Araştırma Makalesi
BibTex RIS Kaynak Göster

Grassmann cebirleri sınıfında simetrik polinomlar üzerine

Yıl 2021, Cilt: 14 Sayı: 3, 907 - 913, 18.12.2021
https://doi.org/10.18185/erzifbed.732117

Öz

Let K be a field of characteristic zero, and L be the associative algebra of rank 2 over K, in the variety generated by Grassmann algebras. In this paper we study the subalgebra L^(S_2 ) of symmetric polynomials in the algebra L, and give a finite generating set for L^(S_2 ).

Kaynakça

  • Cox, D., Little, J. and O’Shea, D. (2015). “Ideals Varieties, and Algorithms 4th ed.”, Springer, New York, 345-352.
  • Drensky, V. (1996). “Free Algebras and PI-Algebras”, Springer, Singapore, 12-51.
  • Krakovski, D. and Regev, A. 1973. “The Polynomial Identities of the Grassmann Algebra”, Trans. Amer. Math. Soc., 181, 429-438.
  • Latyshev, V.N., 1976. “Partially Ordered Sets and Nonmatrix Identities of Associative Algebras” Algebr. Log., 15(1), 34-45.
  • Strumfels, B. (2008). “Algorithms in Invariant Theory 2nd ed.”, Springer-Verlag, Wien, 2-6.
  • van der Waerden, B.L. (1949). “Modern Algebra”, F. Ungar, New York, 78-82.

On the symmetric polynomials in the variety of Grassmann algebras

Yıl 2021, Cilt: 14 Sayı: 3, 907 - 913, 18.12.2021
https://doi.org/10.18185/erzifbed.732117

Öz

𝐾 karakteristiği sıfır olan bir cisim ve 𝐿, Grassmann cebirleri tarafından üretilen varyetede, 𝐾 cismi üzerinde rankı 2 olan birleşmeli cebir olsun. Bu çalışmada, 𝐿 cebirinin 𝐿𝑆2 simetrik polinomlar alt cebiri incelenmiş ve 𝐿𝑆2 için sonlu bir üreteç kümesi verilmiştir.

Kaynakça

  • Cox, D., Little, J. and O’Shea, D. (2015). “Ideals Varieties, and Algorithms 4th ed.”, Springer, New York, 345-352.
  • Drensky, V. (1996). “Free Algebras and PI-Algebras”, Springer, Singapore, 12-51.
  • Krakovski, D. and Regev, A. 1973. “The Polynomial Identities of the Grassmann Algebra”, Trans. Amer. Math. Soc., 181, 429-438.
  • Latyshev, V.N., 1976. “Partially Ordered Sets and Nonmatrix Identities of Associative Algebras” Algebr. Log., 15(1), 34-45.
  • Strumfels, B. (2008). “Algorithms in Invariant Theory 2nd ed.”, Springer-Verlag, Wien, 2-6.
  • van der Waerden, B.L. (1949). “Modern Algebra”, F. Ungar, New York, 78-82.
Toplam 6 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Nazan Akdoğan 0000-0003-3207-8198

Yayımlanma Tarihi 18 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 14 Sayı: 3

Kaynak Göster

APA Akdoğan, N. (2021). On the symmetric polynomials in the variety of Grassmann algebras. Erzincan University Journal of Science and Technology, 14(3), 907-913. https://doi.org/10.18185/erzifbed.732117