Araştırma Makalesi
BibTex RIS Kaynak Göster

Fotogrametrik Nokta bulutunun Görünürlük Analizinde Kullanımı: Gümüşhane Seyir Terası Yer Seçimi

Yıl 2021, Sayı: 28, 295 - 299, 30.11.2021
https://doi.org/10.31590/ejosat.996605

Öz

Kentsel nüfusun hızlı artışı ile beraber kültürel, ekonomik, sosyal ve çevresel değişimler kaçınılmaz olmuştur. Yerel yönetimler şehrin cazibesini arttırarak yerel ve yabancı turist ağırlamak için farklı turizm atılımları gerçekleştirmektedir. Uçurum, kanyon ve vadi gibi zorlu topografyalara inşa edilen seyir terasları son zamanlar olukça rağbet gören turizm tesisleri haline gelmişlerdir. Bu tür noktaların görünürlük analizinin yapılması bölgesel turizmin ilerletilmesi açısından oldukça önemlidir. Bu çalışmada Gümüşhane ilinin 7 farklı noktasına inşa edilmesi senaryolaştırılan seyir terasları için görünürlük analizi gerçekleştirilmiştir. Görünürlük analizi için profesyonel fotogrametrik kamera ile elde edilen görüntüler nokta bulutu oluşturmak için işlenmiştir. Daha sonra, yüksek mekânsal çözünürlüğe sahip 3 boyutlu nokta bulutu gürültüden arındırmak için filtrelenmiş ve ardından sayısal arazi modeline dönüştürülerek görünürlük analizi gerçekleştirilmiştir. Görünürlük analizinde yoğun olarak uydu görüntülerinden elde edilen sayısal arazi modelleri yerine fotogrametrik olarak üretilen nokta bulutu üzerinden işlemler gerçekleştirilerek analizin yüksek doğrulukla gerçekleştirilmesi sağlanmıştır. MATLAB programlama dilinde gerçekleştirilen analizler sonucunda %13.12 görüş alanına sahip bölge en uygun yer olarak belirlenmiştir.

Teşekkür

Çalışma kapsamında Gümüşhane’ye ait fotogrametrik verilerin temininde yardımlarından dolayı Dr. Öğretim Üyesi Hasan Tahsin Bostancı ve Dr. Öğretim Üyesi Resul Çömert’e teşekkür ederim.

Kaynakça

  • Aleksandrov, M., Zlatanova, S., Kimmel, L., Barton, J., & Gorte, B. (2019). VOXEL-BASED VISIBILITY ANALYSIS FOR SAFETY ASSESSMENT OF URBAN ENVIRONMENTS. ISPRS Annals of Photogrammetry, Remote Sensing Spatial Information Sciences, 4.
  • Alphan, H. (2021). Modelling potential visibility of wind turbines: A geospatial approach for planning and impact mitigation. Renewable Sustainable Energy Reviews, 152, 111675.
  • Alsadik, B., Gerke, M., & Vosselman, G. (2014). Visibility analysis of point cloud in close range photogrammetry. ISPRS Annals of the Photogrammetry, Remote Sensing Spatial Information Sciences, 2(5), 9.
  • Amidon, E. L., & Elsner, G. H. (1968). Delineating landscape view areas... a computer approach. Res. Note PSW-RN-180. Berkeley, CA: US Department of Agriculture, Forest Service, Pacific Southwest Forest Range Experiment Station, 180.
  • Brabyn, L. (2015). Modelling landscape experience using “experions”. Applied Geography, 62, 210-216.
  • Civicioglu, P., & Besdok, E. (2021). Bezier Search Differential Evolution Algorithm for numerical function optimization: A comparative study with CRMLSP, MVO, WA, SHADE and LSHADE. Expert Systems with Applications, 165, 113875.
  • Karkinli, A., Kesikoğlu, A., Kesikoğlu, M., Atasever, Ü., Özkan, C., & Beşdok, E. (2015). İnsansız hava araçları ile sayısal arazi modeli üretimi. Türkiye Ulusal Fotogrametri ve Uzaktan Algılama Birliği VIII. Sempozyumu, 21-23.
  • Katz, S., Tal, A., & Basri, R. (2007). Direct visibility of point sets. In ACM SIGGRAPH 2007 papers (pp. 24-es).
  • Kim, Y.-H., Rana, S., & Wise, S. (2004). Exploring multiple viewshed analysis using terrain features and optimisation techniques. Computers Geosciences, 30(9-10), 1019-1032.
  • Klampfer, S., Mohorko, J., Čučej, Ž., & Chowdhury, A. (2011). Simulation of radio-visibility impact on the provided quality of service within the Wimax network. Informacije MIDEM, 41(3), 197-201.
  • Leduc, T., & Hartwell, K. (2020). The automatic classification of urban open space by a pattern-matching method of the viewshed at intersections. Environment Planning B: Urban Analytics City Science, 47(6), 1065-1080.
  • Lee, K. Y., Seo, J. I., Kim, K.-N., Lee, Y., Kweon, H., & Kim, J. (2019). Application of viewshed and spatial aesthetic analyses to forest practices for mountain scenery improvement in the Republic of Korea. Sustainability, 11(9), 2687.
  • Mauro, C. M., & Durastante, F. (2020). Evaluating visibility at sea: Instrumental data and historical nautical records. Mount Etna from the Calabrian Ionian coast (Italy). The Journal of Island Coastal Archaeology, 1-22.
  • Nutsford, D., Reitsma, F., Pearson, A. L., & Kingham, S. (2015). Personalising the viewshed: Visibility analysis from the human perspective. Applied Geography, 62, 1-7.
  • Tandy, C. (1967). The isovist method of landscape survey. Methods of landscape analysis, 9-10.
  • URL. (Son Erişim 10/08/2021). https://raw.githubusercontent.com/grinsted/ImGRAFT/master/voxelviewshed.m.
  • Williamson, C. A., & McLin, L. N. (2015). Nominal ocular dazzle distance (NODD). Applied Optics, 54(7), 1564-1572.

Use of Photogrammetric Point Cloud in Viewshed Analysis: Gümüşhane Observation Terrace Site Selection

Yıl 2021, Sayı: 28, 295 - 299, 30.11.2021
https://doi.org/10.31590/ejosat.996605

Öz

Cultural, economic, social, and environmental changes have become unavoidable as the metropolitan population has grown rapidly. Local governments are launching a variety of tourism programs to improve the city's attractiveness and attract both domestic and international visitors. Built on difficult topographies such as cliffs, canyons, and valleys, observation terraces have recently become popular tourist attractions. The examination of such places' visibility is critical for developing regional tourism. In this study, viewshed analysis was carried out for the viewing terraces, which were scripted to be built at 7 different points in Gümüşhane. Images obtained with a professional photogrammetric camera for viewshed analysis were processed to form a point cloud. The 3D point cloud was then filtered with high spatial resolution to reduce noise before being transformed into a digital terrain model for viewshed analysis. In the viewshed analysis, operations are performed on the photogrammetrically produced point cloud rather than the digital terrain models derived from satellite photos, resulting in high accuracy. The region with a field of view of 13.12 % was determined to be the most suited location as a result of the MATLAB programming language analyses.

Kaynakça

  • Aleksandrov, M., Zlatanova, S., Kimmel, L., Barton, J., & Gorte, B. (2019). VOXEL-BASED VISIBILITY ANALYSIS FOR SAFETY ASSESSMENT OF URBAN ENVIRONMENTS. ISPRS Annals of Photogrammetry, Remote Sensing Spatial Information Sciences, 4.
  • Alphan, H. (2021). Modelling potential visibility of wind turbines: A geospatial approach for planning and impact mitigation. Renewable Sustainable Energy Reviews, 152, 111675.
  • Alsadik, B., Gerke, M., & Vosselman, G. (2014). Visibility analysis of point cloud in close range photogrammetry. ISPRS Annals of the Photogrammetry, Remote Sensing Spatial Information Sciences, 2(5), 9.
  • Amidon, E. L., & Elsner, G. H. (1968). Delineating landscape view areas... a computer approach. Res. Note PSW-RN-180. Berkeley, CA: US Department of Agriculture, Forest Service, Pacific Southwest Forest Range Experiment Station, 180.
  • Brabyn, L. (2015). Modelling landscape experience using “experions”. Applied Geography, 62, 210-216.
  • Civicioglu, P., & Besdok, E. (2021). Bezier Search Differential Evolution Algorithm for numerical function optimization: A comparative study with CRMLSP, MVO, WA, SHADE and LSHADE. Expert Systems with Applications, 165, 113875.
  • Karkinli, A., Kesikoğlu, A., Kesikoğlu, M., Atasever, Ü., Özkan, C., & Beşdok, E. (2015). İnsansız hava araçları ile sayısal arazi modeli üretimi. Türkiye Ulusal Fotogrametri ve Uzaktan Algılama Birliği VIII. Sempozyumu, 21-23.
  • Katz, S., Tal, A., & Basri, R. (2007). Direct visibility of point sets. In ACM SIGGRAPH 2007 papers (pp. 24-es).
  • Kim, Y.-H., Rana, S., & Wise, S. (2004). Exploring multiple viewshed analysis using terrain features and optimisation techniques. Computers Geosciences, 30(9-10), 1019-1032.
  • Klampfer, S., Mohorko, J., Čučej, Ž., & Chowdhury, A. (2011). Simulation of radio-visibility impact on the provided quality of service within the Wimax network. Informacije MIDEM, 41(3), 197-201.
  • Leduc, T., & Hartwell, K. (2020). The automatic classification of urban open space by a pattern-matching method of the viewshed at intersections. Environment Planning B: Urban Analytics City Science, 47(6), 1065-1080.
  • Lee, K. Y., Seo, J. I., Kim, K.-N., Lee, Y., Kweon, H., & Kim, J. (2019). Application of viewshed and spatial aesthetic analyses to forest practices for mountain scenery improvement in the Republic of Korea. Sustainability, 11(9), 2687.
  • Mauro, C. M., & Durastante, F. (2020). Evaluating visibility at sea: Instrumental data and historical nautical records. Mount Etna from the Calabrian Ionian coast (Italy). The Journal of Island Coastal Archaeology, 1-22.
  • Nutsford, D., Reitsma, F., Pearson, A. L., & Kingham, S. (2015). Personalising the viewshed: Visibility analysis from the human perspective. Applied Geography, 62, 1-7.
  • Tandy, C. (1967). The isovist method of landscape survey. Methods of landscape analysis, 9-10.
  • URL. (Son Erişim 10/08/2021). https://raw.githubusercontent.com/grinsted/ImGRAFT/master/voxelviewshed.m.
  • Williamson, C. A., & McLin, L. N. (2015). Nominal ocular dazzle distance (NODD). Applied Optics, 54(7), 1564-1572.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mehmet Akif Günen 0000-0001-5164-375X

Yayımlanma Tarihi 30 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 28

Kaynak Göster

APA Günen, M. A. (2021). Fotogrametrik Nokta bulutunun Görünürlük Analizinde Kullanımı: Gümüşhane Seyir Terası Yer Seçimi. Avrupa Bilim Ve Teknoloji Dergisi(28), 295-299. https://doi.org/10.31590/ejosat.996605