Araştırma Makalesi
BibTex RIS Kaynak Göster

Conceptual Design of Python IDE with Embedded Turkish Spoken Chatbot that Analyzes and Corrects the Syntax Errors

Yıl 2021, , 415 - 424, 01.12.2021
https://doi.org/10.31590/ejosat.1035421

Öz

Intelligent agents, in addition to act as a cognitive tool, they can also to be designed as learning agents. In this way, they can learn the user's behavior from users' past behaviors. Learning agents can analyze the user's / student's behavior to a task, build a database of past activities, and suggest better strategies. This study provides a detailed review of interactive guidance using intelligent agents, and then introduces a concept model for a Conversation-based Turkish Python Integrated development environment (IDE) that can analyze user syntax errors and help them to correct errors. The model proposed in this study consists of three layers. These are user interface layer, middle layer, and Python interpreter layers. User interface layer consists of code editor and chatbot components. Middle layer includes code structural control subsystem, code error manager, and intelligent agent subsystems. The code structural control module analyzes conditions, loops, branching, and other types of program flow controls in the user's code. The code error manager analyzes the error outputs of the user code which is generated by the Python interpreter. The intelligent learner, on the other hand, uses these inferences to understand the reason for the student's error and convey the necessary actions to the user by the help of chatbot and suggest possible corrections. The proposed Integrated development environment (IDE) has a well-designed UI that can be easily adapted by newcomers. The coding editor can be used as a stand-alone desktop software, or it can also connect to a cloud storage to store user codes in the cloud. A web application is also planned for our proposed IDE. The teacher will be able to assign homework to the student over the web. The student will be able to view these assignments on the web, do the assignments in the desktop editor and send them back to the teacher over the web. In addition, each user’s error characteristics will be analyzed, the success of the learning will be measured, and the deficiencies of the students will be determined using the Intelligent Agent Subsystem.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

118E882

Teşekkür

This Project is supported by TUBITAK 1003 Prioritized Areas R&D Grant Program.

Kaynakça

  • Roesler, Marina, and Donald T. Hawkins. "Intelligent Agents: Software Servants for an Electronic Information World (And More!)." Online 18.4 (1994).
  • Harmon, Paul. (Ed) (1995). Software agents. Intelligent software strategies, 11(1), 1-13. (January, 1995.)
  • Russell, S. J. "Norvig (2003)." Artificial intelligence: a modern approach (2003): 25-26.
  • Maes, Pattie. "Agents that reduce work and information overload." Readings in Human–Computer Interaction. 1995. 811-821.
  • Kearsley, Greg. "Intelligent agents and instructional systems: Implications of a new paradigm." Journal of Interactive Learning Research 4.4 (1993): 295.
  • Giraffa, Lucia Maria Martins, and Rosa Maria Viccari. "The use of agents techniques on intelligent tutoring systems." Computer Science, 1998. SCCC'98. XVIII International Conference of the Chilean Society of. IEEE, 1998.
  • Giraffa, L. M. M., M. A. Nunes, and R. M. Viccari. "Multi-Ecological: an Intelligent Learning Environment using Multi-Agent architecture. MASTA’97: Multi-Agent System: Theory and Applications." Proceedings... Coimbra: DE-Universidade de Coimbra (1997).
  • Chen, Weiqin, Roger Heggernes Pedersen, and Øystein Pettersen. "CoLeMo: A collaborative learning environment for UML modelling." Interactive Learning Environments 14.3 (2006): 233-249.
  • Han, Keun-Woo, EunKyoung Lee, and YoungJun Lee. "The impact of a peer-learning agent based on pair programming in a programming course." IEEE Transactions on Education 53.2 (2010): 318-327.
  • Gulz, Agneta, et al. "Building a social conversational pedagogical agent: Design challenges and methodological approaches." Conversational agents and natural language interaction: Techniques and effective practices. IGI Global, 2011. 128-155.
  • Haake, Magnus, and Agneta Gulz. "A look at the roles of look & roles in embodied pedagogical agents–a user preference perspective." International Journal of Artificial Intelligence in Education 19.1 (2009): 39-71.
  • Walker, Erin, Nikol Rummel, and Kenneth R. Koedinger. "Designing automated adaptive support to improve student helping behaviors in a peer tutoring activity." International Journal of Computer-Supported Collaborative Learning 6.2 (2011): 279-306.
  • Tegos, Stergios, Stavros Demetriadis, and Anastasios Karakostas. "Promoting academically productive talk with conversational agent interventions in collaborative learning settings." Computers & Education 87 (2015): 309-325.
  • Roos, S. (2018). Chatbots in education: A passing trend or a valuable pedagogical tool?. Msc Thesis, Uppsala University.
  • (2018). Artificial Intelligence Markup Language (AIML). https://pandorabots.com/docs/aiml/aimlbasics.html. [Online; accessed 2018-05-15].
  • Gehl, R. W. 2014. Teaching to the Turing Test with Cleverbot. Transformations: The Journal of Inclusive Scholarship and Pedagogy, 24(1-2): 56–66.
  • Palasundram, K., Sharef, N. M., Nasharuddin, N., Kasmiran, K., & Azman, A. (2019). Sequence to sequence model performance for education chatbot. International Journal of Emerging Technologies in Learning (iJET), 14(24), 56-68.
  • Goel, A., Creeden, B., Kumble, M., Salunke, S., Shetty, A., & Wiltgen, B. (2015, September). Using watson for enhancing human-computer co-creativity. In 2015 AAAI fall symposium series.
  • Lip ko, H. Meet Jill Watson: Georgia Tech's first AI teaching assistant; https://pe.gatech.edu/blog/meet-jill-watson-georgia-techs-first-ai-teaching-assistant, 5 Jan 2018, 05 Jan 2018.
  • https://gonerdify.com/nerdybot (Access Date: 20.09.2021)
  • Molnár, G., & Szüts, Z. (2018, September). The role of chatbots in formal education. In 2018 IEEE 16th International Symposium on Intelligent Systems and Informatics (SISY) (pp. 000197-000202). IEEE.
  • Singh, J., Joesph, M. H., & Jabbar, K. B. A. (2019, May). Rule-based chabot for student enquiries. In Journal of Physics: Conference Series (Vol. 1228, No. 1, p. 012060). IOP Publishing.
  • Bird, Steven. "NLTK: the natural language toolkit." Proceedings of the COLING/ACL 2006 Interactive Presentation Sessions. 2006.
  • https://www.nltk.org/ (Access Date: 20.09.2021)
  • https://github.com/microsoft/pyright (Access Date: 20.09.2021)
  • http://flake8.pycqa.org/en/latest/ (Access Date: 20.09.2021)
  • https://pypi.org/project/pyflakes/ (Access Date: 20.09.2021)
  • http://pychecker.sourceforge.net/ (Access Date: 20.09.2021)
  • Śnieżyński, Bartłomiej. "An architecture for learning agents." International Conference on Computational Science. Springer, Berlin, Heidelberg, 2008.
  • https://scikit-learn.org/stable/ (Access Date: 20.09.2021)

Sözdizimi Hatalarını Analiz Eden ve Düzelten Türkçe Sohbet Robotuna sahip Python Tümleşik Geliştirme Ortamı Kavramsal Tasarımı

Yıl 2021, , 415 - 424, 01.12.2021
https://doi.org/10.31590/ejosat.1035421

Öz

Zeki etmenler, bir bilişsel araç olarak hizmet etmenin yanı sıra, kullanıcıların geçmişteki davranışlarından hareketle kullanıcının davranış biçimini öğrenebilecek şekilde, yani öğrenen etmen olarak tasarlanabilirler. Bu şekilde tasarlanmış etmenler kullanıcının/öğrencinin bir göreve yaklaşımını analiz edebilir, geçmiş faaliyetler için bir veri tabanı oluşturabilir ve daha iyi stratejiler önerebilir. Bu çalışma, zeki etmenler ile etkileşimli yönlendirme çalışmaları hakkında detaylı bir inceleme sunmakta ve ardından kullanıcı hatalarını analiz edebilen diyalog tabanlı Türkçe Python kod editörü tasarımı için bir konsept model ortaya koymaktadır. Bu çalışmada önerilen sistem, üç katmanlı mimariye dayandırılmaktadır. Bu katmanlar kullanıcı arayüzü katmanı, orta katman ve Python yorumlayıcısı katmanlarıdır. Kullanıcı arayüzü katmanı; editör ve sohbet robotu bileşenlerinden oluşmaktadır. Orta katman; kod yapısal kontrol, kod hata yöneticisi ve öğrenen zeki etmen alt sistemlerini içerir. Kod yapısal kontrol modülü kullanıcının kodundaki koşul, döngü, dallanma ve diğer tür program akış kontrollerinin analizini yapar. Kod hata yöneticisi, kullanıcının yazdığı Python kodunun, Python yorumlayıcı tarafından çalıştırılması sonucunda elde edilen hata bildirimlerini analiz eder. Öğrenen zeki etmen ise bu çıkarımları kullanarak öğrencinin hatasının sebebini anlayarak bunları düzeltmesi için gereken işlemleri sohbet robotu aracılığıyla kullanıcıya aktarır ve olası düzeltmeler önerir. Önerilen geliştirme ortamının, kodlamaya yeni başlayanların kolay adapte olabileceği ergonomiye sahip olması planlanmıştır. Bu amaçla kullanıcıya yönlendirme sağlamak için diyalog tabanlı etmen içeren bir alt sistemin düşünülmüştür. Kodlama editörü tek başına bir masaüstü yazılım olarak kullanılabileceği gibi, yazılan kodları bulut ortamında depolama özelliğine de sahip olabilmektedir. Bulut ortamında eğitici/öğretmen tarafından kullanıcıya atanan ödevleri alabilme ve öğrencilerin çözümlerini tekrar eğiticiye gönderebilme özelliklerine sahip olması planlanmıştır. Ayrıca, her bir kullanıcının hata analizlerinin yapılabilmesine olanak sağlayarak öğrenmenin ne ölçüde gerçekleştiği ve öğrencilerin hangi konularda eksiklerinin olduğunun görülebilmesine olanak sağlayan bileşenler tasarlanmıştır.

Proje Numarası

118E882

Kaynakça

  • Roesler, Marina, and Donald T. Hawkins. "Intelligent Agents: Software Servants for an Electronic Information World (And More!)." Online 18.4 (1994).
  • Harmon, Paul. (Ed) (1995). Software agents. Intelligent software strategies, 11(1), 1-13. (January, 1995.)
  • Russell, S. J. "Norvig (2003)." Artificial intelligence: a modern approach (2003): 25-26.
  • Maes, Pattie. "Agents that reduce work and information overload." Readings in Human–Computer Interaction. 1995. 811-821.
  • Kearsley, Greg. "Intelligent agents and instructional systems: Implications of a new paradigm." Journal of Interactive Learning Research 4.4 (1993): 295.
  • Giraffa, Lucia Maria Martins, and Rosa Maria Viccari. "The use of agents techniques on intelligent tutoring systems." Computer Science, 1998. SCCC'98. XVIII International Conference of the Chilean Society of. IEEE, 1998.
  • Giraffa, L. M. M., M. A. Nunes, and R. M. Viccari. "Multi-Ecological: an Intelligent Learning Environment using Multi-Agent architecture. MASTA’97: Multi-Agent System: Theory and Applications." Proceedings... Coimbra: DE-Universidade de Coimbra (1997).
  • Chen, Weiqin, Roger Heggernes Pedersen, and Øystein Pettersen. "CoLeMo: A collaborative learning environment for UML modelling." Interactive Learning Environments 14.3 (2006): 233-249.
  • Han, Keun-Woo, EunKyoung Lee, and YoungJun Lee. "The impact of a peer-learning agent based on pair programming in a programming course." IEEE Transactions on Education 53.2 (2010): 318-327.
  • Gulz, Agneta, et al. "Building a social conversational pedagogical agent: Design challenges and methodological approaches." Conversational agents and natural language interaction: Techniques and effective practices. IGI Global, 2011. 128-155.
  • Haake, Magnus, and Agneta Gulz. "A look at the roles of look & roles in embodied pedagogical agents–a user preference perspective." International Journal of Artificial Intelligence in Education 19.1 (2009): 39-71.
  • Walker, Erin, Nikol Rummel, and Kenneth R. Koedinger. "Designing automated adaptive support to improve student helping behaviors in a peer tutoring activity." International Journal of Computer-Supported Collaborative Learning 6.2 (2011): 279-306.
  • Tegos, Stergios, Stavros Demetriadis, and Anastasios Karakostas. "Promoting academically productive talk with conversational agent interventions in collaborative learning settings." Computers & Education 87 (2015): 309-325.
  • Roos, S. (2018). Chatbots in education: A passing trend or a valuable pedagogical tool?. Msc Thesis, Uppsala University.
  • (2018). Artificial Intelligence Markup Language (AIML). https://pandorabots.com/docs/aiml/aimlbasics.html. [Online; accessed 2018-05-15].
  • Gehl, R. W. 2014. Teaching to the Turing Test with Cleverbot. Transformations: The Journal of Inclusive Scholarship and Pedagogy, 24(1-2): 56–66.
  • Palasundram, K., Sharef, N. M., Nasharuddin, N., Kasmiran, K., & Azman, A. (2019). Sequence to sequence model performance for education chatbot. International Journal of Emerging Technologies in Learning (iJET), 14(24), 56-68.
  • Goel, A., Creeden, B., Kumble, M., Salunke, S., Shetty, A., & Wiltgen, B. (2015, September). Using watson for enhancing human-computer co-creativity. In 2015 AAAI fall symposium series.
  • Lip ko, H. Meet Jill Watson: Georgia Tech's first AI teaching assistant; https://pe.gatech.edu/blog/meet-jill-watson-georgia-techs-first-ai-teaching-assistant, 5 Jan 2018, 05 Jan 2018.
  • https://gonerdify.com/nerdybot (Access Date: 20.09.2021)
  • Molnár, G., & Szüts, Z. (2018, September). The role of chatbots in formal education. In 2018 IEEE 16th International Symposium on Intelligent Systems and Informatics (SISY) (pp. 000197-000202). IEEE.
  • Singh, J., Joesph, M. H., & Jabbar, K. B. A. (2019, May). Rule-based chabot for student enquiries. In Journal of Physics: Conference Series (Vol. 1228, No. 1, p. 012060). IOP Publishing.
  • Bird, Steven. "NLTK: the natural language toolkit." Proceedings of the COLING/ACL 2006 Interactive Presentation Sessions. 2006.
  • https://www.nltk.org/ (Access Date: 20.09.2021)
  • https://github.com/microsoft/pyright (Access Date: 20.09.2021)
  • http://flake8.pycqa.org/en/latest/ (Access Date: 20.09.2021)
  • https://pypi.org/project/pyflakes/ (Access Date: 20.09.2021)
  • http://pychecker.sourceforge.net/ (Access Date: 20.09.2021)
  • Śnieżyński, Bartłomiej. "An architecture for learning agents." International Conference on Computational Science. Springer, Berlin, Heidelberg, 2008.
  • https://scikit-learn.org/stable/ (Access Date: 20.09.2021)
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Turgay Tugay Bilgin 0000-0002-9245-5728

Erdem Yavuz 0000-0002-3159-2497

Proje Numarası 118E882
Yayımlanma Tarihi 1 Aralık 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Bilgin, T. T., & Yavuz, E. (2021). Conceptual Design of Python IDE with Embedded Turkish Spoken Chatbot that Analyzes and Corrects the Syntax Errors. Avrupa Bilim Ve Teknoloji Dergisi(29), 415-424. https://doi.org/10.31590/ejosat.1035421