Araştırma Makalesi
BibTex RIS Kaynak Göster

Wear Behaviour of HA-TiO2 Coatings Fabricated by Plasma Spray

Yıl 2019, Cilt: 12 Sayı: 3, 1392 - 1401, 31.12.2019
https://doi.org/10.18185/erzifbed.530698

Öz

Hydroxyapatite (HA) bioceramic coatings are
widely used in medical implants in order to improve biocompatibility and
corrosion resistance. But, HA coatings suffers from poor mechanical properties
in agressive environment. In this study, Single layer HA, TiO2 and
double layer HA/TiO2 coatings were fabricated by plasma spray. Wear
behavior of coatings in dry and SBF environment was investigated. As a result,
the single layer HA coating had the weakest wear resistance. However, abrasion
resistance improved as a result of the double layer coating design with TiO2.
In the case of single-layer TiO2 coating, the least material loss
occurred as a result of the wear tests.

Kaynakça

  • Baptista, R., Gadelha, D., Bandeira, M., Arteiro, D., Delgado, M. I., Ferro, A. C., & Guedes, M. (2016). Characterization of titanium-hydroxyapatite biocomposites processed by dip coating. Bulletin of Materials Science, 39(1), 263-272. doi:10.1007/s12034-015-1122-6
  • Cannillo, V., Lusvarghi, L., & Sola, A. (2008). Production and characterization of plasma-sprayed TiO2-hydroxyapatite functionally graded coatings. Journal of the European Ceramic Society, 28(11), 2161-2169. doi:10.1016/j.jeurceramsoc.2008.02.026
  • Chen, C. C., Huang, T. H., Kao, C. T., & Ding, S. J. (2006). Characterization of functionally graded hydroxyapatite/titanium composite coatings plasma‐sprayed on Ti alloys. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 78(1), 146-152.
  • Farnoush, H., & Rezaei, Z. (2017). Effect of suspension stability on bonding strength and electrochemical behavior of electrophoretically deposited HA–YSZ nanostructured composite coatings. Ceramics International, 43(15), 11885-11897. doi:https://doi.org/10.1016/j.ceramint.2017.06.036
  • Fathi, M. H., & Doostmohammadi, A. (2009). Bioactive glass nanopowder and bioglass coating for biocompatibility improvement of metallic implant. Journal of Materials Processing Technology, 209(3), 1385-1391. doi:10.1016/j.jmatprotec.2008.03.051
  • Heimann, R. B. (2016). Plasma-Sprayed Hydroxylapatite-Based Coatings: Chemical, Mechanical, Microstructural, and Biomedical Properties. Journal of Thermal Spray Technology, 25(5), 827-850. doi:10.1007/s11666-016-0421-9
  • Karimi, S., Mahzoon, F., Javadpour, S., & Janghorban, K. (2015). Study of wear and corrosion behavior of cathodic plasma electrolytic deposition of zirconia-hydroxyapatite on titanium and 316L stainless steel in Ringer's solution. International Journal of Materials Research, 106(6), 614-620. doi:10.3139/146.111229
  • Khor, K. A., Li, H., & Cheang, P. (2003). Processing-microstructure-property relations in HVOF sprayed calcium phosphate based bioceramic coatings. Biomaterials, 24(13), 2233-2243. doi:10.1016/S0142-9612(03)00027-9
  • Khun, N. W., Li, Z., Khor, K. A., & Cizek, J. (2016). Higher in-flight particle velocities enhance in vitro tribological behavior of plasma sprayed hydroxyapatite coatings. Tribology International, 103, 496-503. doi:https://doi.org/10.1016/j.triboint.2016.08.006
  • Kim, S.-G., Hahn, B.-D., Park, D.-S., Lee, Y.-C., Choi, E.-J., Chae, W.-S., . . . Choi, J.-Y. (2011). Aerosol deposition of hydroxyapatite and 4-hexylresorcinol coatings on titanium alloys for dental implants. Journal of Oral and Maxillofacial Surgery, 69(11), e354-e363.
  • Li, H., Khor, K. A., & Cheang, P. (2002). Titanium dioxide reinforced hydroxyapatite coatings deposited by high velocity oxy-fuel (HVOF) spray. Biomaterials, 23(1), 85-91. doi:Doi 10.1016/S0142-9612(01)00082-5
  • Li, Y. H., Yang, C., Zhao, H. D., Qu, S. G., Li, X. Q., & Li, Y. Y. (2014). New Developments of Ti-Based Alloys for Biomedical Applications. Materials, 7(3), 1709-1800. doi:10.3390/ma7031709
  • Lu, Y. P., Li, M. S., Li, S. T., Wang, Z. G., & Zhu, R. F. (2004). Plasma-sprayed hydroxyapatite plus titania composite bond coat for hydroxyapatite coating on titanium substrate. Biomaterials, 25(18), 4393-4403. doi:10.1016/j.biomaterials.2003.10.092
  • Mittal, M., Nath, S. K., & Prakash, S. (2013). Improvement in mechanical properties of plasma sprayed hydroxyapatite coatings by Al2O3 reinforcement. Materials Science & Engineering C-Materials for Biological Applications, 33(5), 2838-2845. doi:10.1016/j.msec.2013.03.005
  • Palanivelu, R., & Kumar, A. R. (2014). Scratch and wear behaviour of plasma sprayed nano ceramics bilayer Al2O3-13 wt%TiO2/hydroxyapatite coated on medical grade titanium substrates in SBF environment. Applied Surface Science, 315, 372-379. doi:10.1016/j.apsusc.2014.07.167
  • Sola, A., Bellucci, D., & Cannillo, V. (2016). Functionally graded materials for orthopedic applications - an update on design and manufacturing. Biotechnology Advances, 34(5), 504-531. doi:10.1016/j.biotechadv.2015.12.013
  • Temenoff, J. S., & Mikos, A. G. (2008). Biomaterials : the intersection of biology and materials science: Upper Saddle River.
  • Vilardell, A. M., Cinca, N., Concustell, A., Dosta, S., Cano, I. G., & Guilemany, J. M. (2015). Cold spray as an emerging technology for biocompatible and antibacterial coatings: state of art. Journal of Materials Science, 50(13), 4441-4462. doi:10.1007/s10853-015-9013-1
  • Zuhailawati, H., Sivakumar, R., Dhindaw, B. K., & Noor, S. N. F. M. (2015). Cold spray deposition of hydroxyapatite powder onto magnesium substrates for biomaterial applications AU - Hasniyati, M. Surface Engineering, 31(11), 867-874. doi:10.1179/1743294415Y.0000000068

Plazma Püskürtme Kaplama Yöntemiyle Üretilmiş HA ve TiO2 Kaplamaların Aşınma Davranışlarının İncelenmesi

Yıl 2019, Cilt: 12 Sayı: 3, 1392 - 1401, 31.12.2019
https://doi.org/10.18185/erzifbed.530698

Öz

Hidroksiapatit (HA) biyoseramik kaplamalar medikal implant
uygulamalarında biyouyumluluğu ve korozyon direncini arttırmak amacıyla yaygın
olarak kullanılmaktadır. Fakat HA kaplamalar zayıf mekanik özellikleri
sebebiyle saldırgan ortamlarda kolayca hasar alabilmektedir. Bu çalışmada tek
katman HA, TiO2 ve çift katman HA/TiO2 kaplamalar plazma
püskürtme yöntemi ile üretilmiştir. Kaplamaların kuru ortamda ve SBF ortamında
aşınma davranışları incelenmiştir. Elde edilen sonuçlar neticesinde tek katman
HA kaplamanın en zayıf aşınma direncine sahip olduğu belirlenmiştir. Fakat TiO2
ile çift katman kaplama dizaynı sonucunda aşınma dayanımında iyileşmeler
meydana gelmiştir. Tek katman TiO2 kaplamada ise aşınma deneyleri
sonucunda en az malzeme kaybı meydana geldiği anlaşılmıştır. 

Kaynakça

  • Baptista, R., Gadelha, D., Bandeira, M., Arteiro, D., Delgado, M. I., Ferro, A. C., & Guedes, M. (2016). Characterization of titanium-hydroxyapatite biocomposites processed by dip coating. Bulletin of Materials Science, 39(1), 263-272. doi:10.1007/s12034-015-1122-6
  • Cannillo, V., Lusvarghi, L., & Sola, A. (2008). Production and characterization of plasma-sprayed TiO2-hydroxyapatite functionally graded coatings. Journal of the European Ceramic Society, 28(11), 2161-2169. doi:10.1016/j.jeurceramsoc.2008.02.026
  • Chen, C. C., Huang, T. H., Kao, C. T., & Ding, S. J. (2006). Characterization of functionally graded hydroxyapatite/titanium composite coatings plasma‐sprayed on Ti alloys. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 78(1), 146-152.
  • Farnoush, H., & Rezaei, Z. (2017). Effect of suspension stability on bonding strength and electrochemical behavior of electrophoretically deposited HA–YSZ nanostructured composite coatings. Ceramics International, 43(15), 11885-11897. doi:https://doi.org/10.1016/j.ceramint.2017.06.036
  • Fathi, M. H., & Doostmohammadi, A. (2009). Bioactive glass nanopowder and bioglass coating for biocompatibility improvement of metallic implant. Journal of Materials Processing Technology, 209(3), 1385-1391. doi:10.1016/j.jmatprotec.2008.03.051
  • Heimann, R. B. (2016). Plasma-Sprayed Hydroxylapatite-Based Coatings: Chemical, Mechanical, Microstructural, and Biomedical Properties. Journal of Thermal Spray Technology, 25(5), 827-850. doi:10.1007/s11666-016-0421-9
  • Karimi, S., Mahzoon, F., Javadpour, S., & Janghorban, K. (2015). Study of wear and corrosion behavior of cathodic plasma electrolytic deposition of zirconia-hydroxyapatite on titanium and 316L stainless steel in Ringer's solution. International Journal of Materials Research, 106(6), 614-620. doi:10.3139/146.111229
  • Khor, K. A., Li, H., & Cheang, P. (2003). Processing-microstructure-property relations in HVOF sprayed calcium phosphate based bioceramic coatings. Biomaterials, 24(13), 2233-2243. doi:10.1016/S0142-9612(03)00027-9
  • Khun, N. W., Li, Z., Khor, K. A., & Cizek, J. (2016). Higher in-flight particle velocities enhance in vitro tribological behavior of plasma sprayed hydroxyapatite coatings. Tribology International, 103, 496-503. doi:https://doi.org/10.1016/j.triboint.2016.08.006
  • Kim, S.-G., Hahn, B.-D., Park, D.-S., Lee, Y.-C., Choi, E.-J., Chae, W.-S., . . . Choi, J.-Y. (2011). Aerosol deposition of hydroxyapatite and 4-hexylresorcinol coatings on titanium alloys for dental implants. Journal of Oral and Maxillofacial Surgery, 69(11), e354-e363.
  • Li, H., Khor, K. A., & Cheang, P. (2002). Titanium dioxide reinforced hydroxyapatite coatings deposited by high velocity oxy-fuel (HVOF) spray. Biomaterials, 23(1), 85-91. doi:Doi 10.1016/S0142-9612(01)00082-5
  • Li, Y. H., Yang, C., Zhao, H. D., Qu, S. G., Li, X. Q., & Li, Y. Y. (2014). New Developments of Ti-Based Alloys for Biomedical Applications. Materials, 7(3), 1709-1800. doi:10.3390/ma7031709
  • Lu, Y. P., Li, M. S., Li, S. T., Wang, Z. G., & Zhu, R. F. (2004). Plasma-sprayed hydroxyapatite plus titania composite bond coat for hydroxyapatite coating on titanium substrate. Biomaterials, 25(18), 4393-4403. doi:10.1016/j.biomaterials.2003.10.092
  • Mittal, M., Nath, S. K., & Prakash, S. (2013). Improvement in mechanical properties of plasma sprayed hydroxyapatite coatings by Al2O3 reinforcement. Materials Science & Engineering C-Materials for Biological Applications, 33(5), 2838-2845. doi:10.1016/j.msec.2013.03.005
  • Palanivelu, R., & Kumar, A. R. (2014). Scratch and wear behaviour of plasma sprayed nano ceramics bilayer Al2O3-13 wt%TiO2/hydroxyapatite coated on medical grade titanium substrates in SBF environment. Applied Surface Science, 315, 372-379. doi:10.1016/j.apsusc.2014.07.167
  • Sola, A., Bellucci, D., & Cannillo, V. (2016). Functionally graded materials for orthopedic applications - an update on design and manufacturing. Biotechnology Advances, 34(5), 504-531. doi:10.1016/j.biotechadv.2015.12.013
  • Temenoff, J. S., & Mikos, A. G. (2008). Biomaterials : the intersection of biology and materials science: Upper Saddle River.
  • Vilardell, A. M., Cinca, N., Concustell, A., Dosta, S., Cano, I. G., & Guilemany, J. M. (2015). Cold spray as an emerging technology for biocompatible and antibacterial coatings: state of art. Journal of Materials Science, 50(13), 4441-4462. doi:10.1007/s10853-015-9013-1
  • Zuhailawati, H., Sivakumar, R., Dhindaw, B. K., & Noor, S. N. F. M. (2015). Cold spray deposition of hydroxyapatite powder onto magnesium substrates for biomaterial applications AU - Hasniyati, M. Surface Engineering, 31(11), 867-874. doi:10.1179/1743294415Y.0000000068
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Muhammet Karabaş 0000-0002-0666-6132

Yusuf Kayalı 0000-0002-2449-7125

Yayımlanma Tarihi 31 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 12 Sayı: 3

Kaynak Göster

APA Karabaş, M., & Kayalı, Y. (2019). Plazma Püskürtme Kaplama Yöntemiyle Üretilmiş HA ve TiO2 Kaplamaların Aşınma Davranışlarının İncelenmesi. Erzincan University Journal of Science and Technology, 12(3), 1392-1401. https://doi.org/10.18185/erzifbed.530698