”, 2020 Communication and Information Technology Journal, 14(1):45–51.
  • [22]. Sethuraman S. C., Vijayakumar V., Walczak S., “Cyber-attacks on healthcare devices using unmanned aerial vehicles”, 2020, Journal of medical systems, 44(1):1–10.
  • [23]. Hanspach M., Goetz M., “On covert acoustical mesh networks in air”, arXiv preprint arXiv:1406.1213, 2014.
  • [24]. Karchowdhury S., Sen M., “Survey on attacks on wireless body area network”, 2019, International Journal of Computational Intelligence & IoT, Forthcoming, 638-644.
  • [25]. Eian I. C., Yong L. K., Li M. J. X., Qi Y. H., Fatima Z., “Cyber-attacks in the era of covid-19 and possible solution domains”, Preprints, 2020.
  • [26]. Khan N. A., Brohi S. N., Zaman N., “Ten deadly cyber security threats amid covid-19 pandemic”, Preprints, 2020.
  • [27]. Kamal M, Aljohani A., Alanazi E., “IoT meets covid-19: Status, challenges, and opportunities”, arXiv preprint arXiv:2007.12268, 2020.
  • [28]. Lallie H. S., Shepherd L. A., Nurse J, Erola A., Epiphaniou G., Maple C., Bellekens X., “Cyber security in the age of covid-19: A timeline and analysis of cyber-crime and cyber-attacks during the pandemic”, arXiv preprint arXiv:2006.11929, 2020.
  • [29]. Gvili Y., “Security analysis of the covid-19 contact tracing specifications by apple inc. and google inc”, IACR Cryptol. ePrint Arch., 2020:428, 2020.
  • [30]. Chamola V., Hassija V., Gupta V., Guizani M., “A comprehensive review of the covid19 pandemic and the role of iot, drones, ai, blockchain, and 5g in managing its impact”, 2020, IEEE Access, 8:90225– 90265.
  • [31]. Rahman A., Hossain M. S., Alrajeh N A., Alsolami F., “Adversarial examples–security threats to covid-19 deep learning systems in medical IoT devices”, 2020, IEEE Internet of Things Journal, 99:1-1.
  • [32]. Pranggono B., Arabo A., “Covid-19 pandemic cybersecurity issues”, 2020, Internet Technology Letters, 4(2):1-6, 2020.
  • [33]. Wueest C., “The continued rise of DDOS attacks. White Paper: Security Response”, Symantec Corporation, 2014.
  • [34]. Mirkovic J., Reiher P., “A taxonomy of DDOS attack and DDOS defense mechanisms”, 2004, ACM SIGCOMM Computer Communication Review, 34(2):39–53.
  • [35]. Pathan A. K., Lee H., Hong C. S., “Security in wireless sensor networks: issues and challenges”, In 2006 8th International Conference Advanced Communication Technology, Phoenix Park, Korea, 1043-1048, 20-22 Feb., 2006.
  • [36]. Chadd A., “Ddos attacks: past, present and future”, 2018, Network Security, 2018(7):13–15.
  • [37]. Zaroo P., “A survey of ddos attacks and some ddos defense mechanisms”, Advanced Information Assurance (CS 626), 2002.
  • [38]. Mpitziopoulos A., Gavalas D., Konstantopoulos C., Pantziou G., “A survey on jamming attacks and countermeasures in WSNS”, 2009, IEEE Communications Surveys & Tutorials, 11(4):42– 56.
  • [39]. Chamola V., Kotesh P., Agarwal A., Gupta N. N., Guizani M., “A comprehensive review of unmanned aerial vehicle attacks and neutralization techniques”, 2021, Ad Hoc Networks, 111:102324.
  • [40]. Chuyang Z., Shang G., Jianyi X., Jianwen H., Qiang L., Kaitong H., Jutao H., Ruiwen M., “Method research and realization of noise fm jamming based on DDS technology”, 2020, Journal of Physics: Conference Series, 1437, 012122.
  • [41]. Zheng F., Haitao L., Yiming Q., “Cognitive anti-jamming receiver under phase noise in high frequency bands”, 2018, Journal of Systems Engineering and Electronics, 29(1):31–38.
  • [42]. Kolias C., Kambourakis G., Stavrou A., Gritzalis S., “Intrusion detection in 802.11 networks: empirical evaluation of threats and a public dataset”, 2015, IEEE Communications Surveys & Tutorials, 18(1):184–208.
  • [43]. Cho E. J., Kim J. H., Hong C. S., “Attack model and detection scheme for botnet on 6lowpan” Management Enabling the Future Internet for Changing Business and New Computing Services, Springer, Berlin, Heidelberg, 515–518, 2009.
  • [44]. Krimmling J., Peter S., “Integration and evaluation of intrusion detection for coap in smart city applications”, In 2014 IEEE Conference on Communications and Network Security, San Francisco, CA, USA, 73–78, 2014.
  • [45]. Gong S., Ochiai H., Esaki H., “Scan based self-anomaly detection: Client-side mitigation of channel-based man-in-the-middle attacks against wi-fi”, In 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC), Madrid, Spain, 1498– 1503, 13-17 July, 2020.
  • [46]. Modi V., Parekh C., “Detection & analysis of evil twin attack in wireless network”, 2017, International Journal of Advanced Research in Computer Science, 8(5).
  • [47]. Das S. K., Kant K., Zhang N., “Handbook on securing cyber-physical critical infrastructure”, Elsevier, 2012.
  • [48]. Zeadally S., Isaac J. T., Baig Z., “Security attacks and solutions in electronic health (e-health) systems”, 2016, Journal of medical systems, 40(12):1– 12.
  • [49]. Al Ameen M., Liu J., Kwak K., “Security and privacy issues in wireless sensor networks for healthcare applications”, 2012, Journal of medical systems, 36(1):93–101.
  • [50]. Muscat I., “What are injection attacks. Dostopno prek” https://www. acunetix. com/blog/articles/injectionattacks, 2017.
  • [51]. Long N., Thomas R., “Trends in denial-of-service attack technology”, CERT Coordination Center, 648–651, 2001.
  • [52]. Perakovic D., Perisa M., Cvitic I., “Analysis of the iot impact on volume of ddos attacks.”, XXXIII Simpozijum o novim tehnologijama u postanskom i telekomunikacionom saobracaju–PosTel, 2015:295–304, 2015.
  • [53]. Mahjabin T., Xiao Y, Sun G, Jiang W., “A survey of distributed denial-of-service attack, prevention, and mitigation techniques”, 2017, International Journal of Distributed Sensor Networks, 13(12):1550147717741463.
  • [54]. Alomari E., Manickam S., Gupta BB., Karuppayah S., Alfaris R., “Botnetbased distributed denial of service (DDOS) attacks on web servers: classification and art”, arXiv preprint arXiv:1208.0403, 2012.
  • [55]. McLaughlin L., “Bot software spreads, causes new worries”, 2004, IEEE Distributed Systems Online, 5(6):1.
  • [56]. Hoque N., Bhattacharyya D. K., Kalita J. K., “Botnet in DDOS attacks: trends and challenges”, 2015, IEEE Communications Surveys & Tutorials, 17(4):2242–2270.
  • [57]. Peng T., Leckie C., Ramamohanarao K., “Protection from distributed denial of service attacks using history-based ip filtering”, In IEEE International Conference on Communications, 2003. ICC ’03., Anchorage, AK, USA, 1:482–486, 20 June, 2003.
  • [58]. Weiler N., “Honeypots for distributed denial-of-service attacks”, In Proceedings. Eleventh IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises, Pittsburgh, PA, USA, 109–114, 12 June, 2002.
  • [59]. Lee T., Wen C., Chang L., Chiang H., Hsieh M., “A lightweight intrusion detection scheme based on energy consumption analysis in 6lowpan”, Advanced Technologies, Embedded and Multimedia for Human-centric Computing, 1205–1213, 2014.
  • [60]. Bindra N., Sood M., “Detecting DDOS attacks using machine learning techniques and contemporary intrusion detection dataset”, Automatic Control and Computer Sciences, 53(5):419–428, 2019.
  • [61]. Al-Gethami K. M., Al-Akhras M. T., Alawairdhi M., “Empirical evaluation of noise influence on supervised machine learning algorithms using intrusion detection datasets”, 2021, Security and Communication Networks, 2021:1-28.
  • [62]. Liu H., Lang B., “Machine learning and deep learning methods for intrusion detection systems: A surve”, 2019, Applied Sciences, 9(20):4396.
  • [63]. Yin C., Zhu Y., Fei J., He X., “A deep learning approach for intrusion detection using recurrent neural networks”, 2017, IEEE Access, 5:21954– 21961.
  • [64]. Khan M. A., Karim M., Kim Y., “A scalable and hybrid intrusion detection system based on the convolutional-lstm network”, 2019, Symmetry, 11(4):583.
  • [65]. Cheng M., Ling Y., Wu W. B., “Time series analysis for jamming attack detection in wireless networks”, In GLOBECOM 2017, IEEE Global Communications Conference, Singapore, 1–7., 4-8 December, 2017.
  • [66]. Dar A. B., Lone A. H., Zahoor S., Khan A. A., Naaz R., “Applicability of mobile contact tracing in fighting pandemic (covid19): Issues, challenges and solutions”, 2020, Computer Science Review, 100307.
  • [67]. Milliken J., Selis V., Yap K. M., Marshall A., “Impact of metric selection on wireless deauthentication dos attack performance”, 2013, IEEE Wireless Communications Letters, 2(5):571–574.
  • [68]. Kolias C., Stavrou A., Voas J., Bojanova I, Kuhn R., “Learning internet of-things security hands-on”, 2016, IEEE Security & Privacy, 14(1):37–46.
  • [69]. Arora A., “Preventing wireless deauthentication attacks over 802.11 networks”, arXiv preprint arXiv:1901.07301, 2018.
  • [70]. Remesh A., Muralidharan D., Raj N., Gopika J., Binu P. K., “Intrusion detection system for IoT devices”, In 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 826–830., 2020.
  • [71]. Park N., Sun K., Foresti S., Butler K., Saxena N., “Security and Privacy in Communication Networks”, Springer SecureCom2020, Washington DC, USA, 21-23 October, 2020.
  • [72]. Zou Y., Wang G., “Intercept behavior analysis of industrial wireless sensor networks in the presence of eavesdropping attack”, 2016, IEEE Transactions on Industrial Informatics, 12(2):780–787.
  • [73]. Li C., Raghunathan A., Jha N. K., “Hijacking an insulin pump: Security attacks and defenses for a diabetes therapy system”, In 2011 IEEE 13th International Conference on e-Health Networking, Applications and Services, Location: Columbia, MO, USA, 150–156., 13-15 June, 2011.
  • [74]. Challa S., Das A. K., Odelu V., Kumar N., Kumari S., Khan M. K., Vasilakos A. V., “An efficient ecc-based provably secure three-factor user authentication and key agreement protocol for wireless healthcare sensor networks”, 2018, Computers Electrical Engineering, 69:534–554.
  • [75]. Yoo H., Song S., Cho N., Kim H., “Low energy on-body communication for BSN”, In 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007), Aachen University, Germany, 15–20, 26-28 March, 2007.
  • [76]. Baldus H., Corroy S., Fazzi A., Klabunde K., Schenk T. “Human-centric connectivity enabled by body-coupled communications”, 2009, IEEE Communications Magazine, 47(6):172–178.
  • [77]. Goel S., Negi R., “Guaranteeing secrecy using artificial noise”, 2008, IEEE transactions on wireless communications, 7(6):2180–2189.
  • [78]. Rabbachin A., Conti A., Win M. Z., “Intentional network interference for denial of wireless eavesdropping”, In 2011 IEEE Global Telecommunications Conference-GLOBECOM 2011, Houston, Texas, USA, 1–6, 5-9 December, 2011.
  • [79]. Tang X., Liu R., Spasojevic P., Poor H. V., “Interference assisted secret communication”, 2011, IEEE Transactions on Information Theory, 57(5):3153–3167.
  • [80]. Tekin E., Yener A., “The gaussian multiple access wire-tap channel: wireless secrecy and cooperative jamming”, In 2007 Information Theory and Applications Workshop, La Jolla, CA, USA, 404–413, 29 Jan.-2 Feb., 2007.
  • [81]. Endo Y., Arkin R. C., Collins T. R., “Tactical mobile robot mission specification and execution”, Georgia Tech, 150-163, 1999.
  • [82]. Donno M. D., Dragoni N., Giaretta A., Spognardi A., “Analysis of DDOS-capable IoT malwares”, 2017 Federated Conference on Computer Science and Information Systems (FedCSIS), Prague, Czech Republic, 807–816, 3-6 September, 2017.
  • [83]. Dulik M., “Network attack using TCP protocol for performing dos and ddos attacks”, In 2019 Communication and Information Technologies (KIT), Tatranské Zruby, SK, 1–6, 9-11 October, 2019.
  • [84]. Bengag A., Moussaoui O., Moussaoui M., “A new ids for detecting jamming attacks in wban”, In 2019 Third International Conference on Intelligent Computing in Data Sciences (ICDS), Marrakech, Morocco, 1–5, 28-30 October, 2019.
  • [85]. Xu W., Ma K., Trappe W., Zhang Y., “Jamming sensor networks: attack and defense strategies”, 2006, IEEE Network, 20(3):41–47.
  • [86]. Namvar N., Saad W., Bahadori N., Kelley B., “Jamming in the internet of things: A game-theoretic perspective”, In IEEE Global Communications Conference (GLOBECOM 2016), Washington, DC, USA, 1–6, 4-8 December, 2016.
  • [87]. Raghuprasad A., Padmanabhan S., Babu M. A., Binu P. K., “Security analysis and prevention of attacks on IoT devices”, In 2020 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 0876–0880, 28-30 July, 2020.
  • [88]. Lovinger N., Gerlich T., Martinasek Z., Malina L., “Detection of wireless fake access points”, 2020 12th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Brno, Czech Republic, 113– 118, 5-7 October, 2020.
  • [89]. Gonzales H., Bauer K., Lindqvist J., McCoy D., Sicker D., “Practical defenses for evil twin attacks in 802.11”, 2010 IEEE Global Telecommunications Conference GLOBECOM 2010, Miami, FL, USA, 1–6, 6-10 December, 2010.
  • [90]. Asaduzzaman M., Majib M. S., Rahman M., “Wi-fi frame classification and feature selection analysis in detecting evil twin attack”, In 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 1704–1707, 5-7 June, 2020.
  • [91]. Damghani H., Damghani L., Hosseinian H., Sharifi R., “Classification of attacks on IoT”, In 4th International Conference on Combinatorics, Cryptography, Computer Science and Computation, Tehran, Iran, 20-21 November, 2019.
  • [92]. Yang W., Zheng Z., Chen G., Tang Y., Wang X., “Security analysis of a distributed networked system under eavesdropping attacks”, 2019, IEEE Transactions on Circuits and Systems II: Express Briefs, 67(7):1254–1258.
  • [93]. Bostami B., Ahmed M., Choudhury S., “False data injection attacks in internet of things”, In Performability in Internet of Things, Springer, 47–58, 2019.
  • [94]. Javaid M., Khan I. H., “Internet of things (IoT) enabled healthcare helps to take the challenges of covid-19 pandemic”, 2021, Journal of Oral Biology and Craniofacial Research, 11(2):209-2014.
  • [95]. Ndiaye M., Oyewobi S. S., AbuMahfouz A. M., Hancke G. P., Kurien A. M., Djouani K., “IoT in the wake of covid-19: A survey on contributions, challenges and evolution”, 2020, IEEE Access, 8:186821–186839.
  • [96]. Scott B. K., Miller G. T, Fonda S. J., Yeaw R. E., Gaudaen J. C., Pavliscsak H. H., Quinn M. T., Pamplin J. C., “Advanced digital health technologies for covid19 and future emergencies”, 2020, Telemedicine and e-Health, 26(10):1226–1233.
  • [97]. Sust P. P., Solans O., Fajardo J. C., Peralta M. M., Rodenas P., Gabalda J, Eroles L. G., Comella A., Munoz C. V., Ribes J. S., “Turning the crisis into an opportunity: digital health strategies deployed during the covid-19 outbreak”, 2020, JMIR public health and surveillance, 6(2):e19106.
  • [98]. Pappot N., Taarnhøj G. A., Pappot H., “Telemedicine and e-health solutions for covid19: patients’ perspective”, 2020, Telemedicine and e-Health, 26(7):847–849.
  • [99]. Abie H., Balasingham I., “Risk-based adaptive security for smart IoT in e-health”, In Proceedings of the 7th International Conference on Body Area Networks, Oslo Norway, 269–275, 24-26 September, 2012.
  • [100]. Blobel B., “Comparing approaches for advanced e-health security infrastructures”, 2007, International journal of medical informatics, 76(5-6):454–459.
  • [101]. Wilkowska W., Ziefle M., “Privacy and data security in e-health: Requirements from the user’s perspective”, 2012, Health informatics journal, 18(3):191–201.
  • [102]. Simpson T. S. L., Lane B., “Security and privacy in e-health: Is it possible?” In 2013 IEEE 15th International Conference on e-Health Networking, Applications and Services, Lisbon, PT, 249–253., 9-12 October, 2013.
  • [103]. Güvernoğlu E., Razbonyalı C., “The Creation of Maze in Order to Hide Data, and the Proposal of Method Based on AES Data Encryption Algorithm”, 2019, El-Cezerî Journal of Science and Engineering, 6(3):668-680.
Toplam 103 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Batuhan Özdol 0000-0002-2601-633X

Elif Köseler 0000-0002-3882-2689

Ezgi Alçiçek 0000-0003-2487-9884

Süha Eren Cesur 0000-0003-1672-0216

Perif Jan Aydemir Bu kişi benim 0000-0002-1493-8513

Şerif Bahtiyar 0000-0003-0314-2621

Yayımlanma Tarihi 30 Eylül 2021
Gönderilme Tarihi 16 Nisan 2021
Kabul Tarihi 5 Temmuz 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 8 Sayı: 3

Kaynak Göster

IEEE B. Özdol, E. Köseler, E. Alçiçek, S. E. Cesur, P. J. Aydemir, ve Ş. Bahtiyar, “A Survey on Security Attacks with Remote Ground Robots”, ECJSE, c. 8, sy. 3, ss. 1286–1308, 2021, doi: 10.31202/ecjse.916532.