Araştırma Makalesi
PDF Zotero Mendeley EndNote BibTex Kaynak Göster

Twitter Bazlı Belirsizlik Endeksi Kripto Paraların Volatilitesini Etkiler mi?

Yıl 2021, Cilt 6, Sayı IERFM Özel Sayısı, 207 - 224, 30.12.2021
https://doi.org/10.30784/epfad.1024421

Öz

Bu çalışma 2011 yılından itibaren temel olarak “belirsizlik” ve “ekonomi” anahtar kelimelerini içeren tweetlerin baz alınarak oluşturulduğu Twitter Bazlı Belirsizlik Endeksinin, son yılların gözde yatırım araçlarından olan kripto paraların volatilitesine etkisini incelemeyi amaçlamaktadır. Piyasa değeri en yüksek, Binance, Bitcoin, Cardano, Ethereum, Ripple ve Tether kripto paralar 18/01/2018- 11/07/2021 dönemi için günlük verilerle ARCH-GARCH ailesi modelleri ile incelenmiştir. Çalışmada öncelikle ortalama denklemi oluşturulan modellerin ARCH-GARCH modellerine uygunluğu sınanmış ve incelenen dönemde Bitcoin ve Ethereum için ARCH etkisinin olmadığı ancak Binance, Cardano, Ripple ve Tether için volatilite modellerinin kullanımının uygun olduğu bulgusu elde edilmiştir. Binance için GARCH (1,1), Cardano için GARCH-M (1,1), Ripple için ARCH (2) modeli volatiliteyi en iyi yakalayan model olarak seçilmiştir. Twitter Bazlı Belirsizlik Endeksinin bu modellerin hepsinde istatistiki olarak anlamlı ve pozitif bir etkiye sahip olduğu tespit edilmiştir. Bu sonuçlara göre bir sosyal medya platformu olan Twitter’da yer alan belirsizlik ve ekonomi içerikli tweetlerin kripto varlıkların volatilitesini etkilediğini söylemek mümkündür. 

Kaynakça

  • Almansour, B. Y., Alshater, M. M. and Almansour, A. Y. (2021). Performance of ARCH and GARCH models in forecasting cryptocurrency market volatility. Industrial Engineering & Management Systems, 20(2), 130-139. https://doi.org/10.7232/iems.2021.20.2.130
  • Baker, S. B., Bloom, N., Davis, S. J. and Renault, T. (2020). Twitter-derived measures of economic uncertainty (Working Paper). Retrieved from http://policyuncertainty.com/media/Twitter_Uncertainty_5_13_2021.pdf
  • Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307-327. https://doi.org/10.1016/0304-4076(86)90063-1
  • Bouoiyour, J. and Selmi, R. (2015). What does Bitcoin look like? Annals of Economics and Finance, 16(2), 449-492. doi:10.1142/S2010495215500025
  • Burniske, C. and Tatar, J. (2018). Cryptoassets: The innovative investor’s guide to Bitcoin and beyond. New York: Mc Graw Hill Education.
  • Çarkacıoğlu, A. (2016). Kripto-para Bitcoin, (SPK Araştırma Raporu). Erişim adresi: https://www.spk.gov.tr/siteapps/yayin/yayingoster/1130
  • Catania, L., Grassi, S. and Ravazzolo, F. (2018). Predicting the volatility of cryptocurrency time-series. In M. Corazza, M. Durban, A. Grane, C. Perna and M. Sibillo (Eds.), Mathematical and statistical methods (pp. 203-207). New York: Springer International Publishing.
  • Cheikh, N. B., Zaied, Y. B. and Chevallier, J. (2020). Asymmetric volatility in cryptocurrency markets: New evidence from smooth transition GARCH models. Finance Research Letters, 35, 1-9. https://doi.org/10.1016/j.frl.2019.09.008
  • Dyhrberg, A. H. (2016). Hedging capabilities of Bitcoin is it the virtual gold. Finance Research Letters, 16, 139-144. https://doi.org/10.1016/j.frl.2015.10.025.
  • Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50(4), 987-1007. https://doi.org/10.2307/1912773
  • Ertuğrul, M. (2019). Kripto paraların volatilite dinamiklerinin incelenmesi: GARCH modelleri üzerine bir uygulama. Yönetim ve Ekonomi Araştırmaları Dergisi, 17(4), 59-71. https://doi.org/10.11611/yead.555713
  • Financial Action Task Force. (2014). Virtual currencies: Key definitions and potential AML / CFT risks. Retrieved from https://www.fatf-gafi.org/media/fatf/documents/reports/virtual-currency-key-definitions-and-potential-aml-cft-risks.pdf
  • Global Bitcoin node dağılımı. (2021). Global Bitcoin node dağılımı. Erişim adresi: https://bitnodes.io/
  • Kahraman, İ. K., Küçükşahin, H. ve Çağlak, E. (2019). Kripto para birimlerinin volatilite yapısı: GARCH modelleri karşılaştırması. Fiscaoeconomia, 3(2), 21-45. doi:10.25295/fsecon.2019.02.002
  • Katsiampa, P. (2017). Volatility estimation for Bitcoin: A comparison of GARCH models. Economics Letters, 158, 3-6. https://doi.org/10.1016/j.econlet.2017.06.023
  • Kayral, İ. K. (2020). En yüksek piyasa değerine sahip üç kripto paranın volatilitelerinin tahmin edilmesi. Finansal Araştırmalar ve Çalışmalar Dergisi, 12(22), 152-168. doi:10.14784/marufacd.688447
  • Koy, A., Yaman, M. ve Mete, S. (2021). Kripto paraların volatilite modelinde ABD borsa endekslerinin yeri: Bitcoin üzerine bir uygulama. Finansal Araştırmalar ve Çalışmalar Dergisi, 13(24), 159-170. https://doi.org/10.14784/marufacd.880672
  • Kripto para piyasa değerleri. (2021). Kripto para piyasa değerleri. Erişim adresi: https://coinmarketcap.com/
  • Kumar, A. S. and Anandarao, S. (2019). Volatility spillover in crypto-currency markets: Some evidences from GARCH and wavelet analysis. Physica A: Statistical Mechanics and its Applications, 524, 448-458. https://doi.org/10.1016/j.physa.2019.04.154
  • Mandelbrot, B. (1963). The variation of certain speculative prices. The Journal of Business, 36(4), 394-419. Retrieved from http://www.jstor.org/
  • Organisation for Economic Co-operation and Development. (2019). Cryptoassets in Asia: Consumer attitudes, behaviours and experiences. Retrieved from https://www.oecd.org/finance/2019-cryptoassets-in-asia.pdf
  • Reza, S. (2021). Bitcoin, cryptocurrency and cryptoassets. Canada: Unica Communications.
  • Şahin, E. E ve Özkan, O. (2018). Asimetrik volatilitenin tahmini: Kripto para Bitcoin uygulaması. Bilecik Şeyh Edibali Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 3(2), 240-247. https://doi.org/10.33905/bseusbed.450018
  • Smales, L. A. (2021). Volatility spillovers among cryptocurrencies. Journal of Risk and Financial Management, 14(10), 493-505. https://doi.org/10.3390/jrfm14100493
  • Teker, T., Konuşkan, A., Ömürberk, V. ve Bekçi, İ. (2020). Bitcoin ve kripto paralar hakkında çıkan haberlerin Bitcoin fiyatları üzerine etkisi. Maliye ve Finans Yazıları, 113, 65-74. https://doi.org/10.33203/mfy.567989
  • Thies, S. and Molnar, P. (2018). Bayesian change point analysis of Bitcoin returns. Finance Research Letters, 27, 223-227. http://dx.doi.org/10.2139/ssrn.3144623
  • Twitter Bazlı Belirsizlik Endeksi (2021). Twitter bazlı belirsizlik endeksi. Erişim adresi: https://www.policyuncertainty.com/index.html
  • Yen, K. C. and Cheng, H. P. (2021). Economic policy uncertainty and cryptocurrency volatility. Finance Research Letters, 38, 101428. https://doi.org/10.1016/j.frl.2020.101428

Does The Twitter-Based Uncertainty Index Affect the Volatility of Cryptocurrencies?

Yıl 2021, Cilt 6, Sayı IERFM Özel Sayısı, 207 - 224, 30.12.2021
https://doi.org/10.30784/epfad.1024421

Öz

This study examines the effect of the Twitter-Based Uncertainty Index which has created according to tweets containing the keywords "uncertainty" and "economy" since 2011 on the volatility of cryptocurrencies which is one of the most popular investment tools of recent years. Binance, Bitcoin, Cardano, Ethereum, Ripple and Tether assets which are have high market value are examined with ARCH-GARCH family models with daily data for the period 18/01/2018-11/07/2021. According to the results of the study, while the ARCH effect cannot be determined for Bitcoin and Ethereum for the period examined, it is found that the use of volatility models is appropriate for Binance, Cardano, Ripple and Tether. GARCH (1.1) for Binance, GARCH-M (1.1) for Cardano, ARCH (2) for Ripple is chosen as the most suitable model. It is determined that the Twitter-Based Uncertainty Index has a significant and positive effect in all of these models. According to these results, it is possible to say that uncertainty and economic tweets affect the volatility of crypto assets.

Kaynakça

  • Almansour, B. Y., Alshater, M. M. and Almansour, A. Y. (2021). Performance of ARCH and GARCH models in forecasting cryptocurrency market volatility. Industrial Engineering & Management Systems, 20(2), 130-139. https://doi.org/10.7232/iems.2021.20.2.130
  • Baker, S. B., Bloom, N., Davis, S. J. and Renault, T. (2020). Twitter-derived measures of economic uncertainty (Working Paper). Retrieved from http://policyuncertainty.com/media/Twitter_Uncertainty_5_13_2021.pdf
  • Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307-327. https://doi.org/10.1016/0304-4076(86)90063-1
  • Bouoiyour, J. and Selmi, R. (2015). What does Bitcoin look like? Annals of Economics and Finance, 16(2), 449-492. doi:10.1142/S2010495215500025
  • Burniske, C. and Tatar, J. (2018). Cryptoassets: The innovative investor’s guide to Bitcoin and beyond. New York: Mc Graw Hill Education.
  • Çarkacıoğlu, A. (2016). Kripto-para Bitcoin, (SPK Araştırma Raporu). Erişim adresi: https://www.spk.gov.tr/siteapps/yayin/yayingoster/1130
  • Catania, L., Grassi, S. and Ravazzolo, F. (2018). Predicting the volatility of cryptocurrency time-series. In M. Corazza, M. Durban, A. Grane, C. Perna and M. Sibillo (Eds.), Mathematical and statistical methods (pp. 203-207). New York: Springer International Publishing.
  • Cheikh, N. B., Zaied, Y. B. and Chevallier, J. (2020). Asymmetric volatility in cryptocurrency markets: New evidence from smooth transition GARCH models. Finance Research Letters, 35, 1-9. https://doi.org/10.1016/j.frl.2019.09.008
  • Dyhrberg, A. H. (2016). Hedging capabilities of Bitcoin is it the virtual gold. Finance Research Letters, 16, 139-144. https://doi.org/10.1016/j.frl.2015.10.025.
  • Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50(4), 987-1007. https://doi.org/10.2307/1912773
  • Ertuğrul, M. (2019). Kripto paraların volatilite dinamiklerinin incelenmesi: GARCH modelleri üzerine bir uygulama. Yönetim ve Ekonomi Araştırmaları Dergisi, 17(4), 59-71. https://doi.org/10.11611/yead.555713
  • Financial Action Task Force. (2014). Virtual currencies: Key definitions and potential AML / CFT risks. Retrieved from https://www.fatf-gafi.org/media/fatf/documents/reports/virtual-currency-key-definitions-and-potential-aml-cft-risks.pdf
  • Global Bitcoin node dağılımı. (2021). Global Bitcoin node dağılımı. Erişim adresi: https://bitnodes.io/
  • Kahraman, İ. K., Küçükşahin, H. ve Çağlak, E. (2019). Kripto para birimlerinin volatilite yapısı: GARCH modelleri karşılaştırması. Fiscaoeconomia, 3(2), 21-45. doi:10.25295/fsecon.2019.02.002
  • Katsiampa, P. (2017). Volatility estimation for Bitcoin: A comparison of GARCH models. Economics Letters, 158, 3-6. https://doi.org/10.1016/j.econlet.2017.06.023
  • Kayral, İ. K. (2020). En yüksek piyasa değerine sahip üç kripto paranın volatilitelerinin tahmin edilmesi. Finansal Araştırmalar ve Çalışmalar Dergisi, 12(22), 152-168. doi:10.14784/marufacd.688447
  • Koy, A., Yaman, M. ve Mete, S. (2021). Kripto paraların volatilite modelinde ABD borsa endekslerinin yeri: Bitcoin üzerine bir uygulama. Finansal Araştırmalar ve Çalışmalar Dergisi, 13(24), 159-170. https://doi.org/10.14784/marufacd.880672
  • Kripto para piyasa değerleri. (2021). Kripto para piyasa değerleri. Erişim adresi: https://coinmarketcap.com/
  • Kumar, A. S. and Anandarao, S. (2019). Volatility spillover in crypto-currency markets: Some evidences from GARCH and wavelet analysis. Physica A: Statistical Mechanics and its Applications, 524, 448-458. https://doi.org/10.1016/j.physa.2019.04.154
  • Mandelbrot, B. (1963). The variation of certain speculative prices. The Journal of Business, 36(4), 394-419. Retrieved from http://www.jstor.org/
  • Organisation for Economic Co-operation and Development. (2019). Cryptoassets in Asia: Consumer attitudes, behaviours and experiences. Retrieved from https://www.oecd.org/finance/2019-cryptoassets-in-asia.pdf
  • Reza, S. (2021). Bitcoin, cryptocurrency and cryptoassets. Canada: Unica Communications.
  • Şahin, E. E ve Özkan, O. (2018). Asimetrik volatilitenin tahmini: Kripto para Bitcoin uygulaması. Bilecik Şeyh Edibali Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 3(2), 240-247. https://doi.org/10.33905/bseusbed.450018
  • Smales, L. A. (2021). Volatility spillovers among cryptocurrencies. Journal of Risk and Financial Management, 14(10), 493-505. https://doi.org/10.3390/jrfm14100493
  • Teker, T., Konuşkan, A., Ömürberk, V. ve Bekçi, İ. (2020). Bitcoin ve kripto paralar hakkında çıkan haberlerin Bitcoin fiyatları üzerine etkisi. Maliye ve Finans Yazıları, 113, 65-74. https://doi.org/10.33203/mfy.567989
  • Thies, S. and Molnar, P. (2018). Bayesian change point analysis of Bitcoin returns. Finance Research Letters, 27, 223-227. http://dx.doi.org/10.2139/ssrn.3144623
  • Twitter Bazlı Belirsizlik Endeksi (2021). Twitter bazlı belirsizlik endeksi. Erişim adresi: https://www.policyuncertainty.com/index.html
  • Yen, K. C. and Cheng, H. P. (2021). Economic policy uncertainty and cryptocurrency volatility. Finance Research Letters, 38, 101428. https://doi.org/10.1016/j.frl.2020.101428

Ayrıntılar

Birincil Dil Türkçe
Konular İşletme Finans
Bölüm Makaleler
Yazarlar

Sümeyra GAZEL (Sorumlu Yazar)
BOZOK ÜNİVERSİTESİ
0000-0001-8687-0928
Türkiye

Yayımlanma Tarihi 30 Aralık 2021
Yayınlandığı Sayı Yıl 2021, Cilt 6, Sayı IERFM Özel Sayısı

Kaynak Göster

APA Gazel, S. (2021). Twitter Bazlı Belirsizlik Endeksi Kripto Paraların Volatilitesini Etkiler mi? . Ekonomi Politika ve Finans Araştırmaları Dergisi , IERFM Özel Sayısı , 207-224 . DOI: 10.30784/epfad.1024421

    19095   19096   19094   19097   19099    19098   19102       19101