Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 7 Sayı: 15, 607 - 621, 29.12.2024

Öz

Kaynakça

  • Augimeri, G. & BonoAglio, D. (2021). The Mediterranean diet as a source of natural compounds: does it represent a protective choice against cancer?” Pharmaceuticals, 14(9), 920.
  • Guasch-Ferré, M. & Willett, W. (2021). The Mediterranean diet and health: a comprehensive overview. Journal of Internal Medicine, 290(3), 549–566.
  • Farràs, M.; Almanza-Aguilera, E.; Hernáez, Á.; Agustí, N.; Julve, J.; Fitó, M. & Castañer, O. (2021). Beneficial effects of olive oil and Mediterranean diet on cancer physio- pathology and incidence. Seminars in Cancer Biology, 73, 178–195.
  • Goldsmith, C. D.; Bond, D. R.; Jankowski, H.; Weidenhofer, J.; Stathopoulos, C. E.; Roach, P. D. & Scarlett, C. J. (2018). The olive biophenols oleuropein and hydroxytyrosol selectively reduce proliferation, in3uence the cell cycle, and induce apoptosis in pancreatic cancer cells. International Journal of Molecular Sciences, 19(7), 1937.
  • García-Molina, G.; Peters, E.; Palmeri, R.; Awoke, Y.; Márquez-Álvarez, C. & Blanco, R. M. (2024). Enzymatic synthesis of Hydroxytyrosol from Oleuropein for valorization of an agricultural waste. Bioengineered, 15(1), 1-17.
  • Nediani, C.; Ruzzolini, J.; Romani, A. & Calorini, L. (2019). Oleuropein, a bioactive compound from olea europaea L., as a potential preventive and therapeutic agent in noncommunicable diseases. Antioxidants, 8(12), 578.
  • Asghariazar, V.; Mansoori, B.; Kadkhodayi, M.; Safarzadeh, E., Mohammadi, A., Baradaran, B. & Sakhinia, E. (2022).MicroRNA-143 act as a tumor suppressor microRNA in human lung cancer cells by inhibiting cell proliferation, invasion, and migration. Molecular Biology Reports, 49(8), 7637–7647.
  • Christodoulou, A.; Nikolaou, P.-E.; Symeonidi, L.; Katogiannis, K.; Pechlivani, L.; Nikou, T.; Varela, A.; Chania, C.; Zerikiotis, S.; Efentakis, P.; Vlachodimitropoulos, D.; Katsoulas, N.; Agapaki, A.; Dimitriou, C.; Tsoumani, M.; Kostomitsopoulos, N.; Davos, C. H., Skaltsounis, A. L., Tselepis, A., Halabalaki, M., Tseti, I., Iliodromitis, E. K., Ikonomidis, I., & Andreadou, I. (2024). Cardioprotective potential of oleuropein, hydroxytyrosol, oleocanthal and their combination: Unravelling complementary effects on acute myocardial infarction and metabolic syndrome. Redox Biology, 76(2024), 1-19.
  • Rishmawi, S.; Haddad, F.; Dokmak, G. & Karaman, R. (2022). A comprehensive review on the anti-cancer e4ects of oleuropein. 1e Life, 12(8), 1140.
  • Fernández-Bolaños, J. G.; López, O.; Fernández-Bolaños, J. & Rodríguez-Gutiérrez, G. (2008). Hydroxytyrosol and derivatives: isolation, synthesis, and biological properties. Curr Org Chem., 12(6), 442–463.
  • Richard, N.; Arnold, S.; Hoeller, U.; Kilpert, C.; Wertz, K. & Schwager, J. (2011). Hydroxytyrosol is the major anti-inflammatory compound in aqueous olive extracts and impairs cytokine and chemokine production in macrophages. Planta Medica, 77(17), 1890–1891.
  • Batarfi,W. A.; Yunus, M. H. M.; Hamid, A. A.; Lee, Y. T. & Maarof, M. (2024). Hydroxytyrosol: A Promising Therapeutic Agent for Mitigating Inflammation and Apoptosis. Pharmaceutics, 16, 1504.
  • Khalil, A. A.; Rahman, M. M.; Rauf, A.; Islam, M. R.; Manna, S. J.; Khan, A. A.; Ullah, S.; Akhtar, M. N.; Aljohani, A. S. M.; Abdulmonem, W. A. & Simal-Gandara, J. (2023). Oleuropein: chemistry, extraction techniques and nutraceutical perspectives-An update. Critical Reviews in Food Science and Nutrition, 22, 1–22.
  • Iantomasi, M.; Terzo, M. & Tsiani, E. (2024). Anti-Diabetic Effects of Oleuropein. Metabolites, 14, 1-21.
  • Tuck, K. L. & Hayball, P. J. (2002). Major phenolic compounds in olive oil: metabolism and health effects. J Nutr Biochem., 13(11), 636–644.
  • Frumuzachi, O.; Gavrilas, L. I.; Vodnar, D.C.; Rohn, S. & Mocan, A. (2024). Systemic Health Effects of Oleuropein and Hydroxytyrosol Supplementation: A Systematic Review of Randomized Controlled Trials. Antioxidants, 13, 1-26.
  • Vijakumaran, U.; Yazid, M. D.; Hj Idrus, R. B.; Abdul Rahman, M. R. & Sulaiman, N. (2021). Molecular action of hydroxytyrosol in attenuation of intimal hyperplasia: A scoping review. Front. Pharmacol., 12, 663266.
  • Hu, T.; He, X.-W.; Jiang, J.-G. & Xu, X.-L. (2014). Hydroxytyrosol and its potential therapeutic effects. J. Agric. Food Chem., 62, 1449–1455.
  • Charoenprasert, S. & Mitchell, A. (2012). Factors Influencing Phenolic Compounds in Table Olives (Olea europaea). J. Agric. Food Chem., 60, 7081–7095.
  • Luzi, F.; Pannucci, E.; Clemente, M.; Grande, E.; Urciuoli, S.; Romani, A.; Torre, L.; Puglia, D.; Bernini, R. & Santi, L. (2021). Hydroxytyrosol and oleuropein-enriched extracts obtained from olive oil wastes and by-products as active antioxidant ingredients for poly (vinyl alcohol)-based films. Molecules, 26, 2104.
  • Monteiro, M.; Silva, A. F.; Resende, D.; Braga, S. S.; Coimbra, M. A.; Silva, A. M. Cardoso, S. M. (2021). Strategies to broaden the applications of olive biophenols oleuropein and hydroxytyrosol in food products. Antioxidants, 10, 444.
  • Aydar, A.; Oner, T. O. & Ucok, E. (2017). Effects of hydroxytyrosol on human health. EC Nutr., 11, 147–157.
  • Wani, T. A.; Masoodi, F.; Gani, A.; Baba, W. N.; Rahmanian, N.; Akhter, R.; Wani, I. A. & Ahmad, M. (2018). Olive oil and its principal bioactive compound: Hydroxytyrosol–A review of the recent literature. Trends Food Sci. Technol., 77, 77–90.
  • Batarfi, W. A.; Mohd Yunus, M. H. & Hamid, A. A. (2023) The Effect of Hydroxytyrosol in Type II Epithelial-Mesenchymal Transition in Human Skin Wound Healing. Molecules, 28, 2652
  • Visioli, F. & Poli A. (2002). Antioxidant and other biological activities of phenols from olives and olive oil. Med Res Rev., 22(1), 65–75.
  • Tripoli, E.; Giammanco, M.; Tabacchi, G.; Majo, D. D.; Giammanco, S. & Guardia, M. L. (2005). The phenolic compounds of olive oil: structure, biological activity and beneficial effects on human health. Nutr Res Rev., 18(1), 98–112
  • Huang, C. L. & Sumpio, B. E. (2008). Olive oil, the mediterranean diet, and cardiovascular health. J Am Coll Surg., 207(3), 407–416.
  • Tarabanis, C.; Long, C.; Scolaro, B. & Heffron, S. P. (2023). Reviewing the cardiovascular and other health effects of olive oil: Limitations and future directions of current supplement formulations. Nutr. Metab. Cardiovasc. Dis., 33, 2326–2333.
  • Li, A.-N.; Li, S.; Zhang, Y.-J.; Xu, X.-R.; Chen, Y.-M. & Li, H.-B. (2014) Resources and biological activities of natural polyphenols. Nutrients, 6, 6020–6047.
  • Rasouli, H.; Mazinani, M. H. & Haghbeen, K. (2021). Chapter 41 - Benefits and challenges of olive biophenols: A perspective. In Olives and Olive Oil in Health and Disease Prevention (Second Edition), 489–503.
  • Qabaha, K.; Al-Rimawi, F.; Qasem, A. & Naser, S. A. (2018). Oleuropein Is Responsible for the Major Anti-Inflammatory Effects of Olive Leaf Extract. J Med Food, 21(3), 302-305.
  • Silvestrini, A.; Giordani, C.; Bonacci, S.; Giuliani, A.; Ramini, D.; Matacchione, G.; Sabbatinelli, J.; Di Valerio, S.; Pacetti, D.; Procopio, A.D.; et al. (2023). Anti-Inflammatory Effects of Olive Leaf Extract and Its Bioactive Compounds Oleacin and Oleuropein-Aglycone on Senescent Endothelial and Small Airway Epithelial Cells. Antioxidants, 12, 1-17.
  • Şahin, S.; Şahin, E.; Esenülkü, G.; Renda, G.; Gürgen, S. G.; Alver, A.; Abidin, İ., & Cansu, A. (2024). Oleuropein Has Modulatory Effects on Systemic Lipopolysaccharide-Induced Neuroinflammation in Male Rats. The Journal of Nutrition, 154(4), 1282-1297.
  • Sonmez, M., & Gunes Yapucu, U. (2018). Topikal uygulamada zetinyağının etkinliği. Ege Üniversitesi Hemşirelik Fakültesi Dergisi, 34(3), 159-168.
  • Al-Rimawi, F.; Sbeih, M.; Amayreh, M.; Rahhal, B. & Mudalal, S. (2024). Evaluation of the antibacterial and antifungal properties of oleuropein, olea Europea leaf extract, and Thymus vulgaris oil. BMC Complementary Medicine and Therapies, 24, 297.
  • Karabey, B.; Saygılı, E. & Karabey, F. (2024). Olea europaea L.'den elde edilen triterpenoid ve polifenol bileşiklerinin antimikrobiyal ve yaşlanma karşıtı etkilerinin değerlendirilmesi: Ekstraksiyon, Tanılama ve in vitro Testler. Ege Journal of Medicine, 63(3), 369-377.
  • Magyari-Pavel, I. Z.; Moacă, E.-A.; Avram, S.; Diaconeasa, Z.; Haidu, D.; Stefănut, M. N.; Rostas, A. M.; Muntean, D.; Bora, L.; Badescu, B.; et al. (2024) Antioxidant Extracts from Greek and Spanish Olive Leaves: Antimicrobial, Anticancer and Antiangiogenic Effects. Antioxidants, 13, 1-30.
  • Kimura, Y. & Sumiyoshi, M. (2009). Olive leaf extract and its main component oleuropein prevent chronic ultraviolet B radiation-induced skin damage and carcinogenesis in hairless mice. 1e Journal of Nutrition, 139(11), 2079–2086.
  • Kikuchi, M.; Mano, N.; Uehara, Y.; Machida, K. & Kikuchi, M. (2011). Cytotoxic and EGFR tyrosine kinase inhibitory activities of aglycone derivatives obtained by enzymatic hydrolysis of oleoside-type secoiridoid glucosides, oleuropein and ligustroside. Journal of Natural Medicines, 65(1), 237–240.
  • Asghariazar, V.; Makaremi, S.; Zare, E.; Danesh, H., Matin, S., Fouladi, N. & Safarzadeh, E. (2024). Oleuropein induces apoptosis in gastric cancer cell lines by regulating mir-34a, mir-21, and related genes: an experimental and bioinformatic study. International Journal of Biological Macromolecules, 265(1).
  • Bulotta, S.; Corradino, R.; Celano, M.; Maiuolo, J.; D'Agostino, M.; Oliverio, M.; Procopio, A.; Filetti, S. & Russo, D. (2013). Antioxidant and antigrowth action of peracetylated oleuropein in thyroid cancer cells. Journal of Molecular Endocrinology, 51(1), 181–189.
  • Casaburi, I.; Puoci, F.; Chimento, A.; Sirianni, R.; Ruggiero, C.; Avena, P. & Pezzi, V. (2013). Potential of olive oil phenols as chemopreventive and therapeutic agents against cancer: a review of in vitro studies. Molecular Nutrition & Food Research, 57(1), 71–83.
  • Barbaro, B.; Toietta, G.; Maggio, R.; Arciello, M.; Tarocchi, M.; Galli, A. & Balsano, C. (2014). Effects of the olivederived polyphenol oleuropein on human health. International Journal of Molecular Sciences, 15(10), 18508–18524.
  • Antognelli, C.; Frosini, R.; Santolla, M. F.; Peirce, M. J. & Talesa, V. N. (2019). Oleuropein-induced apoptosis is mediated by mitochondrial glyoxalase 2 in nsclc A549 cells: a mechanistic inside and a possible novel nonenzymatic role for an ancient enzyme. Oxidative Medicine and Cellular Longevity, 2019, 1-10.
  • Bayat, S.; Mansoori Derakhshan, S.; Mansoori Derakhshan, N.; Shekari Khaniani, M. & Alivand, M. R. (2019). Downregulation of HDAC2 and HDAC3 via oleuropein as a potent prevention and therapeutic agent in MCF-7 breast cancer cells,” Journal of Cellular Biochemistry, 120(6), 9172–9180.
  • Andreadou, I.; Iliodromitis, E. K.; Mikros, E.; Constantinou, M.; Agalias, A.; Magiatis, P.; Skaltsounis, A. L.; Kamber, E.; Tsantili-Kakoulidou, A. & Kremastinos, D. T. (2006) The olive constituent oleuropein exhibits anti-ischemic, antioxidative, and hypolipidemic effects in anesthetized Rabbits12. J. Nutr., 136, 2213–2219.
  • Joshi-Barr, S.; de Gracia Lux, C.; Mahmoud, E. & Almutairi, A. (2014). Exploiting oxidative microenvironments in the body as triggers for drug delivery systems. Antioxidants and Redox Signaling, 21(5), 730–754.
  • Allaw, M.; Manca, M. L.; Gòmez-Fernández, J. C.; Pedraz, J. L.; Terencio, M. C.; Sales, O. D.; Nacher, A. & Manconi, M. (2021). Oleuropein multicompartment nanovesicles enriched with collagen as a natural strategy for the treatment of skin wounds connected with oxidative stres. Nanomedicine, 16(26), 2363–2376
  • Karimi, A.; Niazkar, H. R. & SeAdmooye Azar, P. (2021). Protective effect of hydro-alcoholic extract ofachillea millefoliumon renal injury and biochemical factors in streptozotocin-induced diabetic rats. Nutrition and Food Science, 51(7), 1068–1083.
  • Geyikoğlu, F.; Colak, S.; Türkez, H.; Bakır, M.; Koç, K.; Hosseinigouzdagani, M. K.; Çeriğ, S. & Sönmez, M. (2017). Oleuropein ameliorates cisplatin-induced hematological damages via restraining oxidative stress and DNA injury. Indian Journal of Hematology and Blood Transfusion, 33(3), 348–354.
  • Imran, M.; Nadeem, M.; Gilani, S. A.; Khan, S.; Sajid, M. W. & Amir, R. M. (2018). Antitumor perspectives of oleuropein and its metabolite hydroxytyrosol: recent updates. Journal of Food Science, 83(7), 1781–1791.
  • Ahamad, J.; Toufeeq, I.; Khan, M. A.; Ameen, M. Sh. M; Anwer, E. T; Uthirapathy, S.; Mir, S. R. & Ahmad, J. (2019). Oleuropein: a natural antioxidant molecule in the treatment of metabolic syndrome. Phytotherapy Research, 33(12), 3112–3128.
  • Al-Shaal, S.; Karabet, F. & Daghestani, M. (2019). Determination of the antioxidant properties of the Syrian olive leaves extracts and isolation oleuropein by HPLC techniques,” Analytical and Bioanalytical Chemistry Research, 6(1), 97–110.
  • Romero, M.; Toral, M.; Gómez-Guzmán, M.; Jiménez, R.; Galindo, P.; Sánchez, M.; Olivares, M.; Gálvez, J. & Duarte, J. (2016). Antihypertensive effects of oleuropein-enriched olive leaf extract in spontaneously hypertensive rats. Food Funct., 7, 584–593.
  • Al-Azzawie, H. F. & Alhamdani, M. -S. S. (2006). Hypoglycemic and antioxidant effect of oleuropein in alloxan-diabetic rabbits. Life Sci., 78, 1371–1377.
  • Zheng, S.; Huang, K. & Tong, T. (2021). Efficacy and mechanisms of oleuropein in mitigating diabetes and diabetes complications. J. Agric. Food Chem., 69,6145–6155.
  • Oi-Kano, Y.; Iwasaki, Y.; Nakamura, T.; Watanabe, T.; Goto, T.; Kawada, T.; Watanabe, K. & Iwai, K. (2017). Oleuropein aglycone enhances UCP1 expression in Brown adipose tissue in high-fat-diet-induced obese rats by activating β-adrenergic signaling. J. Nutr. Biochem., 40(2017), 209–218.
  • Tsoumani, M.; Georgoulis, A.; Nikolaou, P.-E.; Kostopoulos, I. V.; Dermintzoglou, T.; Papatheodorou, I.; Zoga, A.; Efentakis, P.; Konstantinou, M.; Gikas, E.; Kostomitsopoulos, N.; Papapetropoulos, A.; Lazou, A.; Skaltsounis, A.-L.; Hausenloy, D. J.; Tsitsilonis, O.; Tseti, I.; Di Lisa, F.; Iliodromitis, E. K. & Andreadou, I. (2021). Acute administration of the olive constituent, oleuropein, combined with ischemic postconditioning increases myocardial protection by modulating oxidative defense. Free Radic. Biol. Med., 166, 18–32.
  • Granados-Principal, S.; Quiles, J. L.; Ramirez-Tortosa, C. L.; Sanchez-Rovira, P. & Ramirez-Tortosa, M. C. (2010). Hydroxytyrosol: From laboratory investigations to future clinical trials. Nutr. Rev., 68, 191–206.
  • Karković Marković, A.; Torić, J.; Barbarić, M. & Jakobušić Brala, C. (2019). Hydroxytyrosol, tyrosol and derivatives and their potential effects on human health. Molecules, 24, 2001.
  • Kamil, K.; Yazid, M. D.; Idrus, R. B. H. & Kumar, J. (2020). Hydroxytyrosol promotes proliferation of human schwann cells: An in vitro study. Int. J. Environ. Res. Public Health, 17, 4404.
  • Pérez-Barrón, G.; Montes, S.; Aguirre-Vidal, Y.; Santiago, M.; Gallardo, E.; Espartero, J. L.; Ríos, C. & Monroy-Noyola, A. (2021). Antioxidant effect of hydroxytyrosol, hydroxytyrosol acetate and nitrohydroxytyrosol in a rat MPP+ model of Parkinson’s disease. Neurochem.Res., 46, 2923–2935.
  • Camargo, A.; Ruano, J.; Fernandez, J. M.; Parnell, L. D.; Jimenez, A.; Santos-Gonzalez, M.; Marin, C.; Perez-Martinez, P.; Uceda, M. & Lopez-Miranda, J. (2010). Gene expression changes in mononuclear cells in patients with metabolic syndrome after acute intake of phenol-rich virgin olive oil. BMC Genom., 11, 253.
  • Terracina, S.; Petrella, C.; Francati, S.; Lucarelli, M.; Barbato, C.; Minni, A.; Ralli, M.; Greco, A.; Tarani, L. & Fiore, M. (2022). Antioxidant intervention to improve cognition in the aging brain: The example of hydroxytyrosol and resveratrol. Int. J. Mol. Sci., 23, 15674.
  • Warleta, F.; Quesada, C. S.; Campos, M.; Allouche, Y.; Beltrán, G. & Gaforio, J. J. (2011). Hydroxytyrosol protects against oxidative DNA damage in human breast cells. Nutrients, 3, 839–857.
  • Robles-Almazan, M.; Pulido-Moran, M.; Moreno-Fernandez, J.; Ramirez-Tortosa, C.; Rodriguez-Garcia, C.; Quiles, J. L. & Ramirez-Tortosa, M. (2018). Hydroxytyrosol: Bioavailability, toxicity, and clinical applications. Food Res. Int., 105, 654–667.
  • Burattini, S.; Salucci, S.; Baldassarri, V.; Accorsi, A.; Piatti, E.; Madrona, A.; Espartero, J. L.; Candiracci, M.; Zappia, G. & Falcieri, E. (2013) Anti-apoptotic activity of hydroxytyrosol and hydroxytyrosyl laurate. Food Chem. Toxicol., 55, 248–256.
  • Yu, H.; Zhang, Z.; Wei, F.; Hou, G.; You, Y.; Wang, X.; Cao, S.; Yang, X.; Liu, W.; Zhang, S.; et al. (2022). Hydroxytyrosol Ameliorates Intervertebral Disc Degeneration and Neuropathic Pain by Reducing Oxidative Stress and Inflammation. Oxidative Med. Cell. Longev., 2022, 2240894.
  • Razali, R. A.; Yazid, M. D.; Saim, A.; Idrus, R. B. H. & Lokanathan, Y. (2023). Approaches in Hydroxytyrosol Supplementation on Epithelial—Mesenchymal Transition in TGFβ1-Induced Human Respiratory Epithelial Cells. Int. J. Mol. Sci., 24, 3974.
  • Vijakumaran, U.; Shanmugam, J.; Heng, J. W.; Azman, S. S.; Yazid, M. D.; Haizum Abdullah, N. A. & Sulaiman, N. (2023). Effects of hydroxytyrosol in endothelial functioning: A comprehensive review. Molecules, 28, 1861.
  • Calabriso, N.; Gnoni, A.; Stanca, E.; Cavallo, A.; Damiano, F.; Siculella, L. & Carluccio, M. A. (2018). Hydroxytyrosol ameliorates endothelial function under inflammatory conditions by preventing mitochondrial dysfunction. Oxidative Med. Cell. Longev., 2018, 9086947.
  • Chen, Q.; Sun, T.; Wang, J.; Jia, J.; Yi, Y. H.; Chen, Y. X.; Miao, Y. & Hu, Z. Q. (2019). Hydroxytyrosol prevents dermal papilla cells inflammation under oxidative stress by inducing autophagy. J. Biochem. Mol. Toxicol., 33, e22377.
  • Alblihed, M. A. (2021). Hydroxytyrosol ameliorates oxidative challenge and inflammatory response associated with lipopolysaccharidemediated sepsis in mice. Hum. Exp. Toxicol., 40, 342–354.
  • Chen, C.; Ai, Q. & Wei, Y. (2021) Hydroxytyrosol protects against cisplatin-induced nephrotoxicity via attenuating CKLF1 mediated inflammation, and inhibiting oxidative stress and apoptosis. Int. Immunopharmacol., 96, 107805.
  • Elmaksoud, H. A.; Motawea, M. H.; Desoky, A. A.; Elharrif, M. G. & Ibrahimi, A. (2021) Hydroxytyrosol alleviate intestinal inflammation, oxidative stress and apoptosis resulted in ulcerative colitis. Biomed. Pharmacother., 142, 112073.
  • Cao, K.; Xu, J.; Zou, X.; Li, Y.; Chen, C.; Zheng, A.; Li, H.; Li, H.; Szeto, I. M.-Y.; Shi, Y.; Long, J.; Liu, J. & Feng, Z. (2014). Hydroxytyrosol prevents diet-induced metabolic syndrome and attenuates mitochondrial abnormalities in obese mice. Free Radic. Biol. Med., 67, 396–407.
  • Efentakis, P.; Iliodromitis, E. K.; Mikros, E.; Papachristodoulou, A.; Dagres, N.; Skaltsounis, A.-L. & Andreadou, I. (2015). Effects of the olive tree leaf constituents on myocardial oxidative damage and atherosclerosis. Planta Med., 81, 648–654.
  • Poudyal, H.; Lemonakis, N.; Efentakis, P.; Gikas, E.; Halabalaki, M.; Andreadou, I.; Skaltsounis, L. & Brown, L. (2017). Hydroxytyrosol ameliorates metabolic, cardiovascular and liver changes in a rat model of diet-induced metabolic syndrome: pharmacological and metabolism-based investigation. Pharmacol. Res., 117, 32–45.
  • Illesca, P.; Valenzuela, R.; Espinosa, A.; Echeverría, F.; Soto-Alarcon, S.; Ortiz, M. & Videla, L. A. (2019). Hydroxytyrosol supplementation ameliorates the metabolic disturbances in white adipose tissue from mice fed a high-fat diet through recovery of transcription factors Nrf2, SREBP-1c, PPAR-γ and NF-κB. Biomed. Pharmacother., 109(2019), 2472–2481.
  • Gervasi, F. & Pojero, F. (2024). Use of Oleuropein and Hydroxytyrosol for Cancer Prevention and Treatment: Considerations about How Bioavailability and Metabolism Impact Their Adoption in Clinical Routine. Biomedicines, 12, 1-36.
  • Goncalves, M.; Aiello, A.; Rodríguez-Pérez, M.; Accardi, G.; Burgos-Ramos, E. & Silva, P. (2024). Olive Oil Components as Novel Antioxidants in Neuroblastoma Treatment: Exploring the Therapeutic Potential of Oleuropein and Hydroxytyrosol. Nutrients, 16, 1-20.
  • Silva, P.; Rodríguez-Pérez, M. & Burgos-Ramos, E. (2023). Zebrafish Model Insights into Mediterranean Diet Liquids: Olive Oil and Wine. Antioxidants, 12, 1843
  • Wahrburg, U.; Kratz, M. & Cullen, P. (2002). Mediterranean diet, olive oil and health. Eur. J. Lipid Sci. Technol., 104, 698–705.
  • Kouka, P.; Priftis, A.; Stagos, D.; Angelis, A.; Stathopoulos, P.; Xinos, N.; Skaltsounis, A.L.; Mamoulakis, C.; Tsatsakis, A.M.; Spandidos, D.A.; et al. (2017). Assessment of the antioxidant activity of an olive oil total polyphenolic fraction and hydroxytyrosol from a Greek Olea europea variety in endothelial cells and myoblasts. Int. J. Mol. Med., 40, 703–712.
  • Carrera-González, M. P.; Ramírez-Expósito, M. J.; Mayas, M. D. & Martínez-Martos, J. M. (2013). Protective role of oleuropein and its metabolite hydroxytyrosol on cancer. Trends Food Sci., 31, 92–99.
  • Castejón, M. L.; Montoya, T.; Alarcón-de-la-Lastra, C. & Sánchez-Hidalgo, M. (2020). Potential Protective Role Exerted by Secoiridoids from Olea europaea L. in Cancer, Cardiovascular, Neurodegenerative, Aging-Related, and Immunoinflammatory Diseases. Antioxidants, 9, 149.
  • Gorzynik-Debicka, M.; Przychodzen, P.; Cappello, F.; Kuban-Jankowska, A.; Marino Gammazza, A.; Knap, N.; Wozniak, M. & Gorska-Ponikowska, M. (2018). Potential Health Benefits of Olive Oil and Plant Polyphenols. Int. J. Mol. Sci., 19, 686.
  • Nediani, C.; Ruzzolini, J.; Romani, A. & Calorini, L. (2019). Oleuropein, a Bioactive Compound from Olea europaea L., as a Potential Preventive and Therapeutic Agent in Non-Communicable Diseases. Antioxidants, 8, 578.
  • Karković Marković, A.; Torić, J.; Barbarić, M. & Jakobušić Brala, C. (2019). Hydroxytyrosol, Tyrosol and Derivatives and Their Potential Effects on Human Health. Molecules, 24, 2001.
  • Lockyer, S.; Corona, G.; Yaqoob, P.; Spencer, J. P. E. & Rowland, I. (2015). Secoiridoids delivered as olive leaf extract induce acute improvements in human vascular function and reduction of an inflammatory cytokine: A randomised, double-blind, placebo-controlled, cross-over trial. Br. J. Nutr., 114, 75–83.
  • Pojero, F.; Aiello, A.; Gervasi, F.; Caruso, C.; Ligotti, M. E.; Calabr., A.; Procopio, A.; Candore, G.; Accardi, G. & Allegra, M. (2022). Effects of Oleuropein and Hydroxytyrosol on Inflammatory Mediators: Consequences on Inflammaging. Int. J. Mol. Sci., 24, 380.
  • Pojero, F.; Gervasi, F.; Fiore, S. D.; Aiello, A.; Bonacci, S.; Caldarella, R.; Attanzio, A.; Candore, G.; Caruso, C.; Ligotti, M. E.; et al. (2023). Anti-Inflammatory Effects of Nutritionally Relevant Concentrations of Oleuropein and Hydroxytyrosol on Peripheral Blood Mononuclear Cells: An Age-Related Analysis. Int. J. Mol. Sci., 24, 11029.
  • Sun, W.; Frost, B. & Liu, J. (2017). Oleuropein, unexpected benefits! Oncotarget, 8, 17409.
  • Butt, M. S.; Tariq, U.; Iahtisham-Ul-Haq; Naz, A. & Rizwan, M. (2021). Neuroprotective effects of oleuropein: Recent developments and contemporary research. J. Food Biochem., 45, e13967.
  • Gamli, O. (2016). The health effects of oleuropein, one of the major phenolic compounds of olives, Olea europaea L. Ital. J. Food Sci., 28, 2016–2178.
  • Bucciantini, M.; Leri, M.; Nardiello, P.; Casamenti, F. & Stefani, M. (2021). Olive Polyphenols: Antioxidant and Anti-Inflammatory Properties. Antioxidants, 10, 1044.
  • Bulotta, S.; Celano, M.; Lepore, S.M.; Montalcini, T.; Pujia, A. & Russo, D. (2014). Beneficial effects of the olive oil phenolic components oleuropein and hydroxytyrosol: Focus on protection against cardiovascular and metabolic diseases. J. Transl. Med., 12, 219.
  • Ercelik, M.; Tekin, C.; Tezcan, G.; Ak Aksoy, S.; Bekar, A.; Kocaeli, H.; Taskapilioglu, M.O.; Eser, P. & Tunca, B. (2023) Olea europaea Leaf Phenolics Oleuropein, Hydroxytyrosol, Tyrosol, and Rutin Induce Apoptosis and Additionally Affect Temozolomide against Glioblastoma: In Particular, Oleuropein Inhibits Spheroid Growth by Attenuating Stem-like Cell Phenotype. Life, 13, 1-28.
  • Soldo, B.; Bilušić, T.; Giacometti, J.; Ljubenkov, I.; Čikeš Čulić, V.; Bratanić, A.; Bošković, P.; Šola, I.; Ilić, K. (2024). A Comparative Study of Oleuropein Extraction from Wild Olive Leaves (Olea europea subsp. oleaster, Hoffmanns. & Link), Its Gastrointestinal Stability, and Biological Potential. Appl. Sci., 14, 1-14.
  • Nediani, C.; Ruzzolini, J.; Romani, A. & Calorini, L. (2019). Oleuropein, a Bioactive Compound from Olea europaea L., as a Potential Preventive and Therapeutic Agent in Non-Communicable Diseases. Antioxidants, 8, 578.
  • Fayez, N.; Khalil, W.; Abdel-Sattar, E. & Abdel-Fattah, A. M. (2023). In Vitro and In vivo Assessment of the Anti-Inflammatory Activity of Olive Leaf Extract in Rats. Inflammopharmacology, 3, 1529–1538.
  • Emma, M. R.; Augello, G.; Di Stefano, V.; Azzolina, A.; Giannitrapani, L.; Montalto, G.; Cervello, M. & Cusimano, A. (2021). Potential Uses of Olive Oil Secoiridoids for the Prevention and Treatment of Cancer: A Narrative Review of Preclinical Studies. Int. J. Mol. Sci., 22, 1234.
  • Fayez, N.; Khalil, W.; Abdel-Sattar, E. & Abdel-Fattah, A. M. (2023). In Vitro and In vivo Assessment of the Anti-Inflammatory Activity of Olive Leaf Extract in Rats. Inflammopharmacology, 3, 1529–1538.
  • Berkoz, M.; Kahraman, T.; Shamsulddin, Z. N. & Kro´sniak, M. (2021). Antioxidant and Anti-inflammatory Effect of Olive Leaf Extract Treatment in Diabetic Rat Brain. J. Basic Clin. Physiol. Pharmacol., 34, 187–196.
  • Mohamed, N. A.; Hussein, M. M.; Ahmed, O. M.; Al-Jameel, S. S.; Al-Muzafar, H. M.; Amin, K.A. & Abdou, H.M. (2024). Oleuropein ameliorates hyperlipidemia, oxidative stress, inflammatory and liver dysfunction biomarkers, in streptozotocin-induced diabetic rats. Journal of Applied Pharmaceutical Science, 14(09), 227-234.
  • Rashed, S. A.; Saad, T. I. & El-Darier, S. M. (2022). Potential aptitude of four olive cultivars as anticancer and antioxidant agents: oleuropein content. Rend Fis Acc Lincei., 33, 195–203.
  • Martínez-Navarro, M. E.; Cebrián-Tarancón, C.; Oliva, J.; Salinas, M. R. & Alonso, G. L. (2021). Oleuropein degradation kinetics in olive leaf and its aqueous extracts. Antioxidants, 10, 1963.
  • Markhali, F. S.; Teixeira, J. A. & Rocha, C. M. R. (2020). Olive tree leaves-A source of valuable active compounds. Processes, 8, 1177.
  • Ramírez, E.; Brenes, M.; García, P.; Medina, E. & Romero, C. (2016). Oleuropein hydrolysis in natural green olives: Importance of the endogenous enzymes. Food Chem., 206, 204–209.
  • Kourti, M.; Skaperda, Z.; Tekos, F.; Stathopoulos, P.; Koutra, C.; Skaltsounis, A. L. & Kouretas, D. (2024). The Bioactivity of a Hydroxytyrosol-Enriched Extract Originated after Direct Hydrolysis of Olive Leaves from Greek Cultivars. Molecules, 29, 1-19.
  • Bertelli, M.; Kiani, A.K.; Paolacci, S.; Manara, E.; Kurti, D.; Dhuli, K.; Bushati, V.; Miertus, J.; Pangallo, D.; Baglivo, M.; et al. (2020). Hydroxytyrosol: A natural compound with promising pharmacological activities. J. Biotechnol., 309, 29–33.
  • Hormozi, M.; Marzijerani, A. S. & Baharvand, P. (2020). Effects of hydroxytyrosol on expression of apoptotic genes and activity of antioxidant enzymes in ls180 cells. Cancer Manag. Res., 12, 7913–7919.
  • Jesús Ramírez-Expósito, M.; Manuel, J. & Id, M. M. (2018). Anti-Inflammatory and Antitumor Effects of Hydroxytyrosol but Not Oleuropein on Experimental Glioma In Vivo. A Putative Role for the Renin-Angiotensin System. Biomedicines, 6, 11.
  • Vijakumaran, U.; Shanmugam, J.; Heng, J. W.; Azman, S. S.; Yazid, M. D.; Haizum Abdullah, N. A. & Sulaiman, N. (2023). Effects of Hydroxytyrosol in Endothelial Functioning: A Comprehensive Review. Molecules, 28, 1861.
  • Wu, L.; Xu, Y.; Yang, Z. & Feng, Q. (2018). Hydroxytyrosol and olive leaf extract exert cardioprotective effects by inhibiting GRP78 and CHOP expression. J. Biomed. Res., 32, 371–379
  • Nardi, M.; Brocchini, S.; Somavarapu, S. & Procopio, A. (2023). Hydroxytyrosol oleate: A promising neuroprotective nanocarrier delivery system of oleuropein and derivatives. Int. J. Pharm., 631, 122498.
  • Joséantonio Gonzaíez-Correa, J.; Dolores Rodríguez-Pérezpérez, M.; Márquezmárquez-Estrada, L.; Antonio Lopezlopez-Villodres, J.; Reyes, J.J.; Rodriguez-Gutierrez, G.; Fernández-Bolanos, J. & De La Cruz, J. P. (2018). Neuroprotective Effect of Hydroxytyrosol in Experimental Diabetic Retinopathy: Relationship with Cardiovascular Biomarkers. J. Agric. Food Chem., 66, 637–644.

THE BIOLOGICAL ACTIVITIES OF OLEUROPEIN AND HYDROXYTYROSOL

Yıl 2024, Cilt: 7 Sayı: 15, 607 - 621, 29.12.2024

Öz

Oleuropein and hydroxytyrosol, two bioactive phenolic compounds predominantly found in olive leaves and olive oil, have garnered significant attention due to their extensive range of biological activities. These compounds exhibit potent antioxidant, anti-inflammatory, and antimicrobial properties, which contribute to their therapeutic potential in preventing and managing various chronic diseases, including cardiovascular disorders, metabolic syndromes, and neurodegenerative conditions. Furthermore, recent studies highlight their role in modulating cellular signaling pathways, promoting apoptosis in cancer cells, and enhancing immune responses. This review aims to provide a comprehensive analysis of the current scientific literature on the biological activities of oleuropein and hydroxytyrosol, with an emphasis on providing scientific data for future scientific studies, applications in clinical and nutraceutical settings.

Kaynakça

  • Augimeri, G. & BonoAglio, D. (2021). The Mediterranean diet as a source of natural compounds: does it represent a protective choice against cancer?” Pharmaceuticals, 14(9), 920.
  • Guasch-Ferré, M. & Willett, W. (2021). The Mediterranean diet and health: a comprehensive overview. Journal of Internal Medicine, 290(3), 549–566.
  • Farràs, M.; Almanza-Aguilera, E.; Hernáez, Á.; Agustí, N.; Julve, J.; Fitó, M. & Castañer, O. (2021). Beneficial effects of olive oil and Mediterranean diet on cancer physio- pathology and incidence. Seminars in Cancer Biology, 73, 178–195.
  • Goldsmith, C. D.; Bond, D. R.; Jankowski, H.; Weidenhofer, J.; Stathopoulos, C. E.; Roach, P. D. & Scarlett, C. J. (2018). The olive biophenols oleuropein and hydroxytyrosol selectively reduce proliferation, in3uence the cell cycle, and induce apoptosis in pancreatic cancer cells. International Journal of Molecular Sciences, 19(7), 1937.
  • García-Molina, G.; Peters, E.; Palmeri, R.; Awoke, Y.; Márquez-Álvarez, C. & Blanco, R. M. (2024). Enzymatic synthesis of Hydroxytyrosol from Oleuropein for valorization of an agricultural waste. Bioengineered, 15(1), 1-17.
  • Nediani, C.; Ruzzolini, J.; Romani, A. & Calorini, L. (2019). Oleuropein, a bioactive compound from olea europaea L., as a potential preventive and therapeutic agent in noncommunicable diseases. Antioxidants, 8(12), 578.
  • Asghariazar, V.; Mansoori, B.; Kadkhodayi, M.; Safarzadeh, E., Mohammadi, A., Baradaran, B. & Sakhinia, E. (2022).MicroRNA-143 act as a tumor suppressor microRNA in human lung cancer cells by inhibiting cell proliferation, invasion, and migration. Molecular Biology Reports, 49(8), 7637–7647.
  • Christodoulou, A.; Nikolaou, P.-E.; Symeonidi, L.; Katogiannis, K.; Pechlivani, L.; Nikou, T.; Varela, A.; Chania, C.; Zerikiotis, S.; Efentakis, P.; Vlachodimitropoulos, D.; Katsoulas, N.; Agapaki, A.; Dimitriou, C.; Tsoumani, M.; Kostomitsopoulos, N.; Davos, C. H., Skaltsounis, A. L., Tselepis, A., Halabalaki, M., Tseti, I., Iliodromitis, E. K., Ikonomidis, I., & Andreadou, I. (2024). Cardioprotective potential of oleuropein, hydroxytyrosol, oleocanthal and their combination: Unravelling complementary effects on acute myocardial infarction and metabolic syndrome. Redox Biology, 76(2024), 1-19.
  • Rishmawi, S.; Haddad, F.; Dokmak, G. & Karaman, R. (2022). A comprehensive review on the anti-cancer e4ects of oleuropein. 1e Life, 12(8), 1140.
  • Fernández-Bolaños, J. G.; López, O.; Fernández-Bolaños, J. & Rodríguez-Gutiérrez, G. (2008). Hydroxytyrosol and derivatives: isolation, synthesis, and biological properties. Curr Org Chem., 12(6), 442–463.
  • Richard, N.; Arnold, S.; Hoeller, U.; Kilpert, C.; Wertz, K. & Schwager, J. (2011). Hydroxytyrosol is the major anti-inflammatory compound in aqueous olive extracts and impairs cytokine and chemokine production in macrophages. Planta Medica, 77(17), 1890–1891.
  • Batarfi,W. A.; Yunus, M. H. M.; Hamid, A. A.; Lee, Y. T. & Maarof, M. (2024). Hydroxytyrosol: A Promising Therapeutic Agent for Mitigating Inflammation and Apoptosis. Pharmaceutics, 16, 1504.
  • Khalil, A. A.; Rahman, M. M.; Rauf, A.; Islam, M. R.; Manna, S. J.; Khan, A. A.; Ullah, S.; Akhtar, M. N.; Aljohani, A. S. M.; Abdulmonem, W. A. & Simal-Gandara, J. (2023). Oleuropein: chemistry, extraction techniques and nutraceutical perspectives-An update. Critical Reviews in Food Science and Nutrition, 22, 1–22.
  • Iantomasi, M.; Terzo, M. & Tsiani, E. (2024). Anti-Diabetic Effects of Oleuropein. Metabolites, 14, 1-21.
  • Tuck, K. L. & Hayball, P. J. (2002). Major phenolic compounds in olive oil: metabolism and health effects. J Nutr Biochem., 13(11), 636–644.
  • Frumuzachi, O.; Gavrilas, L. I.; Vodnar, D.C.; Rohn, S. & Mocan, A. (2024). Systemic Health Effects of Oleuropein and Hydroxytyrosol Supplementation: A Systematic Review of Randomized Controlled Trials. Antioxidants, 13, 1-26.
  • Vijakumaran, U.; Yazid, M. D.; Hj Idrus, R. B.; Abdul Rahman, M. R. & Sulaiman, N. (2021). Molecular action of hydroxytyrosol in attenuation of intimal hyperplasia: A scoping review. Front. Pharmacol., 12, 663266.
  • Hu, T.; He, X.-W.; Jiang, J.-G. & Xu, X.-L. (2014). Hydroxytyrosol and its potential therapeutic effects. J. Agric. Food Chem., 62, 1449–1455.
  • Charoenprasert, S. & Mitchell, A. (2012). Factors Influencing Phenolic Compounds in Table Olives (Olea europaea). J. Agric. Food Chem., 60, 7081–7095.
  • Luzi, F.; Pannucci, E.; Clemente, M.; Grande, E.; Urciuoli, S.; Romani, A.; Torre, L.; Puglia, D.; Bernini, R. & Santi, L. (2021). Hydroxytyrosol and oleuropein-enriched extracts obtained from olive oil wastes and by-products as active antioxidant ingredients for poly (vinyl alcohol)-based films. Molecules, 26, 2104.
  • Monteiro, M.; Silva, A. F.; Resende, D.; Braga, S. S.; Coimbra, M. A.; Silva, A. M. Cardoso, S. M. (2021). Strategies to broaden the applications of olive biophenols oleuropein and hydroxytyrosol in food products. Antioxidants, 10, 444.
  • Aydar, A.; Oner, T. O. & Ucok, E. (2017). Effects of hydroxytyrosol on human health. EC Nutr., 11, 147–157.
  • Wani, T. A.; Masoodi, F.; Gani, A.; Baba, W. N.; Rahmanian, N.; Akhter, R.; Wani, I. A. & Ahmad, M. (2018). Olive oil and its principal bioactive compound: Hydroxytyrosol–A review of the recent literature. Trends Food Sci. Technol., 77, 77–90.
  • Batarfi, W. A.; Mohd Yunus, M. H. & Hamid, A. A. (2023) The Effect of Hydroxytyrosol in Type II Epithelial-Mesenchymal Transition in Human Skin Wound Healing. Molecules, 28, 2652
  • Visioli, F. & Poli A. (2002). Antioxidant and other biological activities of phenols from olives and olive oil. Med Res Rev., 22(1), 65–75.
  • Tripoli, E.; Giammanco, M.; Tabacchi, G.; Majo, D. D.; Giammanco, S. & Guardia, M. L. (2005). The phenolic compounds of olive oil: structure, biological activity and beneficial effects on human health. Nutr Res Rev., 18(1), 98–112
  • Huang, C. L. & Sumpio, B. E. (2008). Olive oil, the mediterranean diet, and cardiovascular health. J Am Coll Surg., 207(3), 407–416.
  • Tarabanis, C.; Long, C.; Scolaro, B. & Heffron, S. P. (2023). Reviewing the cardiovascular and other health effects of olive oil: Limitations and future directions of current supplement formulations. Nutr. Metab. Cardiovasc. Dis., 33, 2326–2333.
  • Li, A.-N.; Li, S.; Zhang, Y.-J.; Xu, X.-R.; Chen, Y.-M. & Li, H.-B. (2014) Resources and biological activities of natural polyphenols. Nutrients, 6, 6020–6047.
  • Rasouli, H.; Mazinani, M. H. & Haghbeen, K. (2021). Chapter 41 - Benefits and challenges of olive biophenols: A perspective. In Olives and Olive Oil in Health and Disease Prevention (Second Edition), 489–503.
  • Qabaha, K.; Al-Rimawi, F.; Qasem, A. & Naser, S. A. (2018). Oleuropein Is Responsible for the Major Anti-Inflammatory Effects of Olive Leaf Extract. J Med Food, 21(3), 302-305.
  • Silvestrini, A.; Giordani, C.; Bonacci, S.; Giuliani, A.; Ramini, D.; Matacchione, G.; Sabbatinelli, J.; Di Valerio, S.; Pacetti, D.; Procopio, A.D.; et al. (2023). Anti-Inflammatory Effects of Olive Leaf Extract and Its Bioactive Compounds Oleacin and Oleuropein-Aglycone on Senescent Endothelial and Small Airway Epithelial Cells. Antioxidants, 12, 1-17.
  • Şahin, S.; Şahin, E.; Esenülkü, G.; Renda, G.; Gürgen, S. G.; Alver, A.; Abidin, İ., & Cansu, A. (2024). Oleuropein Has Modulatory Effects on Systemic Lipopolysaccharide-Induced Neuroinflammation in Male Rats. The Journal of Nutrition, 154(4), 1282-1297.
  • Sonmez, M., & Gunes Yapucu, U. (2018). Topikal uygulamada zetinyağının etkinliği. Ege Üniversitesi Hemşirelik Fakültesi Dergisi, 34(3), 159-168.
  • Al-Rimawi, F.; Sbeih, M.; Amayreh, M.; Rahhal, B. & Mudalal, S. (2024). Evaluation of the antibacterial and antifungal properties of oleuropein, olea Europea leaf extract, and Thymus vulgaris oil. BMC Complementary Medicine and Therapies, 24, 297.
  • Karabey, B.; Saygılı, E. & Karabey, F. (2024). Olea europaea L.'den elde edilen triterpenoid ve polifenol bileşiklerinin antimikrobiyal ve yaşlanma karşıtı etkilerinin değerlendirilmesi: Ekstraksiyon, Tanılama ve in vitro Testler. Ege Journal of Medicine, 63(3), 369-377.
  • Magyari-Pavel, I. Z.; Moacă, E.-A.; Avram, S.; Diaconeasa, Z.; Haidu, D.; Stefănut, M. N.; Rostas, A. M.; Muntean, D.; Bora, L.; Badescu, B.; et al. (2024) Antioxidant Extracts from Greek and Spanish Olive Leaves: Antimicrobial, Anticancer and Antiangiogenic Effects. Antioxidants, 13, 1-30.
  • Kimura, Y. & Sumiyoshi, M. (2009). Olive leaf extract and its main component oleuropein prevent chronic ultraviolet B radiation-induced skin damage and carcinogenesis in hairless mice. 1e Journal of Nutrition, 139(11), 2079–2086.
  • Kikuchi, M.; Mano, N.; Uehara, Y.; Machida, K. & Kikuchi, M. (2011). Cytotoxic and EGFR tyrosine kinase inhibitory activities of aglycone derivatives obtained by enzymatic hydrolysis of oleoside-type secoiridoid glucosides, oleuropein and ligustroside. Journal of Natural Medicines, 65(1), 237–240.
  • Asghariazar, V.; Makaremi, S.; Zare, E.; Danesh, H., Matin, S., Fouladi, N. & Safarzadeh, E. (2024). Oleuropein induces apoptosis in gastric cancer cell lines by regulating mir-34a, mir-21, and related genes: an experimental and bioinformatic study. International Journal of Biological Macromolecules, 265(1).
  • Bulotta, S.; Corradino, R.; Celano, M.; Maiuolo, J.; D'Agostino, M.; Oliverio, M.; Procopio, A.; Filetti, S. & Russo, D. (2013). Antioxidant and antigrowth action of peracetylated oleuropein in thyroid cancer cells. Journal of Molecular Endocrinology, 51(1), 181–189.
  • Casaburi, I.; Puoci, F.; Chimento, A.; Sirianni, R.; Ruggiero, C.; Avena, P. & Pezzi, V. (2013). Potential of olive oil phenols as chemopreventive and therapeutic agents against cancer: a review of in vitro studies. Molecular Nutrition & Food Research, 57(1), 71–83.
  • Barbaro, B.; Toietta, G.; Maggio, R.; Arciello, M.; Tarocchi, M.; Galli, A. & Balsano, C. (2014). Effects of the olivederived polyphenol oleuropein on human health. International Journal of Molecular Sciences, 15(10), 18508–18524.
  • Antognelli, C.; Frosini, R.; Santolla, M. F.; Peirce, M. J. & Talesa, V. N. (2019). Oleuropein-induced apoptosis is mediated by mitochondrial glyoxalase 2 in nsclc A549 cells: a mechanistic inside and a possible novel nonenzymatic role for an ancient enzyme. Oxidative Medicine and Cellular Longevity, 2019, 1-10.
  • Bayat, S.; Mansoori Derakhshan, S.; Mansoori Derakhshan, N.; Shekari Khaniani, M. & Alivand, M. R. (2019). Downregulation of HDAC2 and HDAC3 via oleuropein as a potent prevention and therapeutic agent in MCF-7 breast cancer cells,” Journal of Cellular Biochemistry, 120(6), 9172–9180.
  • Andreadou, I.; Iliodromitis, E. K.; Mikros, E.; Constantinou, M.; Agalias, A.; Magiatis, P.; Skaltsounis, A. L.; Kamber, E.; Tsantili-Kakoulidou, A. & Kremastinos, D. T. (2006) The olive constituent oleuropein exhibits anti-ischemic, antioxidative, and hypolipidemic effects in anesthetized Rabbits12. J. Nutr., 136, 2213–2219.
  • Joshi-Barr, S.; de Gracia Lux, C.; Mahmoud, E. & Almutairi, A. (2014). Exploiting oxidative microenvironments in the body as triggers for drug delivery systems. Antioxidants and Redox Signaling, 21(5), 730–754.
  • Allaw, M.; Manca, M. L.; Gòmez-Fernández, J. C.; Pedraz, J. L.; Terencio, M. C.; Sales, O. D.; Nacher, A. & Manconi, M. (2021). Oleuropein multicompartment nanovesicles enriched with collagen as a natural strategy for the treatment of skin wounds connected with oxidative stres. Nanomedicine, 16(26), 2363–2376
  • Karimi, A.; Niazkar, H. R. & SeAdmooye Azar, P. (2021). Protective effect of hydro-alcoholic extract ofachillea millefoliumon renal injury and biochemical factors in streptozotocin-induced diabetic rats. Nutrition and Food Science, 51(7), 1068–1083.
  • Geyikoğlu, F.; Colak, S.; Türkez, H.; Bakır, M.; Koç, K.; Hosseinigouzdagani, M. K.; Çeriğ, S. & Sönmez, M. (2017). Oleuropein ameliorates cisplatin-induced hematological damages via restraining oxidative stress and DNA injury. Indian Journal of Hematology and Blood Transfusion, 33(3), 348–354.
  • Imran, M.; Nadeem, M.; Gilani, S. A.; Khan, S.; Sajid, M. W. & Amir, R. M. (2018). Antitumor perspectives of oleuropein and its metabolite hydroxytyrosol: recent updates. Journal of Food Science, 83(7), 1781–1791.
  • Ahamad, J.; Toufeeq, I.; Khan, M. A.; Ameen, M. Sh. M; Anwer, E. T; Uthirapathy, S.; Mir, S. R. & Ahmad, J. (2019). Oleuropein: a natural antioxidant molecule in the treatment of metabolic syndrome. Phytotherapy Research, 33(12), 3112–3128.
  • Al-Shaal, S.; Karabet, F. & Daghestani, M. (2019). Determination of the antioxidant properties of the Syrian olive leaves extracts and isolation oleuropein by HPLC techniques,” Analytical and Bioanalytical Chemistry Research, 6(1), 97–110.
  • Romero, M.; Toral, M.; Gómez-Guzmán, M.; Jiménez, R.; Galindo, P.; Sánchez, M.; Olivares, M.; Gálvez, J. & Duarte, J. (2016). Antihypertensive effects of oleuropein-enriched olive leaf extract in spontaneously hypertensive rats. Food Funct., 7, 584–593.
  • Al-Azzawie, H. F. & Alhamdani, M. -S. S. (2006). Hypoglycemic and antioxidant effect of oleuropein in alloxan-diabetic rabbits. Life Sci., 78, 1371–1377.
  • Zheng, S.; Huang, K. & Tong, T. (2021). Efficacy and mechanisms of oleuropein in mitigating diabetes and diabetes complications. J. Agric. Food Chem., 69,6145–6155.
  • Oi-Kano, Y.; Iwasaki, Y.; Nakamura, T.; Watanabe, T.; Goto, T.; Kawada, T.; Watanabe, K. & Iwai, K. (2017). Oleuropein aglycone enhances UCP1 expression in Brown adipose tissue in high-fat-diet-induced obese rats by activating β-adrenergic signaling. J. Nutr. Biochem., 40(2017), 209–218.
  • Tsoumani, M.; Georgoulis, A.; Nikolaou, P.-E.; Kostopoulos, I. V.; Dermintzoglou, T.; Papatheodorou, I.; Zoga, A.; Efentakis, P.; Konstantinou, M.; Gikas, E.; Kostomitsopoulos, N.; Papapetropoulos, A.; Lazou, A.; Skaltsounis, A.-L.; Hausenloy, D. J.; Tsitsilonis, O.; Tseti, I.; Di Lisa, F.; Iliodromitis, E. K. & Andreadou, I. (2021). Acute administration of the olive constituent, oleuropein, combined with ischemic postconditioning increases myocardial protection by modulating oxidative defense. Free Radic. Biol. Med., 166, 18–32.
  • Granados-Principal, S.; Quiles, J. L.; Ramirez-Tortosa, C. L.; Sanchez-Rovira, P. & Ramirez-Tortosa, M. C. (2010). Hydroxytyrosol: From laboratory investigations to future clinical trials. Nutr. Rev., 68, 191–206.
  • Karković Marković, A.; Torić, J.; Barbarić, M. & Jakobušić Brala, C. (2019). Hydroxytyrosol, tyrosol and derivatives and their potential effects on human health. Molecules, 24, 2001.
  • Kamil, K.; Yazid, M. D.; Idrus, R. B. H. & Kumar, J. (2020). Hydroxytyrosol promotes proliferation of human schwann cells: An in vitro study. Int. J. Environ. Res. Public Health, 17, 4404.
  • Pérez-Barrón, G.; Montes, S.; Aguirre-Vidal, Y.; Santiago, M.; Gallardo, E.; Espartero, J. L.; Ríos, C. & Monroy-Noyola, A. (2021). Antioxidant effect of hydroxytyrosol, hydroxytyrosol acetate and nitrohydroxytyrosol in a rat MPP+ model of Parkinson’s disease. Neurochem.Res., 46, 2923–2935.
  • Camargo, A.; Ruano, J.; Fernandez, J. M.; Parnell, L. D.; Jimenez, A.; Santos-Gonzalez, M.; Marin, C.; Perez-Martinez, P.; Uceda, M. & Lopez-Miranda, J. (2010). Gene expression changes in mononuclear cells in patients with metabolic syndrome after acute intake of phenol-rich virgin olive oil. BMC Genom., 11, 253.
  • Terracina, S.; Petrella, C.; Francati, S.; Lucarelli, M.; Barbato, C.; Minni, A.; Ralli, M.; Greco, A.; Tarani, L. & Fiore, M. (2022). Antioxidant intervention to improve cognition in the aging brain: The example of hydroxytyrosol and resveratrol. Int. J. Mol. Sci., 23, 15674.
  • Warleta, F.; Quesada, C. S.; Campos, M.; Allouche, Y.; Beltrán, G. & Gaforio, J. J. (2011). Hydroxytyrosol protects against oxidative DNA damage in human breast cells. Nutrients, 3, 839–857.
  • Robles-Almazan, M.; Pulido-Moran, M.; Moreno-Fernandez, J.; Ramirez-Tortosa, C.; Rodriguez-Garcia, C.; Quiles, J. L. & Ramirez-Tortosa, M. (2018). Hydroxytyrosol: Bioavailability, toxicity, and clinical applications. Food Res. Int., 105, 654–667.
  • Burattini, S.; Salucci, S.; Baldassarri, V.; Accorsi, A.; Piatti, E.; Madrona, A.; Espartero, J. L.; Candiracci, M.; Zappia, G. & Falcieri, E. (2013) Anti-apoptotic activity of hydroxytyrosol and hydroxytyrosyl laurate. Food Chem. Toxicol., 55, 248–256.
  • Yu, H.; Zhang, Z.; Wei, F.; Hou, G.; You, Y.; Wang, X.; Cao, S.; Yang, X.; Liu, W.; Zhang, S.; et al. (2022). Hydroxytyrosol Ameliorates Intervertebral Disc Degeneration and Neuropathic Pain by Reducing Oxidative Stress and Inflammation. Oxidative Med. Cell. Longev., 2022, 2240894.
  • Razali, R. A.; Yazid, M. D.; Saim, A.; Idrus, R. B. H. & Lokanathan, Y. (2023). Approaches in Hydroxytyrosol Supplementation on Epithelial—Mesenchymal Transition in TGFβ1-Induced Human Respiratory Epithelial Cells. Int. J. Mol. Sci., 24, 3974.
  • Vijakumaran, U.; Shanmugam, J.; Heng, J. W.; Azman, S. S.; Yazid, M. D.; Haizum Abdullah, N. A. & Sulaiman, N. (2023). Effects of hydroxytyrosol in endothelial functioning: A comprehensive review. Molecules, 28, 1861.
  • Calabriso, N.; Gnoni, A.; Stanca, E.; Cavallo, A.; Damiano, F.; Siculella, L. & Carluccio, M. A. (2018). Hydroxytyrosol ameliorates endothelial function under inflammatory conditions by preventing mitochondrial dysfunction. Oxidative Med. Cell. Longev., 2018, 9086947.
  • Chen, Q.; Sun, T.; Wang, J.; Jia, J.; Yi, Y. H.; Chen, Y. X.; Miao, Y. & Hu, Z. Q. (2019). Hydroxytyrosol prevents dermal papilla cells inflammation under oxidative stress by inducing autophagy. J. Biochem. Mol. Toxicol., 33, e22377.
  • Alblihed, M. A. (2021). Hydroxytyrosol ameliorates oxidative challenge and inflammatory response associated with lipopolysaccharidemediated sepsis in mice. Hum. Exp. Toxicol., 40, 342–354.
  • Chen, C.; Ai, Q. & Wei, Y. (2021) Hydroxytyrosol protects against cisplatin-induced nephrotoxicity via attenuating CKLF1 mediated inflammation, and inhibiting oxidative stress and apoptosis. Int. Immunopharmacol., 96, 107805.
  • Elmaksoud, H. A.; Motawea, M. H.; Desoky, A. A.; Elharrif, M. G. & Ibrahimi, A. (2021) Hydroxytyrosol alleviate intestinal inflammation, oxidative stress and apoptosis resulted in ulcerative colitis. Biomed. Pharmacother., 142, 112073.
  • Cao, K.; Xu, J.; Zou, X.; Li, Y.; Chen, C.; Zheng, A.; Li, H.; Li, H.; Szeto, I. M.-Y.; Shi, Y.; Long, J.; Liu, J. & Feng, Z. (2014). Hydroxytyrosol prevents diet-induced metabolic syndrome and attenuates mitochondrial abnormalities in obese mice. Free Radic. Biol. Med., 67, 396–407.
  • Efentakis, P.; Iliodromitis, E. K.; Mikros, E.; Papachristodoulou, A.; Dagres, N.; Skaltsounis, A.-L. & Andreadou, I. (2015). Effects of the olive tree leaf constituents on myocardial oxidative damage and atherosclerosis. Planta Med., 81, 648–654.
  • Poudyal, H.; Lemonakis, N.; Efentakis, P.; Gikas, E.; Halabalaki, M.; Andreadou, I.; Skaltsounis, L. & Brown, L. (2017). Hydroxytyrosol ameliorates metabolic, cardiovascular and liver changes in a rat model of diet-induced metabolic syndrome: pharmacological and metabolism-based investigation. Pharmacol. Res., 117, 32–45.
  • Illesca, P.; Valenzuela, R.; Espinosa, A.; Echeverría, F.; Soto-Alarcon, S.; Ortiz, M. & Videla, L. A. (2019). Hydroxytyrosol supplementation ameliorates the metabolic disturbances in white adipose tissue from mice fed a high-fat diet through recovery of transcription factors Nrf2, SREBP-1c, PPAR-γ and NF-κB. Biomed. Pharmacother., 109(2019), 2472–2481.
  • Gervasi, F. & Pojero, F. (2024). Use of Oleuropein and Hydroxytyrosol for Cancer Prevention and Treatment: Considerations about How Bioavailability and Metabolism Impact Their Adoption in Clinical Routine. Biomedicines, 12, 1-36.
  • Goncalves, M.; Aiello, A.; Rodríguez-Pérez, M.; Accardi, G.; Burgos-Ramos, E. & Silva, P. (2024). Olive Oil Components as Novel Antioxidants in Neuroblastoma Treatment: Exploring the Therapeutic Potential of Oleuropein and Hydroxytyrosol. Nutrients, 16, 1-20.
  • Silva, P.; Rodríguez-Pérez, M. & Burgos-Ramos, E. (2023). Zebrafish Model Insights into Mediterranean Diet Liquids: Olive Oil and Wine. Antioxidants, 12, 1843
  • Wahrburg, U.; Kratz, M. & Cullen, P. (2002). Mediterranean diet, olive oil and health. Eur. J. Lipid Sci. Technol., 104, 698–705.
  • Kouka, P.; Priftis, A.; Stagos, D.; Angelis, A.; Stathopoulos, P.; Xinos, N.; Skaltsounis, A.L.; Mamoulakis, C.; Tsatsakis, A.M.; Spandidos, D.A.; et al. (2017). Assessment of the antioxidant activity of an olive oil total polyphenolic fraction and hydroxytyrosol from a Greek Olea europea variety in endothelial cells and myoblasts. Int. J. Mol. Med., 40, 703–712.
  • Carrera-González, M. P.; Ramírez-Expósito, M. J.; Mayas, M. D. & Martínez-Martos, J. M. (2013). Protective role of oleuropein and its metabolite hydroxytyrosol on cancer. Trends Food Sci., 31, 92–99.
  • Castejón, M. L.; Montoya, T.; Alarcón-de-la-Lastra, C. & Sánchez-Hidalgo, M. (2020). Potential Protective Role Exerted by Secoiridoids from Olea europaea L. in Cancer, Cardiovascular, Neurodegenerative, Aging-Related, and Immunoinflammatory Diseases. Antioxidants, 9, 149.
  • Gorzynik-Debicka, M.; Przychodzen, P.; Cappello, F.; Kuban-Jankowska, A.; Marino Gammazza, A.; Knap, N.; Wozniak, M. & Gorska-Ponikowska, M. (2018). Potential Health Benefits of Olive Oil and Plant Polyphenols. Int. J. Mol. Sci., 19, 686.
  • Nediani, C.; Ruzzolini, J.; Romani, A. & Calorini, L. (2019). Oleuropein, a Bioactive Compound from Olea europaea L., as a Potential Preventive and Therapeutic Agent in Non-Communicable Diseases. Antioxidants, 8, 578.
  • Karković Marković, A.; Torić, J.; Barbarić, M. & Jakobušić Brala, C. (2019). Hydroxytyrosol, Tyrosol and Derivatives and Their Potential Effects on Human Health. Molecules, 24, 2001.
  • Lockyer, S.; Corona, G.; Yaqoob, P.; Spencer, J. P. E. & Rowland, I. (2015). Secoiridoids delivered as olive leaf extract induce acute improvements in human vascular function and reduction of an inflammatory cytokine: A randomised, double-blind, placebo-controlled, cross-over trial. Br. J. Nutr., 114, 75–83.
  • Pojero, F.; Aiello, A.; Gervasi, F.; Caruso, C.; Ligotti, M. E.; Calabr., A.; Procopio, A.; Candore, G.; Accardi, G. & Allegra, M. (2022). Effects of Oleuropein and Hydroxytyrosol on Inflammatory Mediators: Consequences on Inflammaging. Int. J. Mol. Sci., 24, 380.
  • Pojero, F.; Gervasi, F.; Fiore, S. D.; Aiello, A.; Bonacci, S.; Caldarella, R.; Attanzio, A.; Candore, G.; Caruso, C.; Ligotti, M. E.; et al. (2023). Anti-Inflammatory Effects of Nutritionally Relevant Concentrations of Oleuropein and Hydroxytyrosol on Peripheral Blood Mononuclear Cells: An Age-Related Analysis. Int. J. Mol. Sci., 24, 11029.
  • Sun, W.; Frost, B. & Liu, J. (2017). Oleuropein, unexpected benefits! Oncotarget, 8, 17409.
  • Butt, M. S.; Tariq, U.; Iahtisham-Ul-Haq; Naz, A. & Rizwan, M. (2021). Neuroprotective effects of oleuropein: Recent developments and contemporary research. J. Food Biochem., 45, e13967.
  • Gamli, O. (2016). The health effects of oleuropein, one of the major phenolic compounds of olives, Olea europaea L. Ital. J. Food Sci., 28, 2016–2178.
  • Bucciantini, M.; Leri, M.; Nardiello, P.; Casamenti, F. & Stefani, M. (2021). Olive Polyphenols: Antioxidant and Anti-Inflammatory Properties. Antioxidants, 10, 1044.
  • Bulotta, S.; Celano, M.; Lepore, S.M.; Montalcini, T.; Pujia, A. & Russo, D. (2014). Beneficial effects of the olive oil phenolic components oleuropein and hydroxytyrosol: Focus on protection against cardiovascular and metabolic diseases. J. Transl. Med., 12, 219.
  • Ercelik, M.; Tekin, C.; Tezcan, G.; Ak Aksoy, S.; Bekar, A.; Kocaeli, H.; Taskapilioglu, M.O.; Eser, P. & Tunca, B. (2023) Olea europaea Leaf Phenolics Oleuropein, Hydroxytyrosol, Tyrosol, and Rutin Induce Apoptosis and Additionally Affect Temozolomide against Glioblastoma: In Particular, Oleuropein Inhibits Spheroid Growth by Attenuating Stem-like Cell Phenotype. Life, 13, 1-28.
  • Soldo, B.; Bilušić, T.; Giacometti, J.; Ljubenkov, I.; Čikeš Čulić, V.; Bratanić, A.; Bošković, P.; Šola, I.; Ilić, K. (2024). A Comparative Study of Oleuropein Extraction from Wild Olive Leaves (Olea europea subsp. oleaster, Hoffmanns. & Link), Its Gastrointestinal Stability, and Biological Potential. Appl. Sci., 14, 1-14.
  • Nediani, C.; Ruzzolini, J.; Romani, A. & Calorini, L. (2019). Oleuropein, a Bioactive Compound from Olea europaea L., as a Potential Preventive and Therapeutic Agent in Non-Communicable Diseases. Antioxidants, 8, 578.
  • Fayez, N.; Khalil, W.; Abdel-Sattar, E. & Abdel-Fattah, A. M. (2023). In Vitro and In vivo Assessment of the Anti-Inflammatory Activity of Olive Leaf Extract in Rats. Inflammopharmacology, 3, 1529–1538.
  • Emma, M. R.; Augello, G.; Di Stefano, V.; Azzolina, A.; Giannitrapani, L.; Montalto, G.; Cervello, M. & Cusimano, A. (2021). Potential Uses of Olive Oil Secoiridoids for the Prevention and Treatment of Cancer: A Narrative Review of Preclinical Studies. Int. J. Mol. Sci., 22, 1234.
  • Fayez, N.; Khalil, W.; Abdel-Sattar, E. & Abdel-Fattah, A. M. (2023). In Vitro and In vivo Assessment of the Anti-Inflammatory Activity of Olive Leaf Extract in Rats. Inflammopharmacology, 3, 1529–1538.
  • Berkoz, M.; Kahraman, T.; Shamsulddin, Z. N. & Kro´sniak, M. (2021). Antioxidant and Anti-inflammatory Effect of Olive Leaf Extract Treatment in Diabetic Rat Brain. J. Basic Clin. Physiol. Pharmacol., 34, 187–196.
  • Mohamed, N. A.; Hussein, M. M.; Ahmed, O. M.; Al-Jameel, S. S.; Al-Muzafar, H. M.; Amin, K.A. & Abdou, H.M. (2024). Oleuropein ameliorates hyperlipidemia, oxidative stress, inflammatory and liver dysfunction biomarkers, in streptozotocin-induced diabetic rats. Journal of Applied Pharmaceutical Science, 14(09), 227-234.
  • Rashed, S. A.; Saad, T. I. & El-Darier, S. M. (2022). Potential aptitude of four olive cultivars as anticancer and antioxidant agents: oleuropein content. Rend Fis Acc Lincei., 33, 195–203.
  • Martínez-Navarro, M. E.; Cebrián-Tarancón, C.; Oliva, J.; Salinas, M. R. & Alonso, G. L. (2021). Oleuropein degradation kinetics in olive leaf and its aqueous extracts. Antioxidants, 10, 1963.
  • Markhali, F. S.; Teixeira, J. A. & Rocha, C. M. R. (2020). Olive tree leaves-A source of valuable active compounds. Processes, 8, 1177.
  • Ramírez, E.; Brenes, M.; García, P.; Medina, E. & Romero, C. (2016). Oleuropein hydrolysis in natural green olives: Importance of the endogenous enzymes. Food Chem., 206, 204–209.
  • Kourti, M.; Skaperda, Z.; Tekos, F.; Stathopoulos, P.; Koutra, C.; Skaltsounis, A. L. & Kouretas, D. (2024). The Bioactivity of a Hydroxytyrosol-Enriched Extract Originated after Direct Hydrolysis of Olive Leaves from Greek Cultivars. Molecules, 29, 1-19.
  • Bertelli, M.; Kiani, A.K.; Paolacci, S.; Manara, E.; Kurti, D.; Dhuli, K.; Bushati, V.; Miertus, J.; Pangallo, D.; Baglivo, M.; et al. (2020). Hydroxytyrosol: A natural compound with promising pharmacological activities. J. Biotechnol., 309, 29–33.
  • Hormozi, M.; Marzijerani, A. S. & Baharvand, P. (2020). Effects of hydroxytyrosol on expression of apoptotic genes and activity of antioxidant enzymes in ls180 cells. Cancer Manag. Res., 12, 7913–7919.
  • Jesús Ramírez-Expósito, M.; Manuel, J. & Id, M. M. (2018). Anti-Inflammatory and Antitumor Effects of Hydroxytyrosol but Not Oleuropein on Experimental Glioma In Vivo. A Putative Role for the Renin-Angiotensin System. Biomedicines, 6, 11.
  • Vijakumaran, U.; Shanmugam, J.; Heng, J. W.; Azman, S. S.; Yazid, M. D.; Haizum Abdullah, N. A. & Sulaiman, N. (2023). Effects of Hydroxytyrosol in Endothelial Functioning: A Comprehensive Review. Molecules, 28, 1861.
  • Wu, L.; Xu, Y.; Yang, Z. & Feng, Q. (2018). Hydroxytyrosol and olive leaf extract exert cardioprotective effects by inhibiting GRP78 and CHOP expression. J. Biomed. Res., 32, 371–379
  • Nardi, M.; Brocchini, S.; Somavarapu, S. & Procopio, A. (2023). Hydroxytyrosol oleate: A promising neuroprotective nanocarrier delivery system of oleuropein and derivatives. Int. J. Pharm., 631, 122498.
  • Joséantonio Gonzaíez-Correa, J.; Dolores Rodríguez-Pérezpérez, M.; Márquezmárquez-Estrada, L.; Antonio Lopezlopez-Villodres, J.; Reyes, J.J.; Rodriguez-Gutierrez, G.; Fernández-Bolanos, J. & De La Cruz, J. P. (2018). Neuroprotective Effect of Hydroxytyrosol in Experimental Diabetic Retinopathy: Relationship with Cardiovascular Biomarkers. J. Agric. Food Chem., 66, 637–644.
Toplam 117 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Teknolojileri
Bölüm Food Health and Technology Innovations
Yazarlar

İbrahim Canbey Bu kişi benim

Aycan Yiğit Çınar

Ozan Gürbüz Bu kişi benim

Yayımlanma Tarihi 29 Aralık 2024
Gönderilme Tarihi 1 Aralık 2024
Kabul Tarihi 8 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: 15

Kaynak Göster