Araştırma Makalesi
BibTex RIS Kaynak Göster

How Improved to WC Based Hard Materials

Yıl 2019, Cilt: 12 Sayı: 3, 1434 - 1441, 31.12.2019
https://doi.org/10.18185/erzifbed.537711

Öz

Tungsten carbide is known to have
excellent corrosion resistance and high hardness within carbide ceramics. Due
to their superior mechanical properties and wear resistance, tungsten carbide
cutting tools containing Co binder have been the subject of many studies. There
are a limited number of works regarding the use of Ni and Fe as a binder in
tungsten carbide based composites, especially processing with microwave
radiation. In this study, a composite cutting tool made of electroless nickel
coated tungsten carbide ceramic powder was produced by microwave sintering. Two
different tungsten carbide powder sizes of 2 µm and 10 µm were used for the
production of composite cutting tool. The microwave sintering was carried out
at two different temperatures of 1200 and 1400 ° C for 2 hours.
Characterization of composite cutting tools was made by XRD, hardness,
compression test and electron microscopy techniques.

Kaynakça

  • 1. D CLARK, WH SUTTON, Microwave processing of materials, Annu Rev Mater Sci, 26 (1996), pp. 299–331
  • 2. Y XIONG, K LAU, X ZHOU, J M. SCHOENUNG, A Streamlined Life Cycle Assessment On The Fabrication Of WC-Co Cermets, Journal Of Cleaner Production, Volume:16, 1118-1126, 2008.
  • 3. DINESH, DK, Microwave Processing of Ceramics, Current Opinion in Solid State and Materials ScienceVolume 3, Issue 5, October 1998, Pages 480–485
  • 4. K. RO¨DIGER, K. DREYER, T. GERDES, M. WILLERT-PORADA, Microwave sintering of hardmetals, International Journal of Refractory Metals and Hard Materials, 16, 4–6, 1998, 409–416
  • 5. Z.G. BAN, L. L. SHAW: Journal Of Materials Science, Volume: 37, 3397 – 3403, 2002.
  • 6. UPADHYAYA G.S., BHAUMIK S.K.: Material Science And Engineering-A, Volume:249, 105–106, 1988.
  • 7. TAEGONG R., SOHN H. Y., HAN G., HWANG K. S., MENA M., FANG Z. Z., “Nanograined WC-Co Composite Powders By Chemical Vapor Synthesis”, Metallurgical And Materials Transactions B, Vol: 39/B, 1007-1012, 2008.
  • 8. BAN Z. G., SHAW L. L., “Synthesis And Processing Of Nanostructured WC-Co Materials”, Journal Of Materials Science, Vol: 37, 3397-3403, 2002.
  • 9. E. BREVAL, J.P. CHENG, D.K. AGRAWAL, P. GIGL, M. DENNIS, R.ROY, A.J. PAPWORTH, Comparison between microwave and conventional sintering of WC/Co composites, Materials Science and Engineering A 391 (2005) 285–295
  • 10. D. DEMIRSKYI, H. BORODIANSKA, D. AGRAWAL, A. RAGULYA, Y. SAKKA, O. VASYLKIV, Peculiarities of the neck growth process during initial stage of spark-plasma, microwave and conventional sintering of WC spheres, Journal of Alloys and Compounds, 523, 2012, 1–10
  • 11. S-H CHANG, S-L CHEN, Characterization and properties of sintered WC–Co and WC–Ni–Fe hard metal alloys, Journal of Alloys and Compounds, Volume 585, 2014, Pages 407–413
  • 12. B. WITTMANN, W.D. SCHUBERT, B. LUX, WC grain growth and grain growth inhibition in nickel and iron binder hardmetals, Int. J. Refract. Met. Hard Mater., 20 (2002) 51–60
  • 13. J.M. GUILEMANY, I. SANCHIZ, B.G. MELLOR, N. LLORCA, J.R. MIGUEL, Mechanical-property relationships of Co/WC and Co-Ni-Fe/WC hard metal alloys, Int. J. Refract. Met. Hard Mater., 12 (1993–1994), pp. 199–206
  • 14. E. TAHERI-NASSAJ, S.H. MIRHOSSEINI, An In Situ WC–Ni Composite Fabricated By The SHS Method, Journal Of Materials Processing Technology, Volume: 142, 422–426, 2003.15. A. YÖNETKEN, A. EROL, The Effect of Microwave Sintering on the Properties of Electroless Ni Plated WC-Fe-Ni Composites, Science And Engineering Of Composite Materials, 17, 3, 191-198, 2010
  • 16. M. SINGLETON, P. NASH, The C-Ni (Carbon Nickel) System, Bulletin of Alloy Phase Diagrams, 10, 2, pp 121-126, 1989
  • 17. H OKAMOTO, Ni-W (Nickel-Tungsten), Journal of Phase Equilibria, 12, 6, 1991, p706
  • 18. D. AGRAWAL, J. CHENG, A. LACKNER, W. FERSTL, Microwave sintering of commercial WC/Co based hard metal tools, Proceedings of the Euro PM’99 Conference (1999), pp. 175–182
  • 19. ZHANG W. Z., GAO H. Y., CAO S. H., Fabrication Of Nanocrystalline WC-6C0 Composite Powder, Journal Of Central South University, Volume: 38, Issue: 5, 837-842, 2007.
  • 20. LI T., LI Q., FUHA J.Y.H., YU P. C., WU C.C., Effects Of Lower Cobalt Binder Concentrations In Sintering Of Tungsten Carbide, Materials Science and Engineering A, Vol. 430, pp. 113–119, 2006.

WC Tabanlı Sert Malzemeler Nasıl Geliştirili

Yıl 2019, Cilt: 12 Sayı: 3, 1434 - 1441, 31.12.2019
https://doi.org/10.18185/erzifbed.537711

Öz

Tungsten karbür seramikler içerisinde mükemmel korozyon direnci ve yüksek
sertliğe sahip olduğu bilinmektedir. Üstün mekanik özellikleri ve aşınma
direncinden dolayı, Co bağlayıcı içeren tungsten karbür kesici takımlar birçok
çalışmaya konu olmuştur. Tungsten karbür esaslı kompozitlerde, özellikle
mikrodalga radyasyonu ile işlem yapan, Ni ve Fe'nin bağlayıcı olarak
kullanımıyla ilgili sınırlı sayıda çalışma vardır. Bu çalışmada, elektriksiz
nikel kaplı tungsten karbür seramik tozundan yapılmış bir kompozit kesici alet
mikrodalga sinterleme ile üretildi. Kompozit kesici alet üretiminde 2 farklı
tungsten karbür toz büyüklüğü 2 µm ve 10 µm kullanıldı. Mikrodalga sinterleme,
2 saat boyunca iki farklı 1200 ve 1400 ° C sıcaklıkta gerçekleştirildi.
Kompozit kesici aletlerin karakterizasyonu XRD, sertlik, sıkıştırma testi ve
elektron mikroskobu teknikleri ile yapılmıştır.

Kaynakça

  • 1. D CLARK, WH SUTTON, Microwave processing of materials, Annu Rev Mater Sci, 26 (1996), pp. 299–331
  • 2. Y XIONG, K LAU, X ZHOU, J M. SCHOENUNG, A Streamlined Life Cycle Assessment On The Fabrication Of WC-Co Cermets, Journal Of Cleaner Production, Volume:16, 1118-1126, 2008.
  • 3. DINESH, DK, Microwave Processing of Ceramics, Current Opinion in Solid State and Materials ScienceVolume 3, Issue 5, October 1998, Pages 480–485
  • 4. K. RO¨DIGER, K. DREYER, T. GERDES, M. WILLERT-PORADA, Microwave sintering of hardmetals, International Journal of Refractory Metals and Hard Materials, 16, 4–6, 1998, 409–416
  • 5. Z.G. BAN, L. L. SHAW: Journal Of Materials Science, Volume: 37, 3397 – 3403, 2002.
  • 6. UPADHYAYA G.S., BHAUMIK S.K.: Material Science And Engineering-A, Volume:249, 105–106, 1988.
  • 7. TAEGONG R., SOHN H. Y., HAN G., HWANG K. S., MENA M., FANG Z. Z., “Nanograined WC-Co Composite Powders By Chemical Vapor Synthesis”, Metallurgical And Materials Transactions B, Vol: 39/B, 1007-1012, 2008.
  • 8. BAN Z. G., SHAW L. L., “Synthesis And Processing Of Nanostructured WC-Co Materials”, Journal Of Materials Science, Vol: 37, 3397-3403, 2002.
  • 9. E. BREVAL, J.P. CHENG, D.K. AGRAWAL, P. GIGL, M. DENNIS, R.ROY, A.J. PAPWORTH, Comparison between microwave and conventional sintering of WC/Co composites, Materials Science and Engineering A 391 (2005) 285–295
  • 10. D. DEMIRSKYI, H. BORODIANSKA, D. AGRAWAL, A. RAGULYA, Y. SAKKA, O. VASYLKIV, Peculiarities of the neck growth process during initial stage of spark-plasma, microwave and conventional sintering of WC spheres, Journal of Alloys and Compounds, 523, 2012, 1–10
  • 11. S-H CHANG, S-L CHEN, Characterization and properties of sintered WC–Co and WC–Ni–Fe hard metal alloys, Journal of Alloys and Compounds, Volume 585, 2014, Pages 407–413
  • 12. B. WITTMANN, W.D. SCHUBERT, B. LUX, WC grain growth and grain growth inhibition in nickel and iron binder hardmetals, Int. J. Refract. Met. Hard Mater., 20 (2002) 51–60
  • 13. J.M. GUILEMANY, I. SANCHIZ, B.G. MELLOR, N. LLORCA, J.R. MIGUEL, Mechanical-property relationships of Co/WC and Co-Ni-Fe/WC hard metal alloys, Int. J. Refract. Met. Hard Mater., 12 (1993–1994), pp. 199–206
  • 14. E. TAHERI-NASSAJ, S.H. MIRHOSSEINI, An In Situ WC–Ni Composite Fabricated By The SHS Method, Journal Of Materials Processing Technology, Volume: 142, 422–426, 2003.15. A. YÖNETKEN, A. EROL, The Effect of Microwave Sintering on the Properties of Electroless Ni Plated WC-Fe-Ni Composites, Science And Engineering Of Composite Materials, 17, 3, 191-198, 2010
  • 16. M. SINGLETON, P. NASH, The C-Ni (Carbon Nickel) System, Bulletin of Alloy Phase Diagrams, 10, 2, pp 121-126, 1989
  • 17. H OKAMOTO, Ni-W (Nickel-Tungsten), Journal of Phase Equilibria, 12, 6, 1991, p706
  • 18. D. AGRAWAL, J. CHENG, A. LACKNER, W. FERSTL, Microwave sintering of commercial WC/Co based hard metal tools, Proceedings of the Euro PM’99 Conference (1999), pp. 175–182
  • 19. ZHANG W. Z., GAO H. Y., CAO S. H., Fabrication Of Nanocrystalline WC-6C0 Composite Powder, Journal Of Central South University, Volume: 38, Issue: 5, 837-842, 2007.
  • 20. LI T., LI Q., FUHA J.Y.H., YU P. C., WU C.C., Effects Of Lower Cobalt Binder Concentrations In Sintering Of Tungsten Carbide, Materials Science and Engineering A, Vol. 430, pp. 113–119, 2006.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ahmet Yönetken 0000-0003-1844-7233

Ayhan Erol 0000-0002-4157-2932

Yayımlanma Tarihi 31 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 12 Sayı: 3

Kaynak Göster

APA Yönetken, A., & Erol, A. (2019). How Improved to WC Based Hard Materials. Erzincan University Journal of Science and Technology, 12(3), 1434-1441. https://doi.org/10.18185/erzifbed.537711