MENTHA PIPERITA VAR. CITRATA’NIN FARKLI SOLVENTLER KULLANILARAK HAZIRLARNAN EKSTRAKTLARININ KİMYASAL KOMPOZİSYONLARI VE ANTİMİKROBİYAL AKTİVİTELERİ
Yıl 2022,
, 531 - 538, 01.04.2022
Cemil Kürekci
,
Neslihan Beyazit
Öz
Bu çalışma farklı çözücüler kullanılarak Mentha piperita var. citrate bitkisinden elde edilen ekstraktların fitokimyasal kompozisyonun belirlenmesi, Gram pozitif ve Gram negatif bakterilere karşı antimikrobiyal etkinliğinin belirlenmesini amaçlamaktadır. Hekzan, kloroform, ve %70’lik metanol ile hazırlanan ekstraktların antimikrobiyal aktiviteleri sıvı mikrodilüsyon metodu kullanılarak test edilmiştir. Rosmarinik asit (10.505 mg/g ekstrakt), sinarosid (8.545 mg/g ekstrakt) ve kosmosiin (8.489 mg/g ekstrakt) metanolik ekstraktda baskın olarak bulunan fitokimyasallar olurken, akasetin (8.438 mg/g ekstrakt) kloroform ekstrakta en fazla bulunan fitokimyasadır. M. citrata ekstraktları Gram pozitif bakterilere karşı farklı konsantrasyonlarda antimikrobiyal aktivite göstermişlerdir. M. citrata bitkisinden elde edilen kloroform ekstraktının antimikrobiyal aktivite aralığı 512-4096 µg/mL iken, hekzan ve metanolik ekstraktlarının aktivitelerinin sırasıyla 1024-4096 µg/mL ve 2048-4096 µg/mL olduğu bulunmuştur. Bu çalışma farklı ekstraksiyon çözücüleri kullanıldığında M. citrata ekstraktlarının farklı kimyasal kompozisyona ve farklı antimikrobiyal aktiviteye sahip olduğunu göstermiştir.
Destekleyen Kurum
Hatay Mustafa Kemal Üniversitesi
Kaynakça
- Al-Dhabi, N.A., Arasu, M.V., Park, C.H., & Park S.U., (2014). Recent studies on rosmarinic acid and its biological and pharmacological activities. EXCLI Journal, 13: 1192-1195.
- Elansary, H.O., Szopa, A., Kubica, P., Ekiert, H., Klimek-Szczykutowicz, M., El-Ansary, D.O., & Mahmoud, EA., (2020). Polyphenol profile and antimicrobial and cytotoxic activities of natural Mentha × piperita and Mentha longifolia populations in Northern Saudi Arabia. Processes, 8: 479.
- Friedman, M., Henika, P.R., & Mandrell, R.E., (2002). Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. Journal of Food Protection, 65: 1545 –1560.
- Goff, D.A., Kullar, R., Goldstein, E.J.C., Gilchrist, M., Nathwani, D., Cheng, A.C., Cairns, K.A., Escandón-Vargas, K., Villegas, M.V., Bring, A., van den Bergh, D., & Mendelson, M., (2017). A global call from five countries to collaborate in antibiotic stewardship: united we succeed, divided we might fail. Lancet Infectious Diseases, 17(2): e56-e63.
- Ghosh, A., Chwdhury, N., & Chandra, G., (2012). Plant extracts as potential mosquito larvicides. Indian Journal of medicinal Research, 135: 581-598.
- Gul, P., & Bakht, J., (2015). Antimicrobial activity of turmeric extract and its potential use in food industry. Journal of Food Science and Technology, 52(4): 2272–2279.
- Hassan, L.E.A., Sirat, H.M., Yagi, S.M.A., Koko, W.S., & Abdelwahab, S.I., (2011). In vitro antimicrobial activities of chloroformic, hexane and ethanolic extracts of Citrullus lanatus var. citroides (wild melon). Journal of Medicinal Plants Research, 5: 1338–1344.
- Hendawy, F.S., Hussein, M.S., El-Gohary, A.E., & Ibrahim, M.A., (2015). Effect of foliar organic fertilization on the growth, yield and oil content of Mentha piperita var. citrata. Asian Journal of Agricultural Research, 9: 237-248.
- Işcan, G., Kirimer, N., Kürkcüoglu, M., Baser, K.H.C., & Demirci, F., (2002). Antimicrobial screening of Mentha piperita essential oils. Journal of Agriculture and Food Chemistry, 50: 3943–3946.
- Khanam, Z., Wen, C.S., & Ul Haq Bhat, I., (2015). Phytochemical screening and antimicrobial activity of root and stem extracts of wild Eurycoma longifolia Jack (Tongkat Ali). Journal of King Saud University-Science, 27: 23-30.
- Kemp, G.W., & McSweeney, C.S., (2010). Screening of plants for inhibitory activity against pathogenic microorganisms from the gut of livestock. In in vitro screening of plant resources for extra‐nutritional attributes in ruminants: nuclear and related methodologies, Vercoe PE, Makkar HPS, Schlink AC (eds). Springer: New York, 1–245.
- Kurekci, C., Bishop-Hurley, S.L., Vercoe, P.E., Durmic, Z., Al Jassim, R.A., & McSweeney, C.S., (2012). Screening of Australian plants for antimicrobial activity against Campylobacter jejuni. Phytotherapy Research, 26: 186-190.
- Lillehoj, H., Liu, Y., Calsamiglia, S., Fernandez-Miyakawa, M.E., Chi, F., Cravens, R.L., Oh, S., & Gay, C.G., (2018). Phytochemicals as potential antibiotic alternatives to promote growth and enhance host health: a report from the second international symposium on alternatives to antibiotics. Veterinary Research, 46: 76–93.
- Murray, M.J., & Lincoln, D.E., (1970). The genetic basis of acyclic oil constituents in Mentha citrate Ehrh. Genetics, 65: 457–471.
- Patel, D.K., (2021). Biological potential of apigetrin in the medicine for the treatment of various forms of inflammatory disorders: Phytotherapeutic approach for respiratory infections. Annals of Hepato-Biliary-Pancreat Surgery, 25(1): S302.
- Pramila, D.M., Xavier, R., Marimuthu, K., Kathiresan, S., Khoo, M.L., Senthilkumar, M., Sathya, K., & Sreeramanan, S., (2012). Phytochemical analysis and antimicrobial potential of methanolic leaf extract of peppermint (Mentha piperita: Lamiaceae). Journal of Medicinal Plants Research, 6(2): 331-335.
- Sarker, S.D., Nahar, L., & Kumarasamy, Y., (2007). Microtitre plate–based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods, 42: 321-4.
- Singh, P., & Pandey, A.K., (2018). Prospective of essential oils of the genus Mentha as biopesticides. Frontiers in Plant Science, 9: 1295.
- Sumner, J., (2000). The natural history of medicinal plants, foreword by Mark J. Plotkin, Timber Press, Portland, OR.
Stanton, T.B., (2013). A call for antibiotic alternatives research. Trends Microbiology, 21, 111–113.
- Tacconelli, E., & Pezzani, M.D., (2019). Public health burden of antimicrobial resistance in Europe. Lancet Infectious Diseases, 19(1): 4–6.
- Yilmaz, M.A., (2020). Simultaneous quantitative screening of 53 phytochemicals in 33 species of medicinal and aromatic plants: a detailed, robust and comprehensive LC–MS/MS method validation. Industrial Crops and Products, 149: 112347.
- Yılmaz, M., Türk, A.Ö., Tay, T., & Merih, K., (2004). The antimicrobial activity of extracts of the lichen Cladonia foliacea and its (+)-usnic acid, atranorin, and fumarprotocetraric acid constituents. Zeitschrift für Naturforschung, 59: 249–254.
CHEMICAL COMPOSITION AND ANTIBACTERIAL ACTIVITY OF MENTHA PIPERITA VAR. CITRATA EXTRACTS OBTAINED BY DIFFERENT EXTRACTION SOLVENTS
Yıl 2022,
, 531 - 538, 01.04.2022
Cemil Kürekci
,
Neslihan Beyazit
Öz
The main aim of this study was to evaluate the phytochemical composition of extracts of Mentha piperita var. citrata obtained by using three different solvents as well as their antimicrobial activity against a panel of Gram positive and Gram negative bacteria. The antibacterial activities of the extracts (hexane, chloroform, and 70% aqueous methanol) were tested against a panel of bacteria using broth microdilution method. Rosmarinic acid (10.505 mg/g extract), cynaroside (8.545 mg/g extract) and cosmosiin (8.489 mg/g extract) appeared to be the major components of methanolic extract, whereas acacetin was the most abundant (8.438 mg/g extract) component of chloroform extract. M. citrata extracts showed significant antimicrobial activity against Gram positive bacteria at different concentrations. Chloroform extract from M. citrata showed antimicrobial activity at concentration of 512-4096 µg/mL, whereas hexane and methanolic extracts had activity at 1024-4096 µg/mL and 2048-4096 µg/mL, respectively. This study shows the different chemical composition and antimicrobial activities of M. citrata extracts obtained by using different extraction solvents.
Kaynakça
- Al-Dhabi, N.A., Arasu, M.V., Park, C.H., & Park S.U., (2014). Recent studies on rosmarinic acid and its biological and pharmacological activities. EXCLI Journal, 13: 1192-1195.
- Elansary, H.O., Szopa, A., Kubica, P., Ekiert, H., Klimek-Szczykutowicz, M., El-Ansary, D.O., & Mahmoud, EA., (2020). Polyphenol profile and antimicrobial and cytotoxic activities of natural Mentha × piperita and Mentha longifolia populations in Northern Saudi Arabia. Processes, 8: 479.
- Friedman, M., Henika, P.R., & Mandrell, R.E., (2002). Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. Journal of Food Protection, 65: 1545 –1560.
- Goff, D.A., Kullar, R., Goldstein, E.J.C., Gilchrist, M., Nathwani, D., Cheng, A.C., Cairns, K.A., Escandón-Vargas, K., Villegas, M.V., Bring, A., van den Bergh, D., & Mendelson, M., (2017). A global call from five countries to collaborate in antibiotic stewardship: united we succeed, divided we might fail. Lancet Infectious Diseases, 17(2): e56-e63.
- Ghosh, A., Chwdhury, N., & Chandra, G., (2012). Plant extracts as potential mosquito larvicides. Indian Journal of medicinal Research, 135: 581-598.
- Gul, P., & Bakht, J., (2015). Antimicrobial activity of turmeric extract and its potential use in food industry. Journal of Food Science and Technology, 52(4): 2272–2279.
- Hassan, L.E.A., Sirat, H.M., Yagi, S.M.A., Koko, W.S., & Abdelwahab, S.I., (2011). In vitro antimicrobial activities of chloroformic, hexane and ethanolic extracts of Citrullus lanatus var. citroides (wild melon). Journal of Medicinal Plants Research, 5: 1338–1344.
- Hendawy, F.S., Hussein, M.S., El-Gohary, A.E., & Ibrahim, M.A., (2015). Effect of foliar organic fertilization on the growth, yield and oil content of Mentha piperita var. citrata. Asian Journal of Agricultural Research, 9: 237-248.
- Işcan, G., Kirimer, N., Kürkcüoglu, M., Baser, K.H.C., & Demirci, F., (2002). Antimicrobial screening of Mentha piperita essential oils. Journal of Agriculture and Food Chemistry, 50: 3943–3946.
- Khanam, Z., Wen, C.S., & Ul Haq Bhat, I., (2015). Phytochemical screening and antimicrobial activity of root and stem extracts of wild Eurycoma longifolia Jack (Tongkat Ali). Journal of King Saud University-Science, 27: 23-30.
- Kemp, G.W., & McSweeney, C.S., (2010). Screening of plants for inhibitory activity against pathogenic microorganisms from the gut of livestock. In in vitro screening of plant resources for extra‐nutritional attributes in ruminants: nuclear and related methodologies, Vercoe PE, Makkar HPS, Schlink AC (eds). Springer: New York, 1–245.
- Kurekci, C., Bishop-Hurley, S.L., Vercoe, P.E., Durmic, Z., Al Jassim, R.A., & McSweeney, C.S., (2012). Screening of Australian plants for antimicrobial activity against Campylobacter jejuni. Phytotherapy Research, 26: 186-190.
- Lillehoj, H., Liu, Y., Calsamiglia, S., Fernandez-Miyakawa, M.E., Chi, F., Cravens, R.L., Oh, S., & Gay, C.G., (2018). Phytochemicals as potential antibiotic alternatives to promote growth and enhance host health: a report from the second international symposium on alternatives to antibiotics. Veterinary Research, 46: 76–93.
- Murray, M.J., & Lincoln, D.E., (1970). The genetic basis of acyclic oil constituents in Mentha citrate Ehrh. Genetics, 65: 457–471.
- Patel, D.K., (2021). Biological potential of apigetrin in the medicine for the treatment of various forms of inflammatory disorders: Phytotherapeutic approach for respiratory infections. Annals of Hepato-Biliary-Pancreat Surgery, 25(1): S302.
- Pramila, D.M., Xavier, R., Marimuthu, K., Kathiresan, S., Khoo, M.L., Senthilkumar, M., Sathya, K., & Sreeramanan, S., (2012). Phytochemical analysis and antimicrobial potential of methanolic leaf extract of peppermint (Mentha piperita: Lamiaceae). Journal of Medicinal Plants Research, 6(2): 331-335.
- Sarker, S.D., Nahar, L., & Kumarasamy, Y., (2007). Microtitre plate–based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods, 42: 321-4.
- Singh, P., & Pandey, A.K., (2018). Prospective of essential oils of the genus Mentha as biopesticides. Frontiers in Plant Science, 9: 1295.
- Sumner, J., (2000). The natural history of medicinal plants, foreword by Mark J. Plotkin, Timber Press, Portland, OR.
Stanton, T.B., (2013). A call for antibiotic alternatives research. Trends Microbiology, 21, 111–113.
- Tacconelli, E., & Pezzani, M.D., (2019). Public health burden of antimicrobial resistance in Europe. Lancet Infectious Diseases, 19(1): 4–6.
- Yilmaz, M.A., (2020). Simultaneous quantitative screening of 53 phytochemicals in 33 species of medicinal and aromatic plants: a detailed, robust and comprehensive LC–MS/MS method validation. Industrial Crops and Products, 149: 112347.
- Yılmaz, M., Türk, A.Ö., Tay, T., & Merih, K., (2004). The antimicrobial activity of extracts of the lichen Cladonia foliacea and its (+)-usnic acid, atranorin, and fumarprotocetraric acid constituents. Zeitschrift für Naturforschung, 59: 249–254.