Araştırma Makalesi
BibTex RIS Kaynak Göster

H-Darrieus Rüzgar Türbininde Simetrik ve Asimetrik Kanat Profili Kullanımının Karşılaştırılması

Yıl 2022, Sayı: 34, 421 - 427, 31.03.2022
https://doi.org/10.31590/ejosat.1082424

Öz

Rüzgar türbinlerinde kanat profili seçimi türbinin aerodinamik performansı açısından çok önemlidir. Bu çalışmada dikey eksenli H-Darrieus rüzgar türbinlerinde simetrik ve asimetrik kanat profili kullanımının türbin verimine olan etkisi sayısal olarak incelenmiştir. Beş simetrik kanat profili (NACA0009, NACA0012, NACA0015, NACA0018, NACA0021) ile beş asimetrik kanat profilinin (NACA2412, NACA4412, NACA6412, NACA8412, NACA10412) H-Darrieus rüzgar türbininde kullanılması durumunda türbin verimi incelenmiştir. Hesaplamalarda Çift Çoklu Akım Tüpü (ÇÇAT) (Double Multiple Stream Tube-DMST) yöntemi kullanılmıştır. NACA0018 kanat profili kullanılan türbinde en yüksek güç katsayısı CPmax=0.4791 bulunurken, NACA2412 kanat profili kullanılan türbinde en yüksek güç katsayısı ise CPmax=0.4726 bulunmuştur. NACA0018 ve NACA2412 kanat profilleri için kanat uç hız oranının () güç katsayısına (CP) ve rotor açısının ( moment değerlerine () göre değişimlerini veren matematiksel bağıntılar elde edilmiştir. Elde edilen bağıntıların hepsinde regresyon katsayısı oldukça yüksektir (r^2>0.99).

Kaynakça

  • Akpinar, E. K. (2006). A statistical investigation of wind energy potential. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 28(9), 807–820. https://doi.org/10.1080/009083190928038
  • Bedon, G., De Betta, S., & Benini, E. (2016). Performance-optimized airfoil for Darrieus wind turbines. Renewable Energy, 94, 328–340. https://doi.org/10.1016/j.renene.2016.03.071
  • Bedon, G., Paulsen, U. S., Madsen, H. A., Belloni, F., Castelli, M. R., & Benini, E. (2015). Aerodynamic Benchmarking of the Deepwind Design. Energy Procedia, 75, 677–682. https://doi.org/10.1016/j.egypro.2015.07.486
  • Berrone, S., Garbero, V., & Marro, M. (2011). Numerical simulation of low-Reynolds number flows past rectangular cylinders based on adaptive finite element and finite volume methods. Computers and Fluids, 40(1), 92–112. https://doi.org/10.1016/j.compfluid.2010.08.014
  • Chen, J., Chen, L., Xu, H., Yang, H., Ye, C., & Liu, D. (2016). Performance improvement of a vertical axis wind turbine by comprehensive assessment of an airfoil family. Energy, 114, 318–331. https://doi.org/10.1016/j.energy.2016.08.005
  • Kjellin, J., Bülow, F., Eriksson, S., Deglaire, P., Leijon, M., & Bernhoff, H. (2011). Power coef fi cient measurement on a 12 kW straight bladed vertical axis wind turbine. 36, 3050–3053. https://doi.org/10.1016/j.renene.2011.03.031
  • Mathew, S. (2006). Wind Energy Fundamentals, Resource Analysis and Economics. Springer Berlin Heidelberg.
  • Paraschivoiu, I. (1983). Double-Multiple Streamtube Model for Darrieus Wind Turbines.
  • Strickland, J. (1975). The Darrieus Turbine: A Performance Prediction Model Using Multiple Stream Tubes.
  • Templin, R. J. (1974). Aerodynamic performance theory for the NRC vertical-axis wind turbine. National Research Council Canada.

Comparison of symmetrical and asymmetrical airfoil usage on H-Darrieus Wind Turbine

Yıl 2022, Sayı: 34, 421 - 427, 31.03.2022
https://doi.org/10.31590/ejosat.1082424

Öz

Airfoil choice is vital for wind turbines. In this study effects of symmetrical and asymmetrical airfoil types on vertical axis H-Darrieus turbine performance are investigated. Coefficient of performance (CP) of H-Darrieus türbine is investigated for five symmetric (NACA0009, NACA0012, NACA0015, NACA0018, NACA0021) and five asymmetric airfoils (NACA2412, NACA4412, NACA6412, NACA8412, NACA10412). In the calculations Double Multiple Stream Tube (DMST) model is used. For NACA0018 airfoil maximum power coefficient is found as CPmax=0.4791 whereas maximum power coefficient for NACA2412 airfoil is found as CPmax=0.4726. Mathematical relations for coefficient of performance (CP) respect to tip speed ratio () and torque () respect to azimuth angle (are derived. Regression cofficients of the relations are found very high (r^2>0.99).

Kaynakça

  • Akpinar, E. K. (2006). A statistical investigation of wind energy potential. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 28(9), 807–820. https://doi.org/10.1080/009083190928038
  • Bedon, G., De Betta, S., & Benini, E. (2016). Performance-optimized airfoil for Darrieus wind turbines. Renewable Energy, 94, 328–340. https://doi.org/10.1016/j.renene.2016.03.071
  • Bedon, G., Paulsen, U. S., Madsen, H. A., Belloni, F., Castelli, M. R., & Benini, E. (2015). Aerodynamic Benchmarking of the Deepwind Design. Energy Procedia, 75, 677–682. https://doi.org/10.1016/j.egypro.2015.07.486
  • Berrone, S., Garbero, V., & Marro, M. (2011). Numerical simulation of low-Reynolds number flows past rectangular cylinders based on adaptive finite element and finite volume methods. Computers and Fluids, 40(1), 92–112. https://doi.org/10.1016/j.compfluid.2010.08.014
  • Chen, J., Chen, L., Xu, H., Yang, H., Ye, C., & Liu, D. (2016). Performance improvement of a vertical axis wind turbine by comprehensive assessment of an airfoil family. Energy, 114, 318–331. https://doi.org/10.1016/j.energy.2016.08.005
  • Kjellin, J., Bülow, F., Eriksson, S., Deglaire, P., Leijon, M., & Bernhoff, H. (2011). Power coef fi cient measurement on a 12 kW straight bladed vertical axis wind turbine. 36, 3050–3053. https://doi.org/10.1016/j.renene.2011.03.031
  • Mathew, S. (2006). Wind Energy Fundamentals, Resource Analysis and Economics. Springer Berlin Heidelberg.
  • Paraschivoiu, I. (1983). Double-Multiple Streamtube Model for Darrieus Wind Turbines.
  • Strickland, J. (1975). The Darrieus Turbine: A Performance Prediction Model Using Multiple Stream Tubes.
  • Templin, R. J. (1974). Aerodynamic performance theory for the NRC vertical-axis wind turbine. National Research Council Canada.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mehmet Özgün Korukçu 0000-0002-4761-4304

Erken Görünüm Tarihi 30 Ocak 2022
Yayımlanma Tarihi 31 Mart 2022
Yayımlandığı Sayı Yıl 2022 Sayı: 34

Kaynak Göster

APA Korukçu, M. Ö. (2022). H-Darrieus Rüzgar Türbininde Simetrik ve Asimetrik Kanat Profili Kullanımının Karşılaştırılması. Avrupa Bilim Ve Teknoloji Dergisi(34), 421-427. https://doi.org/10.31590/ejosat.1082424