Araştırma Makalesi
BibTex RIS Kaynak Göster

Modern Doğal Dil İşleme Yaklaşımları Kullanarak Çevrimiçi Müşteri Yorumlarının Duygu Analizi

Yıl 2025, Sayı: 23, 22 - 40, 30.09.2025
https://doi.org/10.29157/etusbed.1711500

Öz

Bu çalışmada, İzmir’de faaliyet gösteren dört deniz ürünleri restoranına yapılan Türkçe çevrimiçi müşteri yorumları kullanılarak duygu analizi gerçekleştirilmiştir. Analiz sürecinde modern doğal dil işleme yaklaşımlarından yararlanılmış; bunlar arasında BERT için kullanılan bir Türkçe duygu analizi modeli ile sıfır atışlı metin sınıflandırma yöntemi kapsamında kullanılan çok dilli modeller yer almaktadır. Bunlara ek olarak, OpenAI 4o, Gemini 2.0 Flash ve DeepSeek V3 gibi Büyük Dil Modelleri (BDM) de değerlendirmeye dahil edilmiştir. Model performansları doğruluk, kesinlik, duyarlılık ve F1 puanı metrikleri aracılığıyla ölçülmüştür. Elde edilen bulgular, özellikle DeepSeek V3 başta olmak üzere BDM’lerin yüksek performans sergilediğini ve bağlamsal temsilleri etiketlenmemiş veri kümelerinde dahi etkili biçimde işleyebildiğini ortaya koymaktadır.
Ayrıca müşteri memnuniyetindeki zamansal değişimleri izleyebilmek amacıyla restoranlara yönelik dört yıllık bir dönemdeki duygu eğilimleri analiz edilmiştir. Bu yaklaşım sayesinde restoranların zaman içerisindeki performans farklılıkları ortaya konmakta ve müşteri beklentilerine yönelik sürdürülebilir iyileştirme stratejilerinin geliştirilmesine olanak tanınmaktadır. Önerilen yöntem, yöneticilerin müşteri memnuniyetini izlemeleri, hizmet kalitesini değerlendirmeleri ve olası memnuniyetsizlik nedenlerini tespit etmeleri açısından hızlı ve veri odaklı bir çözüm sunmakta; böylece stratejik karar alma süreçlerini desteklemekte ve kurumsal imaj yönetimine katkı sağlamaktadır.

Kaynakça

  • Akter, P., Hossain, S., Siddique, M. T., Ayub, M. I., Nath, A., Nath, P. C., Rasel, M., & Hassan, M. M. (2025). Sentiment Analysis of Consumer Feedback and Its Impact on Business Strategies by Machine Learning. The American Journal of Applied Sciences, 07 (01), 6–16. doi:10.37547/tajas/volume07issue01-02
  • Al-Barrak, M. A., & Al-Alawi, A. I. (2024). Sentiment Analysis on Customer Feedback for Improved Decision Making: A Literature Review. In 2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS) (pp. 207–212). IEEE. doi:10.1109/icetsis61505.2024.10459452
  • Almalis, I., Kouloumpris, E., & Vlahavas, I. (2022). Sector-Level Sentiment Analysis with Deep Learning. Knowledge-Based Systems, 258 (109954), 109954. doi:10.1016/j.knosys.2022.109954
  • Alrehili, A., & Albalawi, K. (2019). Sentiment Analysis of Customer Reviews Using Ensemble Method. In 2019 International Conference on Computer and Information Sciences (ICCIS). IEEE. doi:10.1109/iccisci.2019.8716454
  • Arılı Öztürk, E., Turan Gökduman, C., & Çanakçi, B. C. (2025). Evaluation of the performance of ChatGPT‐4 and ChatGPT‐4o as a learning tool in endodontics. International Endodontic Journal (Early View). doi:10.1111/iej.14217
  • Beltagy, I., Lo, K., & Cohan, A. (2019). SciBERT: A pretrained language model for scientific text. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (pp. 3615-3620). Association for Computational Linguistics. doi:10.18653/v1/d19-1371
  • Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the Dangers of Stochastic Parrots. In FAccT ’21: 2021 ACM Conference on Fairness, Accountability, and Transparency (pp. 610-623). Association for Computing Machinery. doi:10.1145/3442188.3445922
  • Bharathi Mohan, G., Prasanna Kumar, R., Vishal Krishh, P., Keerthinathan, A., Lavanya, G., Meghana, M. K. U., Sulthana, S., & Doss, S. (2024). An Analysis of Large Language Models: Their Impact and Potential Applications. Knowledge and Information Systems, 66 (9), 5047–5070. doi:10.1007/s10115-024-02120-8
  • Birim, A., Erden, M., & Arslan, L. M. (2021). Zero-shot Turkish Text Classification. In 2021 29th Signal Processing and Communications Applications Conference (SIU). IEEE. doi:10.1109/siu53274.2021.9477864
  • Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). Language Models are Few-Shot Learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), 34th International Conference on Neural Information Processing Systems (pp. 1877–1901), Curran Associates Inc. doi:10.5555/3495724.3495883
  • Çelik, E., & Dalyan, T. (2023). Unified Benchmark for Zero-Shot Turkish Text Classification. Information Processing & Management, 60 (3), 103298. doi:10.1016/j.ipm.2023.103298
  • Celuch, K., Robinson, N. M., & Walsh, A. M. (2015). A Framework for Encouraging Retail Customer Feedback. Journal of Services Marketing, 29 (4), 280–292. doi:10.1108/jsm-02-2014-0062
  • Cernian, A., Sgarciu, V., & Martin, B. (2015). Sentiment Analysis from Product Reviews Using SentiWordNet as Lexical Resource. In 2015 7th International Conference on Electronics, Computers and Artificial Intelligence (ECAI) (WE-15 - WE-18). IEEE. doi:10.1109/ecai.2015.7301224
  • Chakraborty, S. (2023). Sentiment Analysis in the Perspective of Natural Language Processing. International Journal for Research in Applied Science and Engineering Technology, 11 (11), 2235–2241. doi:10.22214/ijraset.2023.56925
  • Chaudhary, S. (2024). Now Streaming Sentiments: A Comparative Analysis of GPT and Gemini in Evaluation of OTT Streaming Show Reviews. In 2024 Conference on AI, Science, Engineering, and Technology (AIxSET) (pp. 61–68). IEEE. doi:10.1109/aixset62544.2024.00014
  • Chen, M.-J., & Farn, C.-K. (2020). Examining the Influence of Emotional Expressions in Online Consumer Reviews on Perceived Helpfulness. Information Processing & Management, 57 (6), 102266. doi:10.1016/j.ipm.2020.102266
  • Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., Grave, E., Ott, M., Zettlemoyer, L., & Stoyanov, V. (2019). Unsupervised Cross-lingual Representation Learning at Scale (Version 2). arXiv. doi:10.48550/ARXIV.1911.02116
  • Davison, J. (2024). XLM-RoBERTa-Large-XNLI. Hugging Face. https://huggingface.co/joeddav/xlm-roberta-large-xnli (February 3, 2025)
  • DeepSeek-AI, Liu, A., Feng, B., Xue, B., Wang, B., Wu, B., Lu, C., Zhao, C., Deng, C., Zhang, C., Ruan, C., Dai, D., Guo, D., Yang, D., Chen, D., Ji, D., Li, E., Lin, F., Dai, F., ... Pan, Z. (2024). DeepSeek-V3 Technical Report (Version 2). arXiv. doi:10.48550/ARXIV.2412.19437
  • Deng, S., Sinha, A. P., & Zhao, H. (2017). Resolving Ambiguity in Sentiment Classification. ACM Transactions on Management Information Systems, 8 (2–3), 1–13. doi:10.1145/3046684
  • Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. ArXiv. doi:10.48550/ARXIV.1810.04805
  • Dheemonth, K., Manonmani, S., Shobha, G., & De Hilster, D. (2024). Sentiment Analysis on Cricket Tweets Using NLP++. In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT). IEEE. doi:10.1109/icccnt61001.2024.10724047
  • Eshkevari, M., Jahangoshai Rezaee, M., Saberi, M., & Hussain, O. K. (2022). An End-To-End Ranking System Based on Customers Reviews: Integrating Semantic Mining and MCDM Techniques. Expert Systems with Applications, 209 (118294), 118294. doi:10.1016/j.eswa.2022.118294
  • Faizi, R., & El Fkihi, S. (2019). Exploring the role of customer reviews in driving business growth. In P. Kommers & G. C. Peng (Eds.), ICT, Society and Human Beings 2019, Connected Smart Cities 2019, Web Based Communities and Social Media 2019 (pp. 410-414). IADIS Press. doi:10.33965/wbc2019_201908c053
  • Fundin, A. P., & Bergman, B. L. S. (2003). Exploring the Customer Feedback Process. Measuring Business Excellence, 7 (2), 55–65. doi:10.1108/13683040310477995
  • Garrido-Merchan, E. C., Gozalo-Brizuela, R., & Gonzalez-Carvajal, S. (2023). Comparing BERT Against Traditional Machine Learning Models in Text Classification. Journal of Computational and Cognitive Engineering, 2 (4), 352–356. doi:10.47852/bonviewjcce3202838
  • Gera, A., Halfon, A., Shnarch, E., Perlitz, Y., Ein-Dor, L., & Slonim, N. (2022). Zero-Shot Text Classification with Self-Training. In Y. Goldberg, Z. Kozareva, & Y. Zhang (Eds.), 2022 Conference on Empirical Methods in Natural Language Processing (pp. 1107–1119). Association for Computational Linguistics. doi:10.18653/v1/2022.emnlp-main.73
  • Google Cloud (2025). Gemini 2.0 Flash. https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-0-flash (May 8, 2025)
  • Hauthal, E., Burghardt, D., Fish, C., & Griffin, A. L. (2020). Sentiment Analysis. Audrey Kobayashi (Ed.), International Encyclopedia of Human Geography (Secon Edition). Elsevier, 169–177. doi:10.1016/b978-0-08-102295-5.10593-1
  • He, P., Gao, J., & Chen, W. (2021). DeBERTaV3: Improving DeBERTa using ELECTRA-Style Pre-Training with Gradient-Disentangled Embedding Sharing (Version 4). arXiv. doi:10.48550/ARXIV.2111.09543
  • Hemalatha, B., & Velmurugan, T. (2020). Impact of Customer Feedback System Using Machine Learning Algorithms for Sentiment Mining. International Journal of Innovative Technology and Exploring Engineering, 9 (4), 1475–1483. doi:10.35940/ijitee.d1537.029420
  • Hennig-Thurau, T., Gwinner, K. P., Walsh, G., & Gremler, D. D. (2004). Electronic Word-Of-Mouth via Consumer-Opinion Platforms: What Motivates Consumers to Articulate Themselves on the Internet?. Journal of Interactive Marketing, 18 (1), 38–52. doi:10.1002/dir.10073
  • Henrickson, K., Rodrigues, F., & Pereira, F. C. (2019). Data Preparation. Constantinos Antoniou, Loukas Dimitriou, & Francisco Pereira (Eds.), Mobility Patterns, Big Data and Transport Analytics. Elsevier, 73–106. doi:10.1016/b978-0-12-812970-8.00005-1
  • Hudson, M. (2008). Listening to Customers: How EBSCO Plans Enhancements and Product Acquisitions Based on Customer Feedback. Public Library Quarterly, 27 (2), 151–156. doi:10.1080/01616840802114978
  • İncidelen, M., & Aydoğan, M. (2025). Sentiment Analysis in Turkish Using Language Models: A Comparative Study. European Journal of Technique (EJT), 15 (1), 68-74. doi:10.36222/ejt.1592448
  • Kalaivani, K. S., & Kuppuswami, S. (2023). Exploring The Use of Syntactic Dependency Features for Document-Level Sentiment Classification. Bulletin of the Polish Academy of Sciences Technical Sciences, 67 (2), 339-347. doi:10.24425/bpas.2019.128608
  • Kapočiūtė-Dzikienė, J., Damaševičius, R., & Woźniak, M. (2019). Sentiment Analysis of Lithuanian Texts Using Traditional and Deep Learning Approaches. Computers, 8 (1), 4. doi:10.3390/computers8010004
  • Karuna, N. M. H., Suarjaya, I. M. A. D., & Sutramiani, N. P. (2024). Sentiment Analysis of Hotel Reviews Using Logistic Regression and Random Forest Methods. JITTER : Jurnal Ilmiah Teknologi Dan Komputer, 5 (3), 2233. doi:10.24843/jtrti.2024.v05.i03.p04
  • Katole, H. J. (2022). A Research Article on Importance of Online Customer Reviews on Customer Purchase. The Business & Management Review, 13 (03), 23–30. doi:10.24052/bmr/v13nu03/art-04
  • Kayakuş, M., Yiğit Açikgöz, F., Dinca, M. N., & Kabas, O. (2024). Sustainable Brand Reputation: Evaluation of iPhone Customer Reviews with Machine Learning and Sentiment Analysis. Sustainability, 16 (14), 6121. doi:10.3390/su16146121
  • Khan, A., Majumdar, D., & Mondal, B. (2025). Sentiment Analysis of Emoji Fused Reviews Using Machine Learning and Bert. Scientific Reports, 15 (1). doi:10.1038/s41598-025-92286-0
  • Kotsonis, M. E., Abramson, S. R., Loeb, K. C., & Wattenbarger, B. L. (1989). In The Customer’s Hands: Making the Most of User Feedback. AT & T Technical Journal, 68 (5), 69–79. doi:10.1002/j.1538-7305.1989.tb00088.x
  • Kyritsis, K., Perikos, I., & Paraskevas, M. (2023). Zero-Shot Sentiment Analysis Exploring BART Models. In 2023 IEEE/ACIS 8th International Conference on Big Data, Cloud Computing, and Data Science (BCD) (pp. 192–197). IEEE. doi:10.1109/bcd57833.2023.10466289
  • Laksono, R. A., Sungkono, K. R., Sarno, R., & Wahyuni, C. S. (2019). Sentiment Analysis of Restaurant Customer Reviews On Tripadvisor Using Naïve Bayes. In 2019 12th International Conference on Information & Communication Technology and System (ICTS). IEEE. doi:10.1109/icts.2019.8850982
  • Laurer, M., van Atteveldt, W., Casas, A., & Welbers, K. (2023). Less Annotating, More Classifying: Addressing the Data Scarcity Issue of Supervised Machine Learning with Deep Transfer Learning and BERT-NLI. Political Analysis, 32 (1), 84–100. doi:10.1017/pan.2023.20
  • Lebret, R., & Collobert, R. (2014). N-Gram-Based Low-Dimensional Representation for Document Classification. ArXiv. doi:10.48550/ARXIV.1412.6277
  • Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., & Kang, J. (2020). BioBERT: A Pre-Trained Biomedical Language Representation Model for Biomedical Text Mining. Bioinformatics (Oxford, England), 36 (4), 1234–1240. doi:10.1093/bioinformatics/btz682
  • Liao, H. (2025). Deepseek Large-Scale Model: Technical Analysis and Development Prospect. Journal of Computer Science and Electrical Engineering, 7 (1). doi:10.61784/jcsee3035
  • Lin, X. (2020). Sentiment Analysis of E-Commerce Customer Reviews Based on Natural Language Processing. In ISBDAI ’20: 2020 2nd International Conference on Big Data and Artificial Intelligence (pp. 32-36). Association for Computing Machinery. doi:10.1145/3436286.3436293
  • Liu, T., Hu, Y., Chen, P., Sun, Y., & Yin, B. (2023). Zero-Shot Text Classification with Semantically Extended Textual Entailment. In 2023 International Joint Conference on Neural Networks (IJCNN). IEEE. doi:10.1109/ijcnn54540.2023.10191094
  • Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Omer Levy, Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach. ArXiv. doi:10.48550/ARXIV.1907.11692
  • Lohse, T. M. & Kemper, J. (2019). Online customer reviews as driver of customer loyalty. In Fortieth International Conference on Information Systems, Munich, Germany. https://aisel.aisnet.org/icis2019/business_models/business_models/3
  • Manias, G., Mavrogiorgou, A., Kiourtis, A., Symvoulidis, C., & Kyriazis, D. (2023). Multilingual Text Categorization and Sentiment Analysis: A Comparative Analysis of The Utilization of Multilingual Approaches for Classifying Twitter Data. Neural Computing and Applications, 35 (29), 21415–21431. doi:10.1007/s00521-023-08629-3
  • Martina Jose Mary, M., Devi, S. R., Yogeshkannah, K., Prem, S., Pooranachandiran, G., & Viyash, V. (2024). Multilingual Sentiment Analysis for Youtube Educational Videos Using NLP And Machine Learning Approaches. In 2024 Third International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN). IEEE. doi:10.1109/icstsn61422.2024.10671276
  • Masarifoglu, M., Tigrak, U., Hakyemez, S., Gul, G., Bozan, E., Buyuklu, A. H., & Özgür, A. (2021). Sentiment Analysis of Customer Comments in Banking Using BERT-Based Approaches. In 2021 29th Signal Processing and Communications Applications Conference (SIU). IEEE. doi:10.1109/siu53274.2021.9477890
  • Masood, M. A., Abbasi, R. A., & Wee Keong, N. (2020). Context-Aware Sliding Window for Sentiment Classification. IEEE Access: Practical Innovations, Open Solutions, 8, 4870–4884. doi:10.1109/access.2019.2963586
  • Matarazzo, A., & Torlone, R. (2025). A Survey on Large Language Models with some Insights on their Capabilities and Limitations. ArXiv. doi:10.48550/ARXIV.2501.04040
  • Mickus, T., Paperno, D., Constant, M., & van Deemter, K. (2020). What Do You Mean, BERT? Assessing BERT as a Distributional Semantics Model. Society for Computation in Linguistics, 3 (1), 350-361. doi: doi:10.7275/t778-ja71
  • Mingo, H. (2024). Enhancing Sentiment Analysis with Logistic Regression and NLP: A Case Study Of 2023 Amazon Software Reviews. In 2024 International Symposium on Networks, Computers and Communications (ISNCC). IEEE. doi:10.1109/isncc62547.2024.10759007
  • Mostafa, M., & AlSaeed, A. (2022). Sentiment Analysis Based on Bert for Amazon Reviewer. Journal of the ACS Advances in Computer Science, 13 (1), 1–10. doi:10.21608/asc.2023.171559.1007
  • Murad, I. A., Khaleel, M. I., & Shakor, M. Y. (2024). Unveiling GPT-4o: Enhanced Multimodal Capabilities and Comparative Insights with ChatGPT-4. International Journal of Electronics and Communications Systems, 4 (2), 127. doi:10.24042/ijecs.v4i2.25079
  • Nazar, S. R., & Bhattasali, T. (2021). Sentiment Analysis of Customer Reviews. Azerbaijan Journal of High Performance Computing, 4 (1), 113–125. doi:10.32010/26166127.2021.4.1.113.125
  • Nicholls, C. & Song, F. (2010). Comparison of Feature Selection Methods for Sentiment Analysis. In A. Farzindar, & V. Kešelj (Eds.), Advances in Artificial Intelligence. Canadian AI 2010. Lecture Notes in Computer Science vol 6085 (pp. 286-289). Springer. doi:10.1007/978-3-642-13059-5_30
  • OpenAI (n.d.). GPT-4o. Open AI. https://platform.openai.com/docs/models/gpt-4o (May 8, 2025)
  • Orea-Giner, A., Fuentes-Moraleda, L., Villacé-Molinero, T., Muñoz-Mazón, A., & Calero-Sanz, J. (2022). Does The Implementation of Robots in Hotels Influence the Overall Tripadvisor Rating? A Text Mining Analysis from the Industry 5.0 Approach. Tourism Management, 93 (104586), 104586. doi:10.1016/j.tourman.2022.104586
  • Panduro-Ramirez, J. (2024). Sentiment Analysis in Customer Reviews for Product Recommendation in E-Commerce Using Machine Learning. In 2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI). IEEE. doi:10.1109/accai61061.2024.10602027
  • Patra, G. K. (2023). A Sentiment Analysis of Customer Product Review Based on Machine Learning Techniques in E-Commerce. Journal of Artificial Intelligence & Cloud Computing, 2 (4), 1–4. doi:10.47363/jaicc/2023(2)389
  • Phoenix, J., & Taylor, M. (2024). Prompt Engineering for Generative AI. Sebastopol, CA: O’Reilly Media.
  • Pocchiari, M., Proserpio, D., & Dover, Y. (2024). Online Reviews: A Literature Review and Roadmap for Future Research. International Journal of Research in Marketing, Article in Press. doi:10.1016/j.ijresmar.2024.08.009
  • Polatgil, M. (2024). Togg Otomobilleri Youtube Video Yorumlarının Duygu Analizi ve Makine Öğrenme Modeli ile İncelenmesi. Uluslararası Anadolu Sosyal Bilimler Dergisi, 8 (1), 15-35. doi:10.47525/ulasbid.1398206
  • Pourpanah, F., Abdar, M., Luo, Y., Zhou, X., Wang, R., Lim, C. P., Wang, X-Z., & Wu, Q. M. J. (2023). A Review of Generalized Zero-Shot Learning Methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45 (4), 4051–4070. doi:10.1109/TPAMI.2022.3191696
  • Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language Models Are Unsupervised Multitask Learners. OpenAI Blog. https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf (April 17, 2025).
  • Rajalakshmi, S., Asha, S., & Pazhaniraja, N. (2017). A Comprehensive Survey on Sentiment Analysis. In 2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN). IEEE. doi:10.1109/icscn.2017.8085673
  • Revathi, K. L., Satish, A. R., & Rao, P. S. (2023). Fine - Grained Sentiment Analysis on Online Reviews. In 2023 Third International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT). IEEE. doi:10.1109/ICAECT57570.2023.10118291
  • Roumeliotis, K. I., Tselikas, N. D., & Nasiopoulos, D. K. (2024). Leveraging Large Language Models in Tourism: A Comparative Study of the Latest GPT Omni Models and BERT NLP for Customer Review Classification and Sentiment Analysis. Information, 15 (12), 792. doi:10.3390/info15120792
  • Ruiz-Millán, J. A., Martínez-Cámara, E., Victoria Luzón, M., & Herrera, F. (2022). Personalised federated learning with BERT fine tuning. Case study on Twitter sentiment analysis. In L., Troiano, A., Vaccaro, R., Tagliaferri, N., Kesswani, I. D., Rodriguez, I. Brigui, & D. Parente (Eds.), Advances in Deep Learning, Artificial Intelligence and Robotics. Lecture Notes in Networks and Systems, vol 249 (pp. 193–202). Springer. doi:10.1007/978-3-030-85365-5_19
  • Sabharwal, N., & Agrawal, A. (2021). Future of BERT Models. Navin Sabharwal, & Amit Agrawal (Eds.), Hands-on Question Answering Systems with BERT. Apress: Berkeley, 173–178. doi:10.1007/978-1-4842-6664-9_7
  • Sabiri, B., Khtira, A., El Asri, B., & Rhanoui, M. (2023). Analyzing BERT’s performance compared to traditional text classification models. In J. Filipe, M. Śmiałek, A. Brodsky, & S. Hammoudi (Eds.), Proceedings of the 25th International Conference on Enterprise Information Systems (pp. 572–582). SciTePress. doi:10.5220/0011983100003467
  • Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. ArXiv. doi:10.48550/ARXIV.1910.01108
  • Saragih, H., & Manurung, J. (2024). Leveraging the BERT Model for Enhanced Sentiment Analysis in Multicontextual Social Media Content. Jurnal Teknik Informatika C.I.T Medicom, 16 (2), 82–89. doi:10.35335/cit.vol16.2024.766
  • Sarma, S. (2023). Zero-Shot Learning for Computer Vision Applications. In MM ’23: The 31st ACM International Conference on Multimedia (pp. 9360–9364). Association for Computing Machinery. doi:10.1145/3581783.3613435
  • Schweter, S. (2020). BERTurk - BERT models for Turkish (Version 1.0.0). Zenodo. doi:10.5281/ZENODO.3770924
  • Shah, Z., & Rai, S. (2022). A Research Paper on the Effects of Customer Feedback on Business. International Journal of Advanced Research in Science, Communication and Technology, 672–675. doi:10.48175/ijarsct-5743
  • Shen, Y., & Zhang, P. K. (2024). Financial Sentiment Analysis on News and Reports Using Large Language Models and FinBERT. In 2024 IEEE 6th International Conference on Power, Intelligent Computing and Systems (ICPICS) (pp. 717–721). IEEE. doi:10.1109/icpics62053.2024.10796670
  • Shukla, D., & Dwivedi, S. K. (2024). The Study of the Effect of Preprocessing Techniques for Emotion Detection on Amazon Product Review Dataset. Social Network Analysis and Mining, 14 (1). doi:10.1007/s13278-024-01352-4
  • Singh, A., Hasan, Z., & Paranjape, V. (2023). Analyzing Sentiment and Emotion in Omicron-Related Social Media Content: An NLP Perspective. International Journal of Innovative Research in Computer and Communication Engineering, 10 (01), 279–283. doi:10.15680/ijircce.2022.1001046
  • Sree Harsha, S., Krishna Swaroop, K., & Chandavarkar, B. R. (2021). Natural Language Inference: Detecting Contradiction and Entailment in Multilingual Text. In K. R. Venugopal, P. D. Shenoy, R. Buyya, L. M. Patnaik, S. S. Iyengar (Eds.), Data Science and Computational Intelligence. ICInPro 2021. Communications in Computer and Information Science, vol 1483 (pp. 314-327) Springer. doi:10.1007/978-3-030-91244-4_25
  • Stine, R. A. (2019). Sentiment Analysis. Annual Review of Statistics and Its Application, 6 (1), 287–308. doi:10.1146/annurev-statistics-030718-105242
  • Swamy, T. N., Lakshmi, J. K., Uma, M. P., Reshma, D., & Jayanth, D. (2022). Multimedia Sentiment Analysis on Public Social Network Using NLP. International Journal for Research Trends and Innovation, 7 (8), 825-830.
  • Taherdoost, H., & Madanchian, M. (2023). Artificial Intelligence and Sentiment Analysis: A Review in Competitive Research. Computers, 12 (2), 37. doi:10.3390/computers12020037
  • Tanuwijaya, C. K., Ellitan, L., & Lukito, R. S. H. (2023). The Effect of Online Customer Reviews on Purchase Intention with Customer Trust as a Variable in Purchase Decision on Sociolla Consumers. Journal of Entrepreneurship & Business, 4 (3), 192–203. doi:10.24123/jeb.v4i3.5764
  • Teke, B., Yazıcı, S. N., Zamir, G., Budak, A. B., & Karabey Aksakallı, I. (2025). Berturk-Based Sentiment Analysis on E-Commerce Multi Domain Product Reviews. Afyon Kocatepe University Journal of Sciences and Engineering, 25 (3), 497–509. doi:10.35414/akufemubid.1537513
  • Tsiligaridis, J. (2024). Approaches of classification models for Sentiment Analysis. In D. C. Wyld & D. Nagamalai (Eds.), 5th International Conference on Advanced Natural Language Processing (pp. 81-86). Computer Science & Information Technology (CS & IT). doi:10.5121/csit.2024.141007
  • Tuzcu, S. (2020). Çevrimiçi Kullanıcı Yorumlarının Duygu Analizi ile Sınıflandırılması. ESTUDAM Bilişim Dergisi, 1 (2), 1–5.
  • Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., Polosukhin, I. (2017). Attention Is All You Need. ArXiv. doi:10.48550/ARXIV.1706.03762
  • Viet, N. V., & Vinh, N. T. (2024). Large Language Models in Software Engineering. Journal of Education for Sustainable Innovation, 2 (2), 146–156. doi:10.56916/jesi.v2i2.968
  • Weidinger, L., Mellor, J., Rauh, M., Griffin, C., Uesato, J., Huang, P.-S., ... Gabriel, I. (2021). Ethical and Social Risks of Harm from Language Models. ArXiv. doi:10.48550/ARXIV.2112.04359
  • Willemsen, L. M., Neijens, P. C., & Bronner, F. (2012). The Ironic Effect of Source Identification on the Perceived Credibility of Online Product Reviewers. Journal of Computer-Mediated Communication: JCMC, 18 (1), 16–31. doi:10.1111/j.1083-6101.2012.01598.x
  • Wirtz, J., & Tomlin, M. (2000). Institutionalising Customer‐Driven Learning Through Fully Integrated Customer Feedback Systems. Managing Service Quality, 10 (4), 205–215. doi:10.1108/09604520010341654
  • Wirtz, J., Kuan Tambyah, S., & Mattila, A. S. (2010). Organizational Learning from Customer Feedback Received by Service Employees. Journal of Service Management, 21 (3), 363–387. doi:10.1108/09564231011050814
  • Xue, Q. (2024). Unlocking The Potential: A Comprehensive Exploration of Large Language Models in Natural Language Processing. Applied and Computational Engineering, 57 (1), 247–252. doi:10.54254/2755-2721/57/20241341
  • Yang, L., Charoenporn, T., & Sornlertlamvanich, V. (2024). Comparative Study of Traditional Machine Learning and Quantum Computing in Natural Language Processing: A Case Study on Sentiment Analysis. In 2024 IEEE International Symposium on Consumer Technology (ISCT) (pp. 269–273). doi:10.1109/isct62336.2024.10791272
  • Yildirim, S. (2024). Fine-Tuning Transformer-Based Encoder for Turkish Language Understanding Tasks. ArXiv. doi:10.48550/ARXIV.2401.17396
  • Zhang, C., Fan, C., Yao, W., Hu, X., & Mostafavi, A. (2019). Social Media for Intelligent Public Information and Warning in Disasters: An Interdisciplinary Review. International Journal of Information Management, 49, 190–207. doi:10.1016/j.ijinfomgt.2019.04.004

Sentiment Analysis of Online Customer Reviews Using Modern Natural Language Processing Approaches

Yıl 2025, Sayı: 23, 22 - 40, 30.09.2025
https://doi.org/10.29157/etusbed.1711500

Öz

In this study, sentiment analysis was conducted using Turkish online customer reviews of four seafood restaurants based in İzmir. Modern natural language processing approaches were employed as part of the analysis, including a Turkish sentiment analysis model for BERT and multilingual models within the framework of zero-shot text classification. In addition, large language models (LLMs) such as OpenAI 4o, Gemini 2.0 Flash, and DeepSeek V3 were evaluated. Model performance was assessed using evaluation metrics, including accuracy, precision, recall, and F1 score. The findings indicate that LLMs—particularly DeepSeek V3—demonstrated high performance and could effectively process contextual representations even in unlabelled datasets.
Furthermore, sentiment trends towards restaurants over a four years were analysed to track temporal changes in customer satisfaction. This approach revealed temporal performance differences among the restaurants over time and enabled the development of sustainable improvement strategies aligned with customer expectations. The proposed method offers a fast and data-driven solution to assist managers in monitoring customer satisfaction, evaluating service quality, and identifying underlying causes of dissatisfaction, supporting strategic decision-making processes and contributing to corporate image management.

Kaynakça

  • Akter, P., Hossain, S., Siddique, M. T., Ayub, M. I., Nath, A., Nath, P. C., Rasel, M., & Hassan, M. M. (2025). Sentiment Analysis of Consumer Feedback and Its Impact on Business Strategies by Machine Learning. The American Journal of Applied Sciences, 07 (01), 6–16. doi:10.37547/tajas/volume07issue01-02
  • Al-Barrak, M. A., & Al-Alawi, A. I. (2024). Sentiment Analysis on Customer Feedback for Improved Decision Making: A Literature Review. In 2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS) (pp. 207–212). IEEE. doi:10.1109/icetsis61505.2024.10459452
  • Almalis, I., Kouloumpris, E., & Vlahavas, I. (2022). Sector-Level Sentiment Analysis with Deep Learning. Knowledge-Based Systems, 258 (109954), 109954. doi:10.1016/j.knosys.2022.109954
  • Alrehili, A., & Albalawi, K. (2019). Sentiment Analysis of Customer Reviews Using Ensemble Method. In 2019 International Conference on Computer and Information Sciences (ICCIS). IEEE. doi:10.1109/iccisci.2019.8716454
  • Arılı Öztürk, E., Turan Gökduman, C., & Çanakçi, B. C. (2025). Evaluation of the performance of ChatGPT‐4 and ChatGPT‐4o as a learning tool in endodontics. International Endodontic Journal (Early View). doi:10.1111/iej.14217
  • Beltagy, I., Lo, K., & Cohan, A. (2019). SciBERT: A pretrained language model for scientific text. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (pp. 3615-3620). Association for Computational Linguistics. doi:10.18653/v1/d19-1371
  • Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the Dangers of Stochastic Parrots. In FAccT ’21: 2021 ACM Conference on Fairness, Accountability, and Transparency (pp. 610-623). Association for Computing Machinery. doi:10.1145/3442188.3445922
  • Bharathi Mohan, G., Prasanna Kumar, R., Vishal Krishh, P., Keerthinathan, A., Lavanya, G., Meghana, M. K. U., Sulthana, S., & Doss, S. (2024). An Analysis of Large Language Models: Their Impact and Potential Applications. Knowledge and Information Systems, 66 (9), 5047–5070. doi:10.1007/s10115-024-02120-8
  • Birim, A., Erden, M., & Arslan, L. M. (2021). Zero-shot Turkish Text Classification. In 2021 29th Signal Processing and Communications Applications Conference (SIU). IEEE. doi:10.1109/siu53274.2021.9477864
  • Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). Language Models are Few-Shot Learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), 34th International Conference on Neural Information Processing Systems (pp. 1877–1901), Curran Associates Inc. doi:10.5555/3495724.3495883
  • Çelik, E., & Dalyan, T. (2023). Unified Benchmark for Zero-Shot Turkish Text Classification. Information Processing & Management, 60 (3), 103298. doi:10.1016/j.ipm.2023.103298
  • Celuch, K., Robinson, N. M., & Walsh, A. M. (2015). A Framework for Encouraging Retail Customer Feedback. Journal of Services Marketing, 29 (4), 280–292. doi:10.1108/jsm-02-2014-0062
  • Cernian, A., Sgarciu, V., & Martin, B. (2015). Sentiment Analysis from Product Reviews Using SentiWordNet as Lexical Resource. In 2015 7th International Conference on Electronics, Computers and Artificial Intelligence (ECAI) (WE-15 - WE-18). IEEE. doi:10.1109/ecai.2015.7301224
  • Chakraborty, S. (2023). Sentiment Analysis in the Perspective of Natural Language Processing. International Journal for Research in Applied Science and Engineering Technology, 11 (11), 2235–2241. doi:10.22214/ijraset.2023.56925
  • Chaudhary, S. (2024). Now Streaming Sentiments: A Comparative Analysis of GPT and Gemini in Evaluation of OTT Streaming Show Reviews. In 2024 Conference on AI, Science, Engineering, and Technology (AIxSET) (pp. 61–68). IEEE. doi:10.1109/aixset62544.2024.00014
  • Chen, M.-J., & Farn, C.-K. (2020). Examining the Influence of Emotional Expressions in Online Consumer Reviews on Perceived Helpfulness. Information Processing & Management, 57 (6), 102266. doi:10.1016/j.ipm.2020.102266
  • Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., Grave, E., Ott, M., Zettlemoyer, L., & Stoyanov, V. (2019). Unsupervised Cross-lingual Representation Learning at Scale (Version 2). arXiv. doi:10.48550/ARXIV.1911.02116
  • Davison, J. (2024). XLM-RoBERTa-Large-XNLI. Hugging Face. https://huggingface.co/joeddav/xlm-roberta-large-xnli (February 3, 2025)
  • DeepSeek-AI, Liu, A., Feng, B., Xue, B., Wang, B., Wu, B., Lu, C., Zhao, C., Deng, C., Zhang, C., Ruan, C., Dai, D., Guo, D., Yang, D., Chen, D., Ji, D., Li, E., Lin, F., Dai, F., ... Pan, Z. (2024). DeepSeek-V3 Technical Report (Version 2). arXiv. doi:10.48550/ARXIV.2412.19437
  • Deng, S., Sinha, A. P., & Zhao, H. (2017). Resolving Ambiguity in Sentiment Classification. ACM Transactions on Management Information Systems, 8 (2–3), 1–13. doi:10.1145/3046684
  • Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. ArXiv. doi:10.48550/ARXIV.1810.04805
  • Dheemonth, K., Manonmani, S., Shobha, G., & De Hilster, D. (2024). Sentiment Analysis on Cricket Tweets Using NLP++. In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT). IEEE. doi:10.1109/icccnt61001.2024.10724047
  • Eshkevari, M., Jahangoshai Rezaee, M., Saberi, M., & Hussain, O. K. (2022). An End-To-End Ranking System Based on Customers Reviews: Integrating Semantic Mining and MCDM Techniques. Expert Systems with Applications, 209 (118294), 118294. doi:10.1016/j.eswa.2022.118294
  • Faizi, R., & El Fkihi, S. (2019). Exploring the role of customer reviews in driving business growth. In P. Kommers & G. C. Peng (Eds.), ICT, Society and Human Beings 2019, Connected Smart Cities 2019, Web Based Communities and Social Media 2019 (pp. 410-414). IADIS Press. doi:10.33965/wbc2019_201908c053
  • Fundin, A. P., & Bergman, B. L. S. (2003). Exploring the Customer Feedback Process. Measuring Business Excellence, 7 (2), 55–65. doi:10.1108/13683040310477995
  • Garrido-Merchan, E. C., Gozalo-Brizuela, R., & Gonzalez-Carvajal, S. (2023). Comparing BERT Against Traditional Machine Learning Models in Text Classification. Journal of Computational and Cognitive Engineering, 2 (4), 352–356. doi:10.47852/bonviewjcce3202838
  • Gera, A., Halfon, A., Shnarch, E., Perlitz, Y., Ein-Dor, L., & Slonim, N. (2022). Zero-Shot Text Classification with Self-Training. In Y. Goldberg, Z. Kozareva, & Y. Zhang (Eds.), 2022 Conference on Empirical Methods in Natural Language Processing (pp. 1107–1119). Association for Computational Linguistics. doi:10.18653/v1/2022.emnlp-main.73
  • Google Cloud (2025). Gemini 2.0 Flash. https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-0-flash (May 8, 2025)
  • Hauthal, E., Burghardt, D., Fish, C., & Griffin, A. L. (2020). Sentiment Analysis. Audrey Kobayashi (Ed.), International Encyclopedia of Human Geography (Secon Edition). Elsevier, 169–177. doi:10.1016/b978-0-08-102295-5.10593-1
  • He, P., Gao, J., & Chen, W. (2021). DeBERTaV3: Improving DeBERTa using ELECTRA-Style Pre-Training with Gradient-Disentangled Embedding Sharing (Version 4). arXiv. doi:10.48550/ARXIV.2111.09543
  • Hemalatha, B., & Velmurugan, T. (2020). Impact of Customer Feedback System Using Machine Learning Algorithms for Sentiment Mining. International Journal of Innovative Technology and Exploring Engineering, 9 (4), 1475–1483. doi:10.35940/ijitee.d1537.029420
  • Hennig-Thurau, T., Gwinner, K. P., Walsh, G., & Gremler, D. D. (2004). Electronic Word-Of-Mouth via Consumer-Opinion Platforms: What Motivates Consumers to Articulate Themselves on the Internet?. Journal of Interactive Marketing, 18 (1), 38–52. doi:10.1002/dir.10073
  • Henrickson, K., Rodrigues, F., & Pereira, F. C. (2019). Data Preparation. Constantinos Antoniou, Loukas Dimitriou, & Francisco Pereira (Eds.), Mobility Patterns, Big Data and Transport Analytics. Elsevier, 73–106. doi:10.1016/b978-0-12-812970-8.00005-1
  • Hudson, M. (2008). Listening to Customers: How EBSCO Plans Enhancements and Product Acquisitions Based on Customer Feedback. Public Library Quarterly, 27 (2), 151–156. doi:10.1080/01616840802114978
  • İncidelen, M., & Aydoğan, M. (2025). Sentiment Analysis in Turkish Using Language Models: A Comparative Study. European Journal of Technique (EJT), 15 (1), 68-74. doi:10.36222/ejt.1592448
  • Kalaivani, K. S., & Kuppuswami, S. (2023). Exploring The Use of Syntactic Dependency Features for Document-Level Sentiment Classification. Bulletin of the Polish Academy of Sciences Technical Sciences, 67 (2), 339-347. doi:10.24425/bpas.2019.128608
  • Kapočiūtė-Dzikienė, J., Damaševičius, R., & Woźniak, M. (2019). Sentiment Analysis of Lithuanian Texts Using Traditional and Deep Learning Approaches. Computers, 8 (1), 4. doi:10.3390/computers8010004
  • Karuna, N. M. H., Suarjaya, I. M. A. D., & Sutramiani, N. P. (2024). Sentiment Analysis of Hotel Reviews Using Logistic Regression and Random Forest Methods. JITTER : Jurnal Ilmiah Teknologi Dan Komputer, 5 (3), 2233. doi:10.24843/jtrti.2024.v05.i03.p04
  • Katole, H. J. (2022). A Research Article on Importance of Online Customer Reviews on Customer Purchase. The Business & Management Review, 13 (03), 23–30. doi:10.24052/bmr/v13nu03/art-04
  • Kayakuş, M., Yiğit Açikgöz, F., Dinca, M. N., & Kabas, O. (2024). Sustainable Brand Reputation: Evaluation of iPhone Customer Reviews with Machine Learning and Sentiment Analysis. Sustainability, 16 (14), 6121. doi:10.3390/su16146121
  • Khan, A., Majumdar, D., & Mondal, B. (2025). Sentiment Analysis of Emoji Fused Reviews Using Machine Learning and Bert. Scientific Reports, 15 (1). doi:10.1038/s41598-025-92286-0
  • Kotsonis, M. E., Abramson, S. R., Loeb, K. C., & Wattenbarger, B. L. (1989). In The Customer’s Hands: Making the Most of User Feedback. AT & T Technical Journal, 68 (5), 69–79. doi:10.1002/j.1538-7305.1989.tb00088.x
  • Kyritsis, K., Perikos, I., & Paraskevas, M. (2023). Zero-Shot Sentiment Analysis Exploring BART Models. In 2023 IEEE/ACIS 8th International Conference on Big Data, Cloud Computing, and Data Science (BCD) (pp. 192–197). IEEE. doi:10.1109/bcd57833.2023.10466289
  • Laksono, R. A., Sungkono, K. R., Sarno, R., & Wahyuni, C. S. (2019). Sentiment Analysis of Restaurant Customer Reviews On Tripadvisor Using Naïve Bayes. In 2019 12th International Conference on Information & Communication Technology and System (ICTS). IEEE. doi:10.1109/icts.2019.8850982
  • Laurer, M., van Atteveldt, W., Casas, A., & Welbers, K. (2023). Less Annotating, More Classifying: Addressing the Data Scarcity Issue of Supervised Machine Learning with Deep Transfer Learning and BERT-NLI. Political Analysis, 32 (1), 84–100. doi:10.1017/pan.2023.20
  • Lebret, R., & Collobert, R. (2014). N-Gram-Based Low-Dimensional Representation for Document Classification. ArXiv. doi:10.48550/ARXIV.1412.6277
  • Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., & Kang, J. (2020). BioBERT: A Pre-Trained Biomedical Language Representation Model for Biomedical Text Mining. Bioinformatics (Oxford, England), 36 (4), 1234–1240. doi:10.1093/bioinformatics/btz682
  • Liao, H. (2025). Deepseek Large-Scale Model: Technical Analysis and Development Prospect. Journal of Computer Science and Electrical Engineering, 7 (1). doi:10.61784/jcsee3035
  • Lin, X. (2020). Sentiment Analysis of E-Commerce Customer Reviews Based on Natural Language Processing. In ISBDAI ’20: 2020 2nd International Conference on Big Data and Artificial Intelligence (pp. 32-36). Association for Computing Machinery. doi:10.1145/3436286.3436293
  • Liu, T., Hu, Y., Chen, P., Sun, Y., & Yin, B. (2023). Zero-Shot Text Classification with Semantically Extended Textual Entailment. In 2023 International Joint Conference on Neural Networks (IJCNN). IEEE. doi:10.1109/ijcnn54540.2023.10191094
  • Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Omer Levy, Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach. ArXiv. doi:10.48550/ARXIV.1907.11692
  • Lohse, T. M. & Kemper, J. (2019). Online customer reviews as driver of customer loyalty. In Fortieth International Conference on Information Systems, Munich, Germany. https://aisel.aisnet.org/icis2019/business_models/business_models/3
  • Manias, G., Mavrogiorgou, A., Kiourtis, A., Symvoulidis, C., & Kyriazis, D. (2023). Multilingual Text Categorization and Sentiment Analysis: A Comparative Analysis of The Utilization of Multilingual Approaches for Classifying Twitter Data. Neural Computing and Applications, 35 (29), 21415–21431. doi:10.1007/s00521-023-08629-3
  • Martina Jose Mary, M., Devi, S. R., Yogeshkannah, K., Prem, S., Pooranachandiran, G., & Viyash, V. (2024). Multilingual Sentiment Analysis for Youtube Educational Videos Using NLP And Machine Learning Approaches. In 2024 Third International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN). IEEE. doi:10.1109/icstsn61422.2024.10671276
  • Masarifoglu, M., Tigrak, U., Hakyemez, S., Gul, G., Bozan, E., Buyuklu, A. H., & Özgür, A. (2021). Sentiment Analysis of Customer Comments in Banking Using BERT-Based Approaches. In 2021 29th Signal Processing and Communications Applications Conference (SIU). IEEE. doi:10.1109/siu53274.2021.9477890
  • Masood, M. A., Abbasi, R. A., & Wee Keong, N. (2020). Context-Aware Sliding Window for Sentiment Classification. IEEE Access: Practical Innovations, Open Solutions, 8, 4870–4884. doi:10.1109/access.2019.2963586
  • Matarazzo, A., & Torlone, R. (2025). A Survey on Large Language Models with some Insights on their Capabilities and Limitations. ArXiv. doi:10.48550/ARXIV.2501.04040
  • Mickus, T., Paperno, D., Constant, M., & van Deemter, K. (2020). What Do You Mean, BERT? Assessing BERT as a Distributional Semantics Model. Society for Computation in Linguistics, 3 (1), 350-361. doi: doi:10.7275/t778-ja71
  • Mingo, H. (2024). Enhancing Sentiment Analysis with Logistic Regression and NLP: A Case Study Of 2023 Amazon Software Reviews. In 2024 International Symposium on Networks, Computers and Communications (ISNCC). IEEE. doi:10.1109/isncc62547.2024.10759007
  • Mostafa, M., & AlSaeed, A. (2022). Sentiment Analysis Based on Bert for Amazon Reviewer. Journal of the ACS Advances in Computer Science, 13 (1), 1–10. doi:10.21608/asc.2023.171559.1007
  • Murad, I. A., Khaleel, M. I., & Shakor, M. Y. (2024). Unveiling GPT-4o: Enhanced Multimodal Capabilities and Comparative Insights with ChatGPT-4. International Journal of Electronics and Communications Systems, 4 (2), 127. doi:10.24042/ijecs.v4i2.25079
  • Nazar, S. R., & Bhattasali, T. (2021). Sentiment Analysis of Customer Reviews. Azerbaijan Journal of High Performance Computing, 4 (1), 113–125. doi:10.32010/26166127.2021.4.1.113.125
  • Nicholls, C. & Song, F. (2010). Comparison of Feature Selection Methods for Sentiment Analysis. In A. Farzindar, & V. Kešelj (Eds.), Advances in Artificial Intelligence. Canadian AI 2010. Lecture Notes in Computer Science vol 6085 (pp. 286-289). Springer. doi:10.1007/978-3-642-13059-5_30
  • OpenAI (n.d.). GPT-4o. Open AI. https://platform.openai.com/docs/models/gpt-4o (May 8, 2025)
  • Orea-Giner, A., Fuentes-Moraleda, L., Villacé-Molinero, T., Muñoz-Mazón, A., & Calero-Sanz, J. (2022). Does The Implementation of Robots in Hotels Influence the Overall Tripadvisor Rating? A Text Mining Analysis from the Industry 5.0 Approach. Tourism Management, 93 (104586), 104586. doi:10.1016/j.tourman.2022.104586
  • Panduro-Ramirez, J. (2024). Sentiment Analysis in Customer Reviews for Product Recommendation in E-Commerce Using Machine Learning. In 2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI). IEEE. doi:10.1109/accai61061.2024.10602027
  • Patra, G. K. (2023). A Sentiment Analysis of Customer Product Review Based on Machine Learning Techniques in E-Commerce. Journal of Artificial Intelligence & Cloud Computing, 2 (4), 1–4. doi:10.47363/jaicc/2023(2)389
  • Phoenix, J., & Taylor, M. (2024). Prompt Engineering for Generative AI. Sebastopol, CA: O’Reilly Media.
  • Pocchiari, M., Proserpio, D., & Dover, Y. (2024). Online Reviews: A Literature Review and Roadmap for Future Research. International Journal of Research in Marketing, Article in Press. doi:10.1016/j.ijresmar.2024.08.009
  • Polatgil, M. (2024). Togg Otomobilleri Youtube Video Yorumlarının Duygu Analizi ve Makine Öğrenme Modeli ile İncelenmesi. Uluslararası Anadolu Sosyal Bilimler Dergisi, 8 (1), 15-35. doi:10.47525/ulasbid.1398206
  • Pourpanah, F., Abdar, M., Luo, Y., Zhou, X., Wang, R., Lim, C. P., Wang, X-Z., & Wu, Q. M. J. (2023). A Review of Generalized Zero-Shot Learning Methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45 (4), 4051–4070. doi:10.1109/TPAMI.2022.3191696
  • Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language Models Are Unsupervised Multitask Learners. OpenAI Blog. https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf (April 17, 2025).
  • Rajalakshmi, S., Asha, S., & Pazhaniraja, N. (2017). A Comprehensive Survey on Sentiment Analysis. In 2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN). IEEE. doi:10.1109/icscn.2017.8085673
  • Revathi, K. L., Satish, A. R., & Rao, P. S. (2023). Fine - Grained Sentiment Analysis on Online Reviews. In 2023 Third International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT). IEEE. doi:10.1109/ICAECT57570.2023.10118291
  • Roumeliotis, K. I., Tselikas, N. D., & Nasiopoulos, D. K. (2024). Leveraging Large Language Models in Tourism: A Comparative Study of the Latest GPT Omni Models and BERT NLP for Customer Review Classification and Sentiment Analysis. Information, 15 (12), 792. doi:10.3390/info15120792
  • Ruiz-Millán, J. A., Martínez-Cámara, E., Victoria Luzón, M., & Herrera, F. (2022). Personalised federated learning with BERT fine tuning. Case study on Twitter sentiment analysis. In L., Troiano, A., Vaccaro, R., Tagliaferri, N., Kesswani, I. D., Rodriguez, I. Brigui, & D. Parente (Eds.), Advances in Deep Learning, Artificial Intelligence and Robotics. Lecture Notes in Networks and Systems, vol 249 (pp. 193–202). Springer. doi:10.1007/978-3-030-85365-5_19
  • Sabharwal, N., & Agrawal, A. (2021). Future of BERT Models. Navin Sabharwal, & Amit Agrawal (Eds.), Hands-on Question Answering Systems with BERT. Apress: Berkeley, 173–178. doi:10.1007/978-1-4842-6664-9_7
  • Sabiri, B., Khtira, A., El Asri, B., & Rhanoui, M. (2023). Analyzing BERT’s performance compared to traditional text classification models. In J. Filipe, M. Śmiałek, A. Brodsky, & S. Hammoudi (Eds.), Proceedings of the 25th International Conference on Enterprise Information Systems (pp. 572–582). SciTePress. doi:10.5220/0011983100003467
  • Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. ArXiv. doi:10.48550/ARXIV.1910.01108
  • Saragih, H., & Manurung, J. (2024). Leveraging the BERT Model for Enhanced Sentiment Analysis in Multicontextual Social Media Content. Jurnal Teknik Informatika C.I.T Medicom, 16 (2), 82–89. doi:10.35335/cit.vol16.2024.766
  • Sarma, S. (2023). Zero-Shot Learning for Computer Vision Applications. In MM ’23: The 31st ACM International Conference on Multimedia (pp. 9360–9364). Association for Computing Machinery. doi:10.1145/3581783.3613435
  • Schweter, S. (2020). BERTurk - BERT models for Turkish (Version 1.0.0). Zenodo. doi:10.5281/ZENODO.3770924
  • Shah, Z., & Rai, S. (2022). A Research Paper on the Effects of Customer Feedback on Business. International Journal of Advanced Research in Science, Communication and Technology, 672–675. doi:10.48175/ijarsct-5743
  • Shen, Y., & Zhang, P. K. (2024). Financial Sentiment Analysis on News and Reports Using Large Language Models and FinBERT. In 2024 IEEE 6th International Conference on Power, Intelligent Computing and Systems (ICPICS) (pp. 717–721). IEEE. doi:10.1109/icpics62053.2024.10796670
  • Shukla, D., & Dwivedi, S. K. (2024). The Study of the Effect of Preprocessing Techniques for Emotion Detection on Amazon Product Review Dataset. Social Network Analysis and Mining, 14 (1). doi:10.1007/s13278-024-01352-4
  • Singh, A., Hasan, Z., & Paranjape, V. (2023). Analyzing Sentiment and Emotion in Omicron-Related Social Media Content: An NLP Perspective. International Journal of Innovative Research in Computer and Communication Engineering, 10 (01), 279–283. doi:10.15680/ijircce.2022.1001046
  • Sree Harsha, S., Krishna Swaroop, K., & Chandavarkar, B. R. (2021). Natural Language Inference: Detecting Contradiction and Entailment in Multilingual Text. In K. R. Venugopal, P. D. Shenoy, R. Buyya, L. M. Patnaik, S. S. Iyengar (Eds.), Data Science and Computational Intelligence. ICInPro 2021. Communications in Computer and Information Science, vol 1483 (pp. 314-327) Springer. doi:10.1007/978-3-030-91244-4_25
  • Stine, R. A. (2019). Sentiment Analysis. Annual Review of Statistics and Its Application, 6 (1), 287–308. doi:10.1146/annurev-statistics-030718-105242
  • Swamy, T. N., Lakshmi, J. K., Uma, M. P., Reshma, D., & Jayanth, D. (2022). Multimedia Sentiment Analysis on Public Social Network Using NLP. International Journal for Research Trends and Innovation, 7 (8), 825-830.
  • Taherdoost, H., & Madanchian, M. (2023). Artificial Intelligence and Sentiment Analysis: A Review in Competitive Research. Computers, 12 (2), 37. doi:10.3390/computers12020037
  • Tanuwijaya, C. K., Ellitan, L., & Lukito, R. S. H. (2023). The Effect of Online Customer Reviews on Purchase Intention with Customer Trust as a Variable in Purchase Decision on Sociolla Consumers. Journal of Entrepreneurship & Business, 4 (3), 192–203. doi:10.24123/jeb.v4i3.5764
  • Teke, B., Yazıcı, S. N., Zamir, G., Budak, A. B., & Karabey Aksakallı, I. (2025). Berturk-Based Sentiment Analysis on E-Commerce Multi Domain Product Reviews. Afyon Kocatepe University Journal of Sciences and Engineering, 25 (3), 497–509. doi:10.35414/akufemubid.1537513
  • Tsiligaridis, J. (2024). Approaches of classification models for Sentiment Analysis. In D. C. Wyld & D. Nagamalai (Eds.), 5th International Conference on Advanced Natural Language Processing (pp. 81-86). Computer Science & Information Technology (CS & IT). doi:10.5121/csit.2024.141007
  • Tuzcu, S. (2020). Çevrimiçi Kullanıcı Yorumlarının Duygu Analizi ile Sınıflandırılması. ESTUDAM Bilişim Dergisi, 1 (2), 1–5.
  • Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., Polosukhin, I. (2017). Attention Is All You Need. ArXiv. doi:10.48550/ARXIV.1706.03762
  • Viet, N. V., & Vinh, N. T. (2024). Large Language Models in Software Engineering. Journal of Education for Sustainable Innovation, 2 (2), 146–156. doi:10.56916/jesi.v2i2.968
  • Weidinger, L., Mellor, J., Rauh, M., Griffin, C., Uesato, J., Huang, P.-S., ... Gabriel, I. (2021). Ethical and Social Risks of Harm from Language Models. ArXiv. doi:10.48550/ARXIV.2112.04359
  • Willemsen, L. M., Neijens, P. C., & Bronner, F. (2012). The Ironic Effect of Source Identification on the Perceived Credibility of Online Product Reviewers. Journal of Computer-Mediated Communication: JCMC, 18 (1), 16–31. doi:10.1111/j.1083-6101.2012.01598.x
  • Wirtz, J., & Tomlin, M. (2000). Institutionalising Customer‐Driven Learning Through Fully Integrated Customer Feedback Systems. Managing Service Quality, 10 (4), 205–215. doi:10.1108/09604520010341654
  • Wirtz, J., Kuan Tambyah, S., & Mattila, A. S. (2010). Organizational Learning from Customer Feedback Received by Service Employees. Journal of Service Management, 21 (3), 363–387. doi:10.1108/09564231011050814
  • Xue, Q. (2024). Unlocking The Potential: A Comprehensive Exploration of Large Language Models in Natural Language Processing. Applied and Computational Engineering, 57 (1), 247–252. doi:10.54254/2755-2721/57/20241341
  • Yang, L., Charoenporn, T., & Sornlertlamvanich, V. (2024). Comparative Study of Traditional Machine Learning and Quantum Computing in Natural Language Processing: A Case Study on Sentiment Analysis. In 2024 IEEE International Symposium on Consumer Technology (ISCT) (pp. 269–273). doi:10.1109/isct62336.2024.10791272
  • Yildirim, S. (2024). Fine-Tuning Transformer-Based Encoder for Turkish Language Understanding Tasks. ArXiv. doi:10.48550/ARXIV.2401.17396
  • Zhang, C., Fan, C., Yao, W., Hu, X., & Mostafavi, A. (2019). Social Media for Intelligent Public Information and Warning in Disasters: An Interdisciplinary Review. International Journal of Information Management, 49, 190–207. doi:10.1016/j.ijinfomgt.2019.04.004
Toplam 104 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İşletme , İş Sistemleri (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Kutan Koruyan 0000-0002-3115-5676

Erken Görünüm Tarihi 28 Eylül 2025
Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 1 Haziran 2025
Kabul Tarihi 9 Eylül 2025
Yayımlandığı Sayı Yıl 2025 Sayı: 23

Kaynak Göster

APA Koruyan, K. (2025). Sentiment Analysis of Online Customer Reviews Using Modern Natural Language Processing Approaches. Erzurum Teknik Üniversitesi Sosyal Bilimler Enstitüsü Dergisi(23), 22-40. https://doi.org/10.29157/etusbed.1711500

Creative Commons License

ETÜSBED, Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.


open-access-logo.png

14283