Let K be a field of characteristic zero, and L be the associative algebra of rank 2 over K, in the variety generated by Grassmann algebras. In this paper we study the subalgebra L^(S_2 ) of symmetric polynomials in the algebra L, and give a finite generating set for L^(S_2 ).
PI-cebiri Grassmann cebirleri simetrik polinom. PI-cebiri, Grassmann cebirleri, simetrik polinom.
𝐾 karakteristiği sıfır olan bir cisim ve 𝐿, Grassmann cebirleri tarafından üretilen varyetede, 𝐾 cismi üzerinde rankı 2 olan birleşmeli cebir olsun. Bu çalışmada, 𝐿 cebirinin 𝐿𝑆2 simetrik polinomlar alt cebiri incelenmiş ve 𝐿𝑆2 için sonlu bir üreteç kümesi verilmiştir.
Birincil Dil | İngilizce |
---|---|
Konular | Mühendislik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 18 Aralık 2021 |
Yayımlandığı Sayı | Yıl 2021 Cilt: 14 Sayı: 3 |