Araştırma Makalesi
PDF Mendeley EndNote BibTex Kaynak Göster

Dielectric Properties of GNPs@MgO/CuO@PVDF Composite Films

Yıl 2021, Cilt 37, Sayı 3, 412 - 422, 30.12.2021

Öz

Bu çalışmada esnek yapılı kapasitörler için esnek yapılı ve kapasitans değeri yüksek dielektrik malzemelerin geliştirilmesi amaçlanmıştır. Bu amaçla ilk olarak çöktürme reaksiyonları ile CuO+MgO nanopartikülleri sentezlenmiştir. Daha sonra bu partiküller grafen nanoplakaları ile birlikte PVDF içine farklı kompozisyonlarda eklenerek kompozit karışımı oluşturulmuştur. Bu işlemin ardından doktor blade ve phase inversion yöntemleri ile esnek yapılı 30 um kalınlığında kompozit filmler oluşturulmuştur. Karakterizasyon işlemlerinde CuO+MgO partiküllerinin ortalama 282 nm boyutunda başarılı bir şekilde üretildiği tespit edilmiştir. Öte yandan kompozit filmlerin LCR metre ile kapasitans ve dielektrik sabiti değerleri ölçülmüş ve sonuçlara göre en yüksek değerler 100 Hz. frekansta sırasıyla 2,8 nF ve 42,6 olarak GNPs@CuO+MgO@PVDF numunesinde tespit edilmiştir. Sonuç olarak grafen ve metal oksitlerin birlikte kullanımı ile dielektrik özellikler önemli ölçüde geliştirildiği ve ayrıca PVDF’in esneklik ve bağlayıcılık rolü bakımından oldukça başarılı olduğu sonucuna varılmıştır.

Kaynakça

  • Yang J, Chen J, Yang Y, Zhang H, Yang W, Bai P, et al. Broadband vibrational energy harvesting based on a triboelectric nanogenerator. Advanced Energy Materials 2014;4:1301322.
  • Zhang C, Zhou T, Tang W, Han C, Zhang L, Wang ZL. Rotating-disk-based direct-current triboelectric nanogenerator. Advanced Energy Materials 2014;4:1301798.
  • Davies DK. Charge generation on dielectric surfaces. Journal of Physics D: Applied Physics 1969;2:1533.
  • Laudari A, Barron J, Pickett A, Guha S. Tuning charge transport in PVDF-based organic ferroelectric transistors: Status and outlook. ACS Applied Materials & Interfaces 2020;12:26757–75.
  • Holmes-Siedle AG, Wilson PD, Verrall AP. PVdF: An electronically-active polymer for industry. Materials & Design 1983;4:910–8.
  • Foster FS, Harasiewicz KA, Sherar MD. A history of medical and biological imaging with polyvinylidene fluoride (PVDF) transducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 2000;47:1363–71.
  • Chen S, Skordos A, Thakur VK. Functional nanocomposites for energy storage: Chemistry and new horizons. Materials Today Chemistry 2020;17:100304.
  • Sessler GM. Piezoelectricity in polyvinylidenefluoride. The Journal of the Acoustical Society of America 1981;70:1596–608.
  • Jain A, KJ P, Sharma AK, Jain A, PN R. Dielectric and piezoelectric properties of PVDF/PZT composites: A review. Polymer Engineering & Science 2015;55:1589–616.
  • Proto A, Fida B, Bernabucci I, Bibbo D, Conforto S, Schmid M, et al. Wearable PVDF transducer for biomechanical energy harvesting and gait cycle detection. 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), IEEE; 2016, p. 62–6.
  • Zaccaria M, Fabiani D, Zucchelli A, Belcari J, Bocchi O. Vibration energy harvesting using electrospun nanofibrous PVdF-TrFE. 2016 IEEE international conference on dielectrics (ICD), vol. 2, IEEE; 2016, p. 796–9.
  • Abolhasani MM, Shirvanimoghaddam K, Naebe M. PVDF/graphene composite nanofibers with enhanced piezoelectric performance for development of robust nanogenerators. Composites Science and Technology 2017;138:49–56.
  • Liu W, Cheng X, Fu X, Stefanini C, Dario P. Preliminary study on development of PVDF nanofiber based energy harvesting device for an artery microrobot. Microelectronic Engineering 2011;88:2251–4. https://doi.org/10.1016/j.mee.2011.02.098.
  • Cai J, Hu N, Wu L, Liu Y, Li Y, Ning H, et al. Preparing carbon black/graphene/PVDF-HFP hybrid composite films of high piezoelectricity for energy harvesting technology. Composites Part A: Applied Science and Manufacturing 2019;121:223–31. https://doi.org/10.1016/j.compositesa.2019.03.031.
  • Liang C-L, Xie Q, Bao R-Y, Yang W, Xie B-H, Yang M-B. Induced formation of polar phases in poly (vinylidene fluoride) by cetyl trimethyl ammonium bromide. Journal of Materials Science 2014;49:4171–9.
  • Ponnamma D, Erturk A, Parangusan H, Deshmukh K, Ahamed MB, Al Ali Al-Maadeed M. Stretchable quaternary phasic PVDF-HFP nanocomposite films containing graphene-titania-SrTiO3 for mechanical energy harvesting. Emergent Mater 2018;1:55–65. https://doi.org/10.1007/s42247-018-0007-z.
  • Zhang Z, Cao M, Chen P, Yang B, Wu B, Miao J, et al. Improvement of the thermal/electrical conductivity of PA6/PVDF blends via selective MWCNTs-NH2 distribution at the interface. Materials & Design 2019;177:107835.
  • Yun S, Kim J. Mechanical, electrical, piezoelectric and electro-active behavior of aligned multi-walled carbon nanotube/cellulose composites. Carbon 2011;49:518–27.
  • Martins P, Lopes AC, Lanceros-Mendez S. Electroactive phases of poly (vinylidene fluoride): Determination, processing and applications. Progress in Polymer Science 2014;39:683–706.
  • Cui L, Lu X, Chao D, Liu H, Li Y, Wang C. Graphene-based composite materials with high dielectric permittivity via an in situ reduction method. Physica Status Solidi (a) 2011;208:459–61.
  • Sabira K, Saheeda P, Divyasree MC, Jayalekshmi S. Impressive nonlinear optical response exhibited by Poly (vinylidene fluoride)(PVDF)/reduced graphene oxide (RGO) nanocomposite films. Optics & Laser Technology 2017;97:77–83.
  • Wu C-M, Chou M-H, Zeng W-Y. Piezoelectric response of aligned electrospun polyvinylidene fluoride/carbon nanotube nanofibrous membranes. Nanomaterials 2018;8:420.
  • Doh C, Jin B, Moon S, Chung Y-D, Jeong D, Bang Y. Physical and Electrical Properties of Carbon Black/PVDF Composite Electrode as Ohmic Joule Heater. Applied Chemistry for Engineering 2009;20:692–5.
  • Thakur VK, Gupta RK. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chemical Reviews 2016;116:4260–317.
  • Akinay Y, Kizilcay AO. Computation and modeling of microwave absorbing CuO/graphene nanocomposites. Polymer Composites 2020;41:227–32.
  • Lunkenheimer P, Krohns S, Riegg S, Ebbinghaus SG, Reller A, Loidl A. Colossal dielectric constants in transition-metal oxides. The European Physical Journal Special Topics 2009;180:61–89.
  • Jaschin PW, Bhimireddi R, Varma KBR. Enhanced Dielectric Properties of LaNiO3/BaTiO3/PVDF: A Three-Phase Percolative Polymer Nanocrystal Composite. ACS Appl Mater Interfaces 2018;10:27278–86. https://doi.org/10.1021/acsami.8b07786.
  • Sarkar S, Jana PK, Chaudhuri BK, Sakata H. Copper (II) oxide as a giant dielectric material. Applied Physics Letters 2006;89:212905.
  • Oruç Ç, Altındal A. Structural and dielectric properties of CuO nanoparticles. Ceramics International 2017;43:10708–14.
  • Fang X-S, Ye C-H, Xie T, Wang Z-Y, Zhao J-W, Zhang L-D. Regular MgO nanoflowers and their enhanced dielectric responses. Applied Physics Letters 2006;88:013101.
  • Lee SY, Tseng T-Y. Electrical and dielectric behavior of MgO doped Ba 0.7 Sr 0.3 TiO 3 thin films on Al 2 O 3 substrate. Applied Physics Letters 2002;80:1797–9.
  • Mohamadi S. Preparation and Characterization of PVDF/PMMA/Graphene Polymer Blend Nanocomposites by Using ATR-FTIR Technique. IntechOpen; 2012. https://doi.org/10.5772/36497.
  • Ji Y, Liu J, Jiang Y, Liu Y. Analysis of Raman and infrared spectra of poly(vinylidene fluoride) irradiated by KrF excimer laser. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2008;70:297–300. https://doi.org/10.1016/j.saa.2007.07.061.
  • B. Tanvir N, Yurchenko O, Wilbertz C, Urban G. Investigation of CO 2 reaction with copper oxide nanoparticles for room temperature gas sensing. Journal of Materials Chemistry A 2016;4:5294–302. https://doi.org/10.1039/C5TA09089J.
  • Kandiban M, Vigneshwaran P, Potheher I. SYNTHESIS AND CHARACTERIZATION OF MGO NANOPARTICLES FOR PHOTOCATALYTIC APPLICATIONS. 2015.
  • Abouhaswa AS, Taha TA. Tailoring the optical and dielectric properties of PVC/CuO nanocomposites. Polym Bull 2020;77:6005–16. https://doi.org/10.1007/s00289-019-03059-5.
  • Takahashi S, Imai Y, Kan A, Hotta Y, Ogawa H. Preparation and characterization of isotactic polypropylene/MgO composites as dielectric materials with low dielectric loss. J Ceram Soc Japan 2013;121:606–10. https://doi.org/10.2109/jcersj2.121.606.
  • Kumar NA, Ravibabu V, Ashokbabu A, Thomas P. Effect of Graphene Nanoplatelets (GNP) on the Dielectric and Thermal Properties of Polystyrene (PS)/Polyvinylidenedifluoride (PVDF) Blends. 2021 IEEE International Conference on the Properties and Applications of Dielectric Materials (ICPADM), IEEE; 2021, p. 354–7.
  • Polat S. Dielectric Properties of BN-ZnO-GNP Doped PU-EG Composites. International Journal of Engineering Research and Development 2021;13:635–44. https://doi.org/10.29137/umagd.896904.
  • Niftaliyeva A, Pehlivan E, Polat S, Avci A. Chemical synthesis of single-layer graphene by using ball milling compared with NaBH4 and hydroquinone reductants. Micro & Nano Letters 2018;13:1412–6.

Dielectric Properties of GNPs@MgO/CuO@PVDF Composite Films

Yıl 2021, Cilt 37, Sayı 3, 412 - 422, 30.12.2021

Öz

In this study, it is aimed to develop dielectric materials with flexible structure and high capacitance value for flexible capacitors. For this purpose, CuO+MgO nanoparticles were first synthesized by precipitation reactions. Then, these particles were added together with graphene nanoplates into PVDF in different compositions to form a composite mixture. After this process, flexible composite films of 30 μm thickness were formed with doctor blade and phase inversion methods. In the characterization processes, it was determined that CuO+MgO particles were successfully produced with an average size of 282 nm. On the other hand, capacitance and dielectric constant values of composite films were measured with LCR meter and according to the results, the highest values were determined in GNPs@CuO+MgO@PVDF sample as 2.8 nF and 42.6 at 100 Hz frequency, respectively. As a result, it was concluded that the dielectric properties were significantly improved with the use of graphene and metal oxides together, and PVDF was very successful in terms of flexibility and binding role.

Kaynakça

  • Yang J, Chen J, Yang Y, Zhang H, Yang W, Bai P, et al. Broadband vibrational energy harvesting based on a triboelectric nanogenerator. Advanced Energy Materials 2014;4:1301322.
  • Zhang C, Zhou T, Tang W, Han C, Zhang L, Wang ZL. Rotating-disk-based direct-current triboelectric nanogenerator. Advanced Energy Materials 2014;4:1301798.
  • Davies DK. Charge generation on dielectric surfaces. Journal of Physics D: Applied Physics 1969;2:1533.
  • Laudari A, Barron J, Pickett A, Guha S. Tuning charge transport in PVDF-based organic ferroelectric transistors: Status and outlook. ACS Applied Materials & Interfaces 2020;12:26757–75.
  • Holmes-Siedle AG, Wilson PD, Verrall AP. PVdF: An electronically-active polymer for industry. Materials & Design 1983;4:910–8.
  • Foster FS, Harasiewicz KA, Sherar MD. A history of medical and biological imaging with polyvinylidene fluoride (PVDF) transducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 2000;47:1363–71.
  • Chen S, Skordos A, Thakur VK. Functional nanocomposites for energy storage: Chemistry and new horizons. Materials Today Chemistry 2020;17:100304.
  • Sessler GM. Piezoelectricity in polyvinylidenefluoride. The Journal of the Acoustical Society of America 1981;70:1596–608.
  • Jain A, KJ P, Sharma AK, Jain A, PN R. Dielectric and piezoelectric properties of PVDF/PZT composites: A review. Polymer Engineering & Science 2015;55:1589–616.
  • Proto A, Fida B, Bernabucci I, Bibbo D, Conforto S, Schmid M, et al. Wearable PVDF transducer for biomechanical energy harvesting and gait cycle detection. 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), IEEE; 2016, p. 62–6.
  • Zaccaria M, Fabiani D, Zucchelli A, Belcari J, Bocchi O. Vibration energy harvesting using electrospun nanofibrous PVdF-TrFE. 2016 IEEE international conference on dielectrics (ICD), vol. 2, IEEE; 2016, p. 796–9.
  • Abolhasani MM, Shirvanimoghaddam K, Naebe M. PVDF/graphene composite nanofibers with enhanced piezoelectric performance for development of robust nanogenerators. Composites Science and Technology 2017;138:49–56.
  • Liu W, Cheng X, Fu X, Stefanini C, Dario P. Preliminary study on development of PVDF nanofiber based energy harvesting device for an artery microrobot. Microelectronic Engineering 2011;88:2251–4. https://doi.org/10.1016/j.mee.2011.02.098.
  • Cai J, Hu N, Wu L, Liu Y, Li Y, Ning H, et al. Preparing carbon black/graphene/PVDF-HFP hybrid composite films of high piezoelectricity for energy harvesting technology. Composites Part A: Applied Science and Manufacturing 2019;121:223–31. https://doi.org/10.1016/j.compositesa.2019.03.031.
  • Liang C-L, Xie Q, Bao R-Y, Yang W, Xie B-H, Yang M-B. Induced formation of polar phases in poly (vinylidene fluoride) by cetyl trimethyl ammonium bromide. Journal of Materials Science 2014;49:4171–9.
  • Ponnamma D, Erturk A, Parangusan H, Deshmukh K, Ahamed MB, Al Ali Al-Maadeed M. Stretchable quaternary phasic PVDF-HFP nanocomposite films containing graphene-titania-SrTiO3 for mechanical energy harvesting. Emergent Mater 2018;1:55–65. https://doi.org/10.1007/s42247-018-0007-z.
  • Zhang Z, Cao M, Chen P, Yang B, Wu B, Miao J, et al. Improvement of the thermal/electrical conductivity of PA6/PVDF blends via selective MWCNTs-NH2 distribution at the interface. Materials & Design 2019;177:107835.
  • Yun S, Kim J. Mechanical, electrical, piezoelectric and electro-active behavior of aligned multi-walled carbon nanotube/cellulose composites. Carbon 2011;49:518–27.
  • Martins P, Lopes AC, Lanceros-Mendez S. Electroactive phases of poly (vinylidene fluoride): Determination, processing and applications. Progress in Polymer Science 2014;39:683–706.
  • Cui L, Lu X, Chao D, Liu H, Li Y, Wang C. Graphene-based composite materials with high dielectric permittivity via an in situ reduction method. Physica Status Solidi (a) 2011;208:459–61.
  • Sabira K, Saheeda P, Divyasree MC, Jayalekshmi S. Impressive nonlinear optical response exhibited by Poly (vinylidene fluoride)(PVDF)/reduced graphene oxide (RGO) nanocomposite films. Optics & Laser Technology 2017;97:77–83.
  • Wu C-M, Chou M-H, Zeng W-Y. Piezoelectric response of aligned electrospun polyvinylidene fluoride/carbon nanotube nanofibrous membranes. Nanomaterials 2018;8:420.
  • Doh C, Jin B, Moon S, Chung Y-D, Jeong D, Bang Y. Physical and Electrical Properties of Carbon Black/PVDF Composite Electrode as Ohmic Joule Heater. Applied Chemistry for Engineering 2009;20:692–5.
  • Thakur VK, Gupta RK. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chemical Reviews 2016;116:4260–317.
  • Akinay Y, Kizilcay AO. Computation and modeling of microwave absorbing CuO/graphene nanocomposites. Polymer Composites 2020;41:227–32.
  • Lunkenheimer P, Krohns S, Riegg S, Ebbinghaus SG, Reller A, Loidl A. Colossal dielectric constants in transition-metal oxides. The European Physical Journal Special Topics 2009;180:61–89.
  • Jaschin PW, Bhimireddi R, Varma KBR. Enhanced Dielectric Properties of LaNiO3/BaTiO3/PVDF: A Three-Phase Percolative Polymer Nanocrystal Composite. ACS Appl Mater Interfaces 2018;10:27278–86. https://doi.org/10.1021/acsami.8b07786.
  • Sarkar S, Jana PK, Chaudhuri BK, Sakata H. Copper (II) oxide as a giant dielectric material. Applied Physics Letters 2006;89:212905.
  • Oruç Ç, Altındal A. Structural and dielectric properties of CuO nanoparticles. Ceramics International 2017;43:10708–14.
  • Fang X-S, Ye C-H, Xie T, Wang Z-Y, Zhao J-W, Zhang L-D. Regular MgO nanoflowers and their enhanced dielectric responses. Applied Physics Letters 2006;88:013101.
  • Lee SY, Tseng T-Y. Electrical and dielectric behavior of MgO doped Ba 0.7 Sr 0.3 TiO 3 thin films on Al 2 O 3 substrate. Applied Physics Letters 2002;80:1797–9.
  • Mohamadi S. Preparation and Characterization of PVDF/PMMA/Graphene Polymer Blend Nanocomposites by Using ATR-FTIR Technique. IntechOpen; 2012. https://doi.org/10.5772/36497.
  • Ji Y, Liu J, Jiang Y, Liu Y. Analysis of Raman and infrared spectra of poly(vinylidene fluoride) irradiated by KrF excimer laser. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2008;70:297–300. https://doi.org/10.1016/j.saa.2007.07.061.
  • B. Tanvir N, Yurchenko O, Wilbertz C, Urban G. Investigation of CO 2 reaction with copper oxide nanoparticles for room temperature gas sensing. Journal of Materials Chemistry A 2016;4:5294–302. https://doi.org/10.1039/C5TA09089J.
  • Kandiban M, Vigneshwaran P, Potheher I. SYNTHESIS AND CHARACTERIZATION OF MGO NANOPARTICLES FOR PHOTOCATALYTIC APPLICATIONS. 2015.
  • Abouhaswa AS, Taha TA. Tailoring the optical and dielectric properties of PVC/CuO nanocomposites. Polym Bull 2020;77:6005–16. https://doi.org/10.1007/s00289-019-03059-5.
  • Takahashi S, Imai Y, Kan A, Hotta Y, Ogawa H. Preparation and characterization of isotactic polypropylene/MgO composites as dielectric materials with low dielectric loss. J Ceram Soc Japan 2013;121:606–10. https://doi.org/10.2109/jcersj2.121.606.
  • Kumar NA, Ravibabu V, Ashokbabu A, Thomas P. Effect of Graphene Nanoplatelets (GNP) on the Dielectric and Thermal Properties of Polystyrene (PS)/Polyvinylidenedifluoride (PVDF) Blends. 2021 IEEE International Conference on the Properties and Applications of Dielectric Materials (ICPADM), IEEE; 2021, p. 354–7.
  • Polat S. Dielectric Properties of BN-ZnO-GNP Doped PU-EG Composites. International Journal of Engineering Research and Development 2021;13:635–44. https://doi.org/10.29137/umagd.896904.
  • Niftaliyeva A, Pehlivan E, Polat S, Avci A. Chemical synthesis of single-layer graphene by using ball milling compared with NaBH4 and hydroquinone reductants. Micro & Nano Letters 2018;13:1412–6.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Safa POLAT (Sorumlu Yazar)
KARABÜK ÜNİVERSİTESİ
0000-0002-3835-8425
Türkiye

Yayımlanma Tarihi 30 Aralık 2021
Yayınlandığı Sayı Yıl 2021, Cilt 37, Sayı 3

Kaynak Göster

Bibtex @araştırma makalesi { erciyesfen979235, journal = {Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi}, issn = {1012-2354}, address = {ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ 38039 Kayseri, TÜRKİYE}, publisher = {Erciyes Üniversitesi}, year = {2021}, volume = {37}, number = {3}, pages = {412 - 422}, title = {Dielectric Properties of GNPs@MgO/CuO@PVDF Composite Films}, key = {cite}, author = {Polat, Safa} }
APA Polat, S. (2021). Dielectric Properties of GNPs@MgO/CuO@PVDF Composite Films . Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi , 37 (3) , 412-422 . Retrieved from https://dergipark.org.tr/tr/pub/erciyesfen/issue/67552/979235
MLA Polat, S. "Dielectric Properties of GNPs@MgO/CuO@PVDF Composite Films" . Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 37 (2021 ): 412-422 <https://dergipark.org.tr/tr/pub/erciyesfen/issue/67552/979235>
Chicago Polat, S. "Dielectric Properties of GNPs@MgO/CuO@PVDF Composite Films". Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 37 (2021 ): 412-422
RIS TY - JOUR T1 - Dielectric Properties of GNPs@MgO/CuO@PVDF Composite Films AU - Safa Polat Y1 - 2021 PY - 2021 N1 - DO - T2 - Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi JF - Journal JO - JOR SP - 412 EP - 422 VL - 37 IS - 3 SN - 1012-2354- M3 - UR - Y2 - 2021 ER -
EndNote %0 Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi Dielectric Properties of GNPs@MgO/CuO@PVDF Composite Films %A Safa Polat %T Dielectric Properties of GNPs@MgO/CuO@PVDF Composite Films %D 2021 %J Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi %P 1012-2354- %V 37 %N 3 %R %U
ISNAD Polat, Safa . "Dielectric Properties of GNPs@MgO/CuO@PVDF Composite Films". Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 37 / 3 (Aralık 2021): 412-422 .
AMA Polat S. Dielectric Properties of GNPs@MgO/CuO@PVDF Composite Films. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2021; 37(3): 412-422.
Vancouver Polat S. Dielectric Properties of GNPs@MgO/CuO@PVDF Composite Films. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2021; 37(3): 412-422.
IEEE S. Polat , "Dielectric Properties of GNPs@MgO/CuO@PVDF Composite Films", Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 37, sayı. 3, ss. 412-422, Ara. 2021

✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.