Araştırma Makalesi
BibTex RIS Kaynak Göster

Polikarbazol ve ZnO Katkılı Polikarbazolün Paslanmaz Çelik Yüzeyinde Elektrokimyasal Sentezi ve Korozyon Performanslarının Araştırılması

Yıl 2022, Sayı: 34, 446 - 452, 31.03.2022
https://doi.org/10.31590/ejosat.1082731

Öz

Bu çalışmada karbazol (Kz) monomerin farklı derişimlerde ZnO varlığında 304 paslanmaz çelik (304-PÇ) yüzeyinde elektropolimerizasyonu ile ZnO katkılı polikarbazol (PKz-ZnO) filmleri elde edilmiştir. Elektropolimerizasyon işlemi Kz, ZnO ve tetra bütil amonyum perklorat (TBAP) içeren asetonitril (ACN) çözeltisi içerisinde dönüşümlü voltametri yöntemi ile 0,3 V ile 1,4 V potansiyel aralığında, 50 mVs-1 tarama hızında 10 döngü alınarak gerçekleştirilmiştir. Üç farklı miktarda (%0,01, %0,05, %0,10) ZnO ile PKz filmleri katkılanmıştır. Optimum ZnO miktarını belirlemek amacıyla elde edilen PKz-ZnO filmlerinin 1 M H2SO4 ortamında kaydedilen potansiyodinamik polarizasyon eğrileri karşılaştırılmış ve %0,05 oranında ZnO katkılı PKz filmlerinin en iyi korozyon performansını gösterdiği belirlenmiştir. %0,05 ZnO katkılı PKz-ZnO filmlerinin yapıları ATR-FTIR ve SEM ile karakterize edilerek bu filmlerin korozyon performansları 1 M H2SO4 ortamında açık devre potansiyelinin zamanla değişimi (Eocp-t) eğrileri, potansiyodinamik polarizasyon (PP) ve elektrokimyasal empedans spektroskopisi (EIS) yöntemleri ile incelenerek katkılanmamış PKz’nin verileri ile karşılaştırılmıştır. EIS ile 168 saat izlenen polimer kaplı paslanmaz çeliklerin korozyon performanslarının 72. saatten sonra azalmaya başladığı ancak ZnO katkılı polikarbazolün 120. saatte tekrar iyileşme gösterdiği saptanmıştır.

Destekleyen Kurum

Eskişehir Osmangazi Üniversitesi

Teşekkür

Eskişehir Osmangazi Üniversitesi’ne araştırma olanakları sağladığı için teşekkür ederiz.

Kaynakça

  • Duran B., Çakmakcı İ., Bereket G. (2013), Role of supporting electrolyte on the corrosion performance of poly (carbazole) films deposited on stainless steel, Corrosion Science, Volume 77, 197-201. (https://doi.org/10.1016/j.corsci.2013.08.001).
  • Duran B., Ünver İ.Ç., , Bereket G. (2017). Inhibition of steel corrosion by potentiodynamic deposition of poly(N-methyl carbazole), Journal of Adhesion Science and Technology, Volume 31(13), 1467-1479. (DOI:10.1080/01694243.2016. 1263054).
  • Düdükcü M., Udum Y.A., Ergün Y., Köleli F. (2009), Electrodeposition of poly(4-methyl carbazole-3-carboxylic acid) on steel surfaces and corrosion protection of steel, Journal of Applied polymer Science, Volume 111, 1496-1500. (https://doi.org/10.1002/app.29151).
  • Mahmoudian M.R., Basirun W.J., Alias Y. (2011). Synthesis and characterization of poly(N-methylpyrrole)/TiO2 composites on steel, Applied Surface Science, Volume 257(8), 3702-3708. (https://doi.org/10.1016/j.apsusc.2010.11.111).
  • Mathew A.M., Predeep P. (2012), Styrene butadiene co-polymer based conducting polymer composite as an effective corrosion protective coating, Progress in Organic Coatings Volume 74 (1), 14-18. (https://doi.org/10.1016/j.porgcoat. 2011.09.011).
  • Ocon, P., Cristobal A.B., Herrasti, P., Fatas, E. (2005). Corrosion performance of conducting polymer coatings applied on mild steel, Corrosion Science, Volume 47, 649-662. (https://doi.org/10.1016/j.corsci.2004.07.005).
  • Ren Y.J., Zen C.L. (2008). Effect of conducting composite polypyrrole/polyaniline coatings on the corrosion resistance of type 304 stainless steel for bipolar plates of proton-exchange membrane fuel cells. Journal of Power Sources, Volume 182(2), 524-530. (https://doi.org/10.1016/j.jpowsour. 2008.04.056).
  • Zeybek B., Aksun E., Üğe A.(2015). Investigation of corrosion protection performance of poly(N-methylpyrrole)-dodecylsulfate/multi-walled carbon nanotubes composite coatings on the stainless steel, Materials Chemistry and Physics, Volume 163, 11-23. (https://doi.org/10.1016 /j.matchemphys. 2015.06.022).

Electrochemical Synthesis of Polycarbazole and ZnO Doped Polycarbazole on Stainless Steel Surface and Investigation of Corrosion Performances

Yıl 2022, Sayı: 34, 446 - 452, 31.03.2022
https://doi.org/10.31590/ejosat.1082731

Öz

In this study, ZnO doped polycarbazole (PCz-ZnO) films were obtained by electropolymerization of carbazole (Cz) monomer in the presence of different concentrations of ZnO on the surface of 304 stainless steel (304-SS). Electropolymerization process was carried out using cyclic voltammetry method in the potential range of 0.3 V to 1.4 V, at 50 mVs-1 scan rate by applying 10 cycles in acetonitrile (ACN) solution containing Cz, ZnO and tetra butyl ammonium perchlorate (TBAP). PCz films were doped with three different amounts of ZnO (0.01%, 0.05%, 0.10%). In order to determine the optimum ZnO amount, the potentiodynamic polarization curves recorded for PCz-ZnO films in 1 M H2SO4 medium were compared and it was determined that the 0.05% ZnO doped PCz films showed the best corrosion performance. The structures of the 0.05% ZnO doped PCz-ZnO films were characterized by ATR-FTIR and SEM, and the corrosion performances of these films were investigated via variation of the open circuit potential with time (Eocp-t) curves, potentiodynamic polarization (PP) and electrochemical impedance spectroscopy (EIS) methods in 1 M H2SO4 solutions and compared with the data of undoped PCz. It was determined that the corrosion performance of polymer-coated stainless steels, which were monitored for 168 hours with EIS, started to decrease after 72 hours, but ZnO doped polycarbazole showed improvement at 120 hours.

Kaynakça

  • Duran B., Çakmakcı İ., Bereket G. (2013), Role of supporting electrolyte on the corrosion performance of poly (carbazole) films deposited on stainless steel, Corrosion Science, Volume 77, 197-201. (https://doi.org/10.1016/j.corsci.2013.08.001).
  • Duran B., Ünver İ.Ç., , Bereket G. (2017). Inhibition of steel corrosion by potentiodynamic deposition of poly(N-methyl carbazole), Journal of Adhesion Science and Technology, Volume 31(13), 1467-1479. (DOI:10.1080/01694243.2016. 1263054).
  • Düdükcü M., Udum Y.A., Ergün Y., Köleli F. (2009), Electrodeposition of poly(4-methyl carbazole-3-carboxylic acid) on steel surfaces and corrosion protection of steel, Journal of Applied polymer Science, Volume 111, 1496-1500. (https://doi.org/10.1002/app.29151).
  • Mahmoudian M.R., Basirun W.J., Alias Y. (2011). Synthesis and characterization of poly(N-methylpyrrole)/TiO2 composites on steel, Applied Surface Science, Volume 257(8), 3702-3708. (https://doi.org/10.1016/j.apsusc.2010.11.111).
  • Mathew A.M., Predeep P. (2012), Styrene butadiene co-polymer based conducting polymer composite as an effective corrosion protective coating, Progress in Organic Coatings Volume 74 (1), 14-18. (https://doi.org/10.1016/j.porgcoat. 2011.09.011).
  • Ocon, P., Cristobal A.B., Herrasti, P., Fatas, E. (2005). Corrosion performance of conducting polymer coatings applied on mild steel, Corrosion Science, Volume 47, 649-662. (https://doi.org/10.1016/j.corsci.2004.07.005).
  • Ren Y.J., Zen C.L. (2008). Effect of conducting composite polypyrrole/polyaniline coatings on the corrosion resistance of type 304 stainless steel for bipolar plates of proton-exchange membrane fuel cells. Journal of Power Sources, Volume 182(2), 524-530. (https://doi.org/10.1016/j.jpowsour. 2008.04.056).
  • Zeybek B., Aksun E., Üğe A.(2015). Investigation of corrosion protection performance of poly(N-methylpyrrole)-dodecylsulfate/multi-walled carbon nanotubes composite coatings on the stainless steel, Materials Chemistry and Physics, Volume 163, 11-23. (https://doi.org/10.1016 /j.matchemphys. 2015.06.022).
Toplam 8 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Gülten Uzun 0000-0002-7489-1198

Berrin Duran 0000-0002-3892-5012

Evrim Hür 0000-0002-7489-1198

Erken Görünüm Tarihi 30 Ocak 2022
Yayımlanma Tarihi 31 Mart 2022
Yayımlandığı Sayı Yıl 2022 Sayı: 34

Kaynak Göster

APA Uzun, G., Duran, B., & Hür, E. (2022). Polikarbazol ve ZnO Katkılı Polikarbazolün Paslanmaz Çelik Yüzeyinde Elektrokimyasal Sentezi ve Korozyon Performanslarının Araştırılması. Avrupa Bilim Ve Teknoloji Dergisi(34), 446-452. https://doi.org/10.31590/ejosat.1082731