Araştırma Makalesi
BibTex RIS Kaynak Göster

Salp Sürü Algoritması ile Öznitelik Seçimi ve Sınıflandırıcı Performans Değerlendirmesi

Yıl 2021, Sayı: 30, 12 - 16, 15.12.2021
https://doi.org/10.31590/ejosat.1005417

Öz

Son yıllarda doğadan esinlenen sürü tabanlı algoritmalar arasında yer alan Salp Sürü Algoritması oldukça popüler olmuştur. Bu çalışmada, Salp Sürü Algoritması kullanılarak farklı veri setleri üzerinde öznitelik seçimi yapılmış, farklı sınıflandırıcılar ile bazı performans metrikleri karşılaştırılmıştır. Deneysel sonuçların hesaplanması için UCI Makine Öğrenmesi Deposunda yer alan BreastCancer, Colon ve Ionosphere veri setleri kullanılmıştır. Sınıflandırıcı olarak k En Yakın Komşu Algoritması, Destek Vektör Makineleri ve Rastgele Orman Algoritması kullanılmıştır. Sayısal sonuçlar incelendiğinde, çalışma zamanı bakımından kNN algoritması ile yapılan testler genellikle en hızlı algoritma olmuştur. Seçilen öznitelik sayısı bakımından ise SVM ve RF algoritmaları daha iyi sonuç vermiştir.

Kaynakça

  • Aswani, R., Ghrera, S. P. ve Chandra, S. (2016). A Novel Approach to Outlier Detection using Modified Grey Wolf Optimization and k-Nearest Neighbors Algorithm. Indian Journal of Science and Technology, 9(44). doi:10.17485/ijst/2016/v9i44/105161
  • Dorigo, M., Birattari, M. ve Stutzle, T. (2006). Ant colony optimization. IEEE Computational Intelligence Magazine, 1(4), 28–39. doi:10.1109/MCI.2006.329691
  • Eberhart, R. ve Kennedy, J. (y.y.). A new optimizer using particle swarm theory. MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science içinde (ss. 39–43). IEEE. doi:10.1109/MHS.1995.494215
  • Faris, H., Heidari, A. A., Al-Zoubi, A. M., Mafarja, M., Aljarah, I., Eshtay, M. ve Mirjalili, S. (2020). Time-varying hierarchical chains of salps with random weight networks for feature selection. Expert Systems with Applications, 140, 112898. doi:10.1016/j.eswa.2019.112898
  • Hegazy, A. E., Makhlouf, M. A. ve El-Tawel, G. S. (2020). Improved salp swarm algorithm for feature selection. Journal of King Saud University - Computer and Information Sciences, 32(3), 335–344. doi:10.1016/j.jksuci.2018.06.003
  • Ibrahim, H. T., Mazher, W. J., Ucan, O. N., and Bayat, O. (2017). Feature Selection using Salp Swarm Algorithm for Real Biomedical Datasets. International Journal of Computer Science and Network Security, 17(12), 13–20.
  • Karaboga, D. ve Akay, B. (2007). Artificial Bee Colony (ABC) Algorithm on Training Artificial Neural Networks. 2007 IEEE 15th Signal Processing and Communications Applications içinde (ss. 1–4). IEEE. doi:10.1109/SIU.2007.4298679
  • Kılıç, F., Kaya, Y. ve Yildirim, S. (2021). A novel multi population based particle swarm optimization for feature selection. Knowledge-Based Systems, 219, 106894. doi:10.1016/j.knosys.2021.106894
  • Kumar, V., Chhabra, J. K. ve Kumar, D. (2017). Grey Wolf Algorithm-Based Clustering Technique. Journal of Intelligent Systems, 26(1), 153–168. doi:10.1515/jisys-2014-0137
  • Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H. ve Mirjalili, S. M. (2017). Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163–191. doi:10.1016/j.advengsoft.2017.07.002
  • Mirjalili, S. ve Lewis, A. (2016). The Whale Optimization Algorithm. Advances in Engineering Software, 95, 51–67. doi:10.1016/j.advengsoft.2016.01.008
  • Mirjalili, S., Mirjalili, S. M. ve Lewis, A. (2014). Grey Wolf Optimizer. Advances in Engineering Software, 69, 46–61. doi:10.1016/j.advengsoft.2013.12.007
  • Sayed, G. I., Khoriba, G. ve Haggag, M. H. (2018). A novel chaotic salp swarm algorithm for global optimization and feature selection. Applied Intelligence, 48(10), 3462–3481. doi:10.1007/s10489-018-1158-6
  • Yang, X.-S. (2010). A New Metaheuristic Bat-Inspired Algorithm (ss. 65–74). doi:10.1007/978-3-642-12538-6_6
  • Yang, X. S. (2010). Firefly algorithm, stochastic test functions and design optimisation. International Journal of Bio-Inspired Computation, 2(2), 78. doi:10.1504/IJBIC.2010.032124

Feature Selection Using Salp Swarm Algorithm and Classifier Performance Evaluation

Yıl 2021, Sayı: 30, 12 - 16, 15.12.2021
https://doi.org/10.31590/ejosat.1005417

Öz

Salp Swarm Algorithm, a nature-inspired swarm-based algorithm, has become very popular in recent years. This study uses Salp Swarm Algorithm for feature selection and tries different classifiers as fitness functions on various datasets. BreastCancer, Colon, and Ionosphere databases in the UCI Machine Learning Repository are used as test datasets. k Nearest Neighbor Algorithm (kNN), Support Vector Machines (SVM), and Random Forest Algorithm (RF) are used as classifiers. When the experimental results are examined, the kNN algorithm is generally the fastest in terms of runtime. However, considering the number of selected features, SVM and RF algorithms achieve better results.

Kaynakça

  • Aswani, R., Ghrera, S. P. ve Chandra, S. (2016). A Novel Approach to Outlier Detection using Modified Grey Wolf Optimization and k-Nearest Neighbors Algorithm. Indian Journal of Science and Technology, 9(44). doi:10.17485/ijst/2016/v9i44/105161
  • Dorigo, M., Birattari, M. ve Stutzle, T. (2006). Ant colony optimization. IEEE Computational Intelligence Magazine, 1(4), 28–39. doi:10.1109/MCI.2006.329691
  • Eberhart, R. ve Kennedy, J. (y.y.). A new optimizer using particle swarm theory. MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science içinde (ss. 39–43). IEEE. doi:10.1109/MHS.1995.494215
  • Faris, H., Heidari, A. A., Al-Zoubi, A. M., Mafarja, M., Aljarah, I., Eshtay, M. ve Mirjalili, S. (2020). Time-varying hierarchical chains of salps with random weight networks for feature selection. Expert Systems with Applications, 140, 112898. doi:10.1016/j.eswa.2019.112898
  • Hegazy, A. E., Makhlouf, M. A. ve El-Tawel, G. S. (2020). Improved salp swarm algorithm for feature selection. Journal of King Saud University - Computer and Information Sciences, 32(3), 335–344. doi:10.1016/j.jksuci.2018.06.003
  • Ibrahim, H. T., Mazher, W. J., Ucan, O. N., and Bayat, O. (2017). Feature Selection using Salp Swarm Algorithm for Real Biomedical Datasets. International Journal of Computer Science and Network Security, 17(12), 13–20.
  • Karaboga, D. ve Akay, B. (2007). Artificial Bee Colony (ABC) Algorithm on Training Artificial Neural Networks. 2007 IEEE 15th Signal Processing and Communications Applications içinde (ss. 1–4). IEEE. doi:10.1109/SIU.2007.4298679
  • Kılıç, F., Kaya, Y. ve Yildirim, S. (2021). A novel multi population based particle swarm optimization for feature selection. Knowledge-Based Systems, 219, 106894. doi:10.1016/j.knosys.2021.106894
  • Kumar, V., Chhabra, J. K. ve Kumar, D. (2017). Grey Wolf Algorithm-Based Clustering Technique. Journal of Intelligent Systems, 26(1), 153–168. doi:10.1515/jisys-2014-0137
  • Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H. ve Mirjalili, S. M. (2017). Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163–191. doi:10.1016/j.advengsoft.2017.07.002
  • Mirjalili, S. ve Lewis, A. (2016). The Whale Optimization Algorithm. Advances in Engineering Software, 95, 51–67. doi:10.1016/j.advengsoft.2016.01.008
  • Mirjalili, S., Mirjalili, S. M. ve Lewis, A. (2014). Grey Wolf Optimizer. Advances in Engineering Software, 69, 46–61. doi:10.1016/j.advengsoft.2013.12.007
  • Sayed, G. I., Khoriba, G. ve Haggag, M. H. (2018). A novel chaotic salp swarm algorithm for global optimization and feature selection. Applied Intelligence, 48(10), 3462–3481. doi:10.1007/s10489-018-1158-6
  • Yang, X.-S. (2010). A New Metaheuristic Bat-Inspired Algorithm (ss. 65–74). doi:10.1007/978-3-642-12538-6_6
  • Yang, X. S. (2010). Firefly algorithm, stochastic test functions and design optimisation. International Journal of Bio-Inspired Computation, 2(2), 78. doi:10.1504/IJBIC.2010.032124
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Celal Can 0000-0002-7631-8934

Yasin Kaya 0000-0002-9074-0189

Fatih Kılıç 0000-0002-8550-1562

Yayımlanma Tarihi 15 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 30

Kaynak Göster

APA Can, C., Kaya, Y., & Kılıç, F. (2021). Salp Sürü Algoritması ile Öznitelik Seçimi ve Sınıflandırıcı Performans Değerlendirmesi. Avrupa Bilim Ve Teknoloji Dergisi(30), 12-16. https://doi.org/10.31590/ejosat.1005417