Araştırma Makalesi
BibTex RIS Kaynak Göster

MİKROENKAPSÜLE SU KEFİRİ: PROBİYOTİK STABİLİTE, DEPOLAMA VE SİNDİRİM SİSTEMİNDE CANLILIK ÜZERİNE ETKİSİ

Yıl 2025, Cilt: 50 Sayı: 6, 1058 - 1076, 08.12.2025
https://doi.org/10.15237/gida.GD25076

Öz

Bu çalışmada ekstrüzyon tekniğiyle su kefiri (SK) ve Lacticaseibacillus casei (LC) farklı taşıyıcı materyallerle kaplanarak, depolama süresince fizikokimyasal özelliklerinin ve gastrointestinal sistemde probiyotik canlılık düzeylerinin belirlenmesi amaçlanmıştır. Taşıyıcı materyal olarak aljinat-nişasta ve aljinat-jelatin kombinasyonları kullanılmıştır. Ekstrüzyon ile mikrokapsüle edilen organizmalar liyofilizasyonla kurutulmuş; kuru kapsüller +4°C ve -18°C’de 30 gün depolanarak fizikokimyasal, mikrobiyolojik ve gastrointestinal canlılık analizlerine tabi tutulmuştur. Fizikokimyasal analizlerde kapsüllerin boyutları 2.56–3.13 mm, su aktiviteleri 0.28–0.35 olarak saptanmıştır. Depolama boyunca aljinat-jelatin kapsüller aljinat-nişasta kombinasyonuna kıyasla daha stabil bulunmuş, aljinat-nişasta ise daha yavaş salınım göstermiştir. Salınım testlerinde 37°C’de 120 dakikada en yüksek canlı hücre çıkışı gözlenmiş; aljinat-jelatin salınım verimliliği daha yüksek bulunmuştur. Simüle mide ve bağırsak ortamlarında probiyotik canlılığın özellikle bağırsak fazında azaldığı belirlenmiştir. Duyusal analizlerde kapsül eklenmiş ürünler görünüş, koku ve tat açısından panelistlerce olumlu değerlendirilmiştir. Sonuç olarak mikroenkapsülasyon su kefirinin probiyotik potansiyelini koruyarak fonksiyonel gıdalarda uygulanabilirliğini artırmaktadır. İlerleyen çalışmalarda farklı kaplama kombinasyonları ve teknikleri araştırılmalıdır.

Etik Beyan

Yazarların herhangi bir çıkar çatışması bulunmamaktadır.

Destekleyen Kurum

Süleyman Demirel Üniversitesi, Bilimsel Araştırma Proje Birimi

Proje Numarası

FYL-2021-8438

Teşekkür

Süleyman Demirel Üniversitesi, Bilimsel Araştırma Proje Birimi FYL-2021-8438 projesini fonladığı için teşekkür ederiz.

Kaynakça

  • Akbari, A., Gänzle, M.G., Wu, J. (2023). Cruciferin improves stress resistance and simulated gastrointestinal survival of probiotic Limosilactobacillus reuteri in the model encapsulation system. Food Hydrocolloids for Health, 3, 100118.
  • Albertini, B., Vitali, B., Passerini, N., Cruciani, F., Di Sabatino, M., Rodriguez, L., Brigidi, P. (2010). Development of microparticulate systems for intestinal delivery of Lactobacillus acidophilus and Bifidobacterium lactis. European Journal of Pharmaceutical Sciences, 40(4), 359-366.
  • Altuğ-Onoğur, T., Elmacı, Y. (2019). 4. Baskı. Gıdalarda Duyusal Değerlendirme. Sidas Medya, İzmir. Aydoğdu, S., Özdemir, N., Kök Taş, T. (2025). Functional Burrata cheese enriched with Lacticaseibacillus casei ATCC 393: Insights into production, unique characteristics, and aromatic profile. Mljekarstvo, 75 (3), 160-173.
  • Berrada, N., Lemeland, J.F., LaroChe, G., Thouvenot, P., Piaia, M. (1991). Bifidobacterium from fermented milks: survival during gastric transit. Journal of dairy science, 74(2), 409-413.
  • Borst, J.W., Visser, N.V., Kouptsova, O., Visser, A. J. (2000). Oxidation of unsaturated phospholipids in membrane bilayer mixtures is accompanied by membrane fluidity changes. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1487(1), 61-73.
  • Boontun, C., Vatanyoopaisarn, S., Phalakornkule, C., Domrongpokkaphan, V., Thitisak, P., Thaveetheptaikul, P., Bamrungchue, N. (2024). Influence of protectant for encapsulation by freeze-drying and spray-drying techniques, and packaging environments on the stability of the probiotic Bifidobacterium animalis subsp. lactis strain KMP-H9-01 during storage. Drying Technology, 42(4), 762-774
  • Cho, Y.H., Shim, H.K., Park, J. (2003). Encapsulation of fish oil by an enzymatic gelation process using transglutaminase cross‐linked proteins. Journal of Food Science, 68(9), 2717-2723.
  • Cook, M.T., Tzortzis, G., Charalampopoulos, D. ve Khutoryanskiy, V.V. (2012). Microencapsulation of probiotics for gastrointestinal delivery. Journal of Controlled Release, 162(1), 56-67.
  • Darvishzadeh, P., Orsat, V. (2022). Storage stability and in vitro digestion of microencapsulated Russian olive water kefir using spray-drying. Food and Bioprocess Technology, 15(1), 120-131.
  • Dave, R.I., Shah, N.P. (1997). Viability of yoghurt and probiotic bacteria in yoghurts made from commercial starter cultures. International Dairy Journal, 7(1), 31-41.
  • Fathi, F., Saberi-Riseh, R., Khodaygan, P. (2021). Survivability and controlled release of alginate-microencapsulated Pseudomonas fluorescens VUPF506 and their effects on biocontrol of Rhizoctonia solani on potato. International Journal of Biological Macromolecules, 183, 627-634.
  • Fareez, I.M., Lim, S.M., Mishra, R.K., Ramasamy, K. (2015). Chitosan coated alginate–xanthan gum bead enhanced pH and thermotolerance of Lactobacillus plantarum LAB12. International journal of biological macromolecules, 72, 1419-1428.
  • Gbassi, G.K., Vandamme, T., Ennahar, S., Marchioni, E., (2010). Microencapsulation ofLactobacillus plantarum spp. in an alginate matrix coated with whey proteins. Int J Food Microbiol, 129: 103-105.
  • Geniş, B., Tuncer, Y. (2019). Probiyotik kültürlerin mikroenkapsülasyonunda kullanılan farklı kaplama materyalleri ve yöntemler. Gıda, 44(6) 1222-1236
  • Gül, O., (2015). Lactobacillus casei Shirota’nın Çeşitli Yöntemlerle Mikroenkapsülasyonu, Fen Bilimleri Enstitüsü, Doktora Tezi, 261 Sayfa, Samsun.
  • Hamilton-Miller, J.M.T., Shah, S. Winkler, J.T. (1999). Public health issues arising from microbiological and labelling quality of foods and supplements containing probiotic microorganisms. Public Health Nutrition, 2(2), 223-229.
  • Heidebach, T., Först, P., Kulozik, U. (2009). Microencapsulation of probiotic cells by means of rennet-gelation of milk proteins. Food HydroColloids, 23(7), 1670-1677.
  • Heidebach, T., Först, P., Kulozik, U. (2010). Microencapsulation of probiotic cells for food applications. Critical Reviews in Food Science and Nutrition, 50(7), 1–17.
  • Hernandez-Mendoza, A., Robles, V.J., Angulo, J.O., De La Cruz, J., Garcia, H.S. (2007). Preparation of a whey-based probiotic product with Lactobacillus reuteri and Bifidobacterium bifidum. Food Technology and Biotechnology, 45(1), 27-31
  • How, Y., Pui, L. (2021). Survivability of microencapsulated probiotics in nondairy beverages: A review. Journal of Food Processing and Preservation, 45(7), e15641.
  • Hsiao, H.C., Lian, W.C., Chou, C.C. (2004). Effect of packaging conditions and temperature on viability of microencapsulated bifidobacteria during storage. Journal of the Science of Food and Agiculture, 84, 134-139.
  • Jannah, S.R., Rahayu, E.S., Yanti, R., Suroto, D.A., Wikandari, R. (2022). Study of Viability, Storage Stability, and Shelf Life of Probiotic Instant Coffee Lactiplantibacillus plantarum Subsp. plantarum Dad‐13 in Vacuum and Nonvacuum Packaging at Different Storage Temperatures. International Journal of Food Science, 2022(1), 1663772.
  • Kailasapathy, K. (2002). Microencapsulation of probiotic bacteria: technology and potential applications. Current Issues in Intestinal Microbiology, 3, 39-48.
  • Kaya, Y., Akgün, H.A., Kök Taş T. (2025). Metagenomic analysis of microbial dynamics in water kefir grains: influence of soy protein on biomass growth and the development of an alternative beverage, International Journal of Food Science and Technology, 60,1, vvae024 .
  • Krasaekoopt, W., Bhandari, B., & Deeth, H. (2004). The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. International Dairy Journal, 14(8), 737–743.
  • Kailasapathy, K. (2006). Survival of free and encapsulated probiotic bacteria and their effect on the sensory properties of yoghurt. LWT-Food Science and Technology, 39(10), 1221-1227.
  • Kebary, K.M.K., Hussein, S.A., Badawi, R.M. (1998). Improving viability of bifidobacterium and their effect on frozen ice milk. 319-337.
  • Khater, K.A.A., Ali, M.A., Ahmed, E.A.M. (2010). Effect of encapsulation on some probiotic criteria. Journal of American Science, 6(10), 810-819.
  • Kim, S.J., Cho, S.Y., Kim, S.H., Song, O.J., Shin, I.S., Cha, D.S., Park, H.J. (2008). Effect of microencapsulation on viability and other characteristics in Lactobacillus acidophilus ATCC 43121. LWT-Food Science and Technology, 41(3), 493-500.
  • Kozlovskaya, V., Kharlampieva, E., Mansfield, M.L., Sukhishvili, S.A. (2006). Poly (methacrylic acid) hydrogel films and capsules: response to pH and ionic strength, and encapsulation of macromolecules. Chemistry of materials, 18(2), 328-336.
  • Li, B., Tian, F., Liu, X., Zhao, J., Zhang, H., Chen, W. (2011). Effects of cryoprotectants on viability of Lactobacillus reuteri CICC6226. Applied microbiology and biotechnology, 92(3), 609-616.
  • Li, X.Y., Chen, X.G., Cha, D.S., Park, H.J., Liu, C.S. (2009). Microencapsulation of a probiotic bacteria with alginate–gelatin and its properties. Journal of Microencapsulation, 26(4), 315-324.
  • Manjunatha, V., Bhattacharjee, D., Flores, C. (2024). Unlocking Innovations: Exploring the Role of Kefir in Product Development. Current Food Science and Technology Reports, 2(2), 221-230.
  • Meng, X.C., Stanton, C., Fitzgerald, G.F., Daly, C., Ross, R.P. (2008). Anhydrobiotics: The challenges of drying probiotic cultures. Food Chemistry, 106(4), 1406-1416.
  • Morgan, C.A., Herman, N., White, P.A., Vesey, G. (2006). Preservation of micro-organisms by drying; a review. Journal of microbiological methods, 66(2), 183-193.
  • Muthukumarasamy, P., Holley, R.A. (2006a). Microbiological and sensory quality of dry fermented sausages containing alginate-microencapsulated Lactobacillus reuteri. International Journal of Food Microbiology, 111(2), 164-169.
  • Muthukumarasamy, P., Allan‐Wojtas, P., Holley, R.A. (2006b). Stability of Lactobacillus reuteri in different types of microCapsules. Journal of food science, 71(1), M20-M24.
  • Nadeem, H.Ş., Torun, M., Özdemir, F. (2011). Spray drying of the mountain tea (Sideritis stricta) water extract by using different hydrocolloid carriers. LWT-Food science and technology, 44(7), 1626-1635.
  • Picot, A., Lacroix, C. (2004). Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. International dairy journal, 14(6), 505-515.
  • Pupa, P., Apiwatsiri, P., Sirichokchatchawan, W., Pirarat, N., Muangsin, N., Shah, A.A., Prapasarakul, N. (2021). The efficacy of three double-microencapsulation methods for preservation of probiotic bacteria. Scientific Reports, 11(1), 13753.
  • Ranadheera, C.S., Evans, C.A., Adams, M.C., Baines, S.K. (2015). Microencapsulation of Lactobacillus acidophilus LA-5, Bifidobacterium animalis subsp. lactis BB-12 and Propionibacterium jensenii 702 by spray drying in goat's milk. Small Ruminant Research, 123(1), 155-159.
  • Rashidinejad, A., Bahrami, A., Rehman, A., Rezaei, A., Babazadeh, A., Singh, H., Jafari, S.M. (2022). Co-encapsulation of probiotics with prebiotics and their application in functional/synbiotic dairy products. Critical reviews in food science and nutrition, 62(9), 2470-2494.
  • Rather, S.A., Akhter, R., Masoodi, F.A., Gani, A., Wani, S.M. (2017). Effect of double alginate microencapsulation on in vitro digestibility and thermal tolerance of Lactobacillus plantarum NCDC201 and L. casei NCDC297. LWT-Food Science and Technology, 83, 50-58.
  • Reid, A., Vuillemard, J.C., Britten, M., Arcand, Y., Farnworth, E., Champagne, C.P. (2005). Microentrapment of probiotic bacteria in a Ca (2+)-induced whey protein gel and effects on their viability in a dynamic gastro-intestinal model. Journal of microencapsulation, 22(6), 603-619.
  • Sanprasert, S., Kumnerdsiri, P., Seubsai, A., Lueangjaroenkit, P., Pongsetkul, J., Indriani, S., ... Kingwascharapong, P. (2025). Techno-Functional, Rheological, and Physico-Chemical Properties of Gelatin Capsule By-Product for Future Functional Food Ingredients. Foods, 14(7), 1279.
  • Santivarangkna, C., Higl, B., Foerst, P. (2008). Protection mechanisms of sugars during different stages of preparation process of dried lactic acid starter cultures. Food microbiology, 25(3), 429-441.
  • Sheu, T.Y., Marshall, R.T., Heymann, H. (1993). Improving survival of culture bacteria in frozen desserts by microentrapment. Journal of dairy science, 76(7), 1902-1907.
  • Xu, M., Gagné-Bourque, F., Dumont, M.J., Jabaji, S. (2016). Encapsulation of Lactobacillus casei ATCC 393 cells and evaluation of their survival after freeze-drying, storage and under gastrointestinal conditions. Journal of food engineering, 168, 52-59.

MICROENCAPSULATED WATER KEFIR: EFFECT ON PROBIOTIC STABILITY, STORAGE AND SURVIVAL IN THE GASTROINTESTINAL TRACT

Yıl 2025, Cilt: 50 Sayı: 6, 1058 - 1076, 08.12.2025
https://doi.org/10.15237/gida.GD25076

Öz

In this study, water kefir (SK) and Lacticaseibacillus casei (LC) were encapsulated with different carrier materials using the extrusion technique to evaluate physicochemical properties during storage and probiotic viability under simulated gastrointestinal conditions. Alginate-starch and alginate-gelatin combinations were applied as carriers. Encapsulated microorganisms were lyophilized, and dried capsules were stored at +4°C and -18°C for 30 days, followed by physicochemical, microbiological, and viability analyses. Capsule sizes ranged between 2.56–3.13 mm, while water activity was 0.28–0.35. During storage, alginate-gelatin capsules showed greater stability, whereas alginate-starch provided slower and more controlled release. In release tests, maximum viable cell counts were obtained at 37°C after 120 min, with higher release efficiency in alginate-gelatin. Simulated gastrointestinal assays indicated significantly reduced probiotic survival, particularly in the intestinal phase. Sensory evaluation revealed that capsule-enriched products were positively perceived by panelists. Overall, microencapsulation effectively preserved the probiotic potential of water kefir, supporting its promising application in functional foods.

Proje Numarası

FYL-2021-8438

Kaynakça

  • Akbari, A., Gänzle, M.G., Wu, J. (2023). Cruciferin improves stress resistance and simulated gastrointestinal survival of probiotic Limosilactobacillus reuteri in the model encapsulation system. Food Hydrocolloids for Health, 3, 100118.
  • Albertini, B., Vitali, B., Passerini, N., Cruciani, F., Di Sabatino, M., Rodriguez, L., Brigidi, P. (2010). Development of microparticulate systems for intestinal delivery of Lactobacillus acidophilus and Bifidobacterium lactis. European Journal of Pharmaceutical Sciences, 40(4), 359-366.
  • Altuğ-Onoğur, T., Elmacı, Y. (2019). 4. Baskı. Gıdalarda Duyusal Değerlendirme. Sidas Medya, İzmir. Aydoğdu, S., Özdemir, N., Kök Taş, T. (2025). Functional Burrata cheese enriched with Lacticaseibacillus casei ATCC 393: Insights into production, unique characteristics, and aromatic profile. Mljekarstvo, 75 (3), 160-173.
  • Berrada, N., Lemeland, J.F., LaroChe, G., Thouvenot, P., Piaia, M. (1991). Bifidobacterium from fermented milks: survival during gastric transit. Journal of dairy science, 74(2), 409-413.
  • Borst, J.W., Visser, N.V., Kouptsova, O., Visser, A. J. (2000). Oxidation of unsaturated phospholipids in membrane bilayer mixtures is accompanied by membrane fluidity changes. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1487(1), 61-73.
  • Boontun, C., Vatanyoopaisarn, S., Phalakornkule, C., Domrongpokkaphan, V., Thitisak, P., Thaveetheptaikul, P., Bamrungchue, N. (2024). Influence of protectant for encapsulation by freeze-drying and spray-drying techniques, and packaging environments on the stability of the probiotic Bifidobacterium animalis subsp. lactis strain KMP-H9-01 during storage. Drying Technology, 42(4), 762-774
  • Cho, Y.H., Shim, H.K., Park, J. (2003). Encapsulation of fish oil by an enzymatic gelation process using transglutaminase cross‐linked proteins. Journal of Food Science, 68(9), 2717-2723.
  • Cook, M.T., Tzortzis, G., Charalampopoulos, D. ve Khutoryanskiy, V.V. (2012). Microencapsulation of probiotics for gastrointestinal delivery. Journal of Controlled Release, 162(1), 56-67.
  • Darvishzadeh, P., Orsat, V. (2022). Storage stability and in vitro digestion of microencapsulated Russian olive water kefir using spray-drying. Food and Bioprocess Technology, 15(1), 120-131.
  • Dave, R.I., Shah, N.P. (1997). Viability of yoghurt and probiotic bacteria in yoghurts made from commercial starter cultures. International Dairy Journal, 7(1), 31-41.
  • Fathi, F., Saberi-Riseh, R., Khodaygan, P. (2021). Survivability and controlled release of alginate-microencapsulated Pseudomonas fluorescens VUPF506 and their effects on biocontrol of Rhizoctonia solani on potato. International Journal of Biological Macromolecules, 183, 627-634.
  • Fareez, I.M., Lim, S.M., Mishra, R.K., Ramasamy, K. (2015). Chitosan coated alginate–xanthan gum bead enhanced pH and thermotolerance of Lactobacillus plantarum LAB12. International journal of biological macromolecules, 72, 1419-1428.
  • Gbassi, G.K., Vandamme, T., Ennahar, S., Marchioni, E., (2010). Microencapsulation ofLactobacillus plantarum spp. in an alginate matrix coated with whey proteins. Int J Food Microbiol, 129: 103-105.
  • Geniş, B., Tuncer, Y. (2019). Probiyotik kültürlerin mikroenkapsülasyonunda kullanılan farklı kaplama materyalleri ve yöntemler. Gıda, 44(6) 1222-1236
  • Gül, O., (2015). Lactobacillus casei Shirota’nın Çeşitli Yöntemlerle Mikroenkapsülasyonu, Fen Bilimleri Enstitüsü, Doktora Tezi, 261 Sayfa, Samsun.
  • Hamilton-Miller, J.M.T., Shah, S. Winkler, J.T. (1999). Public health issues arising from microbiological and labelling quality of foods and supplements containing probiotic microorganisms. Public Health Nutrition, 2(2), 223-229.
  • Heidebach, T., Först, P., Kulozik, U. (2009). Microencapsulation of probiotic cells by means of rennet-gelation of milk proteins. Food HydroColloids, 23(7), 1670-1677.
  • Heidebach, T., Först, P., Kulozik, U. (2010). Microencapsulation of probiotic cells for food applications. Critical Reviews in Food Science and Nutrition, 50(7), 1–17.
  • Hernandez-Mendoza, A., Robles, V.J., Angulo, J.O., De La Cruz, J., Garcia, H.S. (2007). Preparation of a whey-based probiotic product with Lactobacillus reuteri and Bifidobacterium bifidum. Food Technology and Biotechnology, 45(1), 27-31
  • How, Y., Pui, L. (2021). Survivability of microencapsulated probiotics in nondairy beverages: A review. Journal of Food Processing and Preservation, 45(7), e15641.
  • Hsiao, H.C., Lian, W.C., Chou, C.C. (2004). Effect of packaging conditions and temperature on viability of microencapsulated bifidobacteria during storage. Journal of the Science of Food and Agiculture, 84, 134-139.
  • Jannah, S.R., Rahayu, E.S., Yanti, R., Suroto, D.A., Wikandari, R. (2022). Study of Viability, Storage Stability, and Shelf Life of Probiotic Instant Coffee Lactiplantibacillus plantarum Subsp. plantarum Dad‐13 in Vacuum and Nonvacuum Packaging at Different Storage Temperatures. International Journal of Food Science, 2022(1), 1663772.
  • Kailasapathy, K. (2002). Microencapsulation of probiotic bacteria: technology and potential applications. Current Issues in Intestinal Microbiology, 3, 39-48.
  • Kaya, Y., Akgün, H.A., Kök Taş T. (2025). Metagenomic analysis of microbial dynamics in water kefir grains: influence of soy protein on biomass growth and the development of an alternative beverage, International Journal of Food Science and Technology, 60,1, vvae024 .
  • Krasaekoopt, W., Bhandari, B., & Deeth, H. (2004). The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. International Dairy Journal, 14(8), 737–743.
  • Kailasapathy, K. (2006). Survival of free and encapsulated probiotic bacteria and their effect on the sensory properties of yoghurt. LWT-Food Science and Technology, 39(10), 1221-1227.
  • Kebary, K.M.K., Hussein, S.A., Badawi, R.M. (1998). Improving viability of bifidobacterium and their effect on frozen ice milk. 319-337.
  • Khater, K.A.A., Ali, M.A., Ahmed, E.A.M. (2010). Effect of encapsulation on some probiotic criteria. Journal of American Science, 6(10), 810-819.
  • Kim, S.J., Cho, S.Y., Kim, S.H., Song, O.J., Shin, I.S., Cha, D.S., Park, H.J. (2008). Effect of microencapsulation on viability and other characteristics in Lactobacillus acidophilus ATCC 43121. LWT-Food Science and Technology, 41(3), 493-500.
  • Kozlovskaya, V., Kharlampieva, E., Mansfield, M.L., Sukhishvili, S.A. (2006). Poly (methacrylic acid) hydrogel films and capsules: response to pH and ionic strength, and encapsulation of macromolecules. Chemistry of materials, 18(2), 328-336.
  • Li, B., Tian, F., Liu, X., Zhao, J., Zhang, H., Chen, W. (2011). Effects of cryoprotectants on viability of Lactobacillus reuteri CICC6226. Applied microbiology and biotechnology, 92(3), 609-616.
  • Li, X.Y., Chen, X.G., Cha, D.S., Park, H.J., Liu, C.S. (2009). Microencapsulation of a probiotic bacteria with alginate–gelatin and its properties. Journal of Microencapsulation, 26(4), 315-324.
  • Manjunatha, V., Bhattacharjee, D., Flores, C. (2024). Unlocking Innovations: Exploring the Role of Kefir in Product Development. Current Food Science and Technology Reports, 2(2), 221-230.
  • Meng, X.C., Stanton, C., Fitzgerald, G.F., Daly, C., Ross, R.P. (2008). Anhydrobiotics: The challenges of drying probiotic cultures. Food Chemistry, 106(4), 1406-1416.
  • Morgan, C.A., Herman, N., White, P.A., Vesey, G. (2006). Preservation of micro-organisms by drying; a review. Journal of microbiological methods, 66(2), 183-193.
  • Muthukumarasamy, P., Holley, R.A. (2006a). Microbiological and sensory quality of dry fermented sausages containing alginate-microencapsulated Lactobacillus reuteri. International Journal of Food Microbiology, 111(2), 164-169.
  • Muthukumarasamy, P., Allan‐Wojtas, P., Holley, R.A. (2006b). Stability of Lactobacillus reuteri in different types of microCapsules. Journal of food science, 71(1), M20-M24.
  • Nadeem, H.Ş., Torun, M., Özdemir, F. (2011). Spray drying of the mountain tea (Sideritis stricta) water extract by using different hydrocolloid carriers. LWT-Food science and technology, 44(7), 1626-1635.
  • Picot, A., Lacroix, C. (2004). Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. International dairy journal, 14(6), 505-515.
  • Pupa, P., Apiwatsiri, P., Sirichokchatchawan, W., Pirarat, N., Muangsin, N., Shah, A.A., Prapasarakul, N. (2021). The efficacy of three double-microencapsulation methods for preservation of probiotic bacteria. Scientific Reports, 11(1), 13753.
  • Ranadheera, C.S., Evans, C.A., Adams, M.C., Baines, S.K. (2015). Microencapsulation of Lactobacillus acidophilus LA-5, Bifidobacterium animalis subsp. lactis BB-12 and Propionibacterium jensenii 702 by spray drying in goat's milk. Small Ruminant Research, 123(1), 155-159.
  • Rashidinejad, A., Bahrami, A., Rehman, A., Rezaei, A., Babazadeh, A., Singh, H., Jafari, S.M. (2022). Co-encapsulation of probiotics with prebiotics and their application in functional/synbiotic dairy products. Critical reviews in food science and nutrition, 62(9), 2470-2494.
  • Rather, S.A., Akhter, R., Masoodi, F.A., Gani, A., Wani, S.M. (2017). Effect of double alginate microencapsulation on in vitro digestibility and thermal tolerance of Lactobacillus plantarum NCDC201 and L. casei NCDC297. LWT-Food Science and Technology, 83, 50-58.
  • Reid, A., Vuillemard, J.C., Britten, M., Arcand, Y., Farnworth, E., Champagne, C.P. (2005). Microentrapment of probiotic bacteria in a Ca (2+)-induced whey protein gel and effects on their viability in a dynamic gastro-intestinal model. Journal of microencapsulation, 22(6), 603-619.
  • Sanprasert, S., Kumnerdsiri, P., Seubsai, A., Lueangjaroenkit, P., Pongsetkul, J., Indriani, S., ... Kingwascharapong, P. (2025). Techno-Functional, Rheological, and Physico-Chemical Properties of Gelatin Capsule By-Product for Future Functional Food Ingredients. Foods, 14(7), 1279.
  • Santivarangkna, C., Higl, B., Foerst, P. (2008). Protection mechanisms of sugars during different stages of preparation process of dried lactic acid starter cultures. Food microbiology, 25(3), 429-441.
  • Sheu, T.Y., Marshall, R.T., Heymann, H. (1993). Improving survival of culture bacteria in frozen desserts by microentrapment. Journal of dairy science, 76(7), 1902-1907.
  • Xu, M., Gagné-Bourque, F., Dumont, M.J., Jabaji, S. (2016). Encapsulation of Lactobacillus casei ATCC 393 cells and evaluation of their survival after freeze-drying, storage and under gastrointestinal conditions. Journal of food engineering, 168, 52-59.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Teknolojileri
Bölüm Araştırma Makalesi
Yazarlar

Aysun Kuluçlu 0000-0002-8161-704X

Nilgün Özdemir 0000-0002-4517-9214

Tugba Kök Taş 0000-0001-8813-6479

Proje Numarası FYL-2021-8438
Gönderilme Tarihi 15 Haziran 2025
Kabul Tarihi 30 Eylül 2025
Yayımlanma Tarihi 8 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 50 Sayı: 6

Kaynak Göster

APA Kuluçlu, A., Özdemir, N., & Kök Taş, T. (2025). MİKROENKAPSÜLE SU KEFİRİ: PROBİYOTİK STABİLİTE, DEPOLAMA VE SİNDİRİM SİSTEMİNDE CANLILIK ÜZERİNE ETKİSİ. Gıda, 50(6), 1058-1076. https://doi.org/10.15237/gida.GD25076
AMA Kuluçlu A, Özdemir N, Kök Taş T. MİKROENKAPSÜLE SU KEFİRİ: PROBİYOTİK STABİLİTE, DEPOLAMA VE SİNDİRİM SİSTEMİNDE CANLILIK ÜZERİNE ETKİSİ. GIDA. Aralık 2025;50(6):1058-1076. doi:10.15237/gida.GD25076
Chicago Kuluçlu, Aysun, Nilgün Özdemir, ve Tugba Kök Taş. “MİKROENKAPSÜLE SU KEFİRİ: PROBİYOTİK STABİLİTE, DEPOLAMA VE SİNDİRİM SİSTEMİNDE CANLILIK ÜZERİNE ETKİSİ”. Gıda 50, sy. 6 (Aralık 2025): 1058-76. https://doi.org/10.15237/gida.GD25076.
EndNote Kuluçlu A, Özdemir N, Kök Taş T (01 Aralık 2025) MİKROENKAPSÜLE SU KEFİRİ: PROBİYOTİK STABİLİTE, DEPOLAMA VE SİNDİRİM SİSTEMİNDE CANLILIK ÜZERİNE ETKİSİ. Gıda 50 6 1058–1076.
IEEE A. Kuluçlu, N. Özdemir, ve T. Kök Taş, “MİKROENKAPSÜLE SU KEFİRİ: PROBİYOTİK STABİLİTE, DEPOLAMA VE SİNDİRİM SİSTEMİNDE CANLILIK ÜZERİNE ETKİSİ”, GIDA, c. 50, sy. 6, ss. 1058–1076, 2025, doi: 10.15237/gida.GD25076.
ISNAD Kuluçlu, Aysun vd. “MİKROENKAPSÜLE SU KEFİRİ: PROBİYOTİK STABİLİTE, DEPOLAMA VE SİNDİRİM SİSTEMİNDE CANLILIK ÜZERİNE ETKİSİ”. Gıda 50/6 (Aralık2025), 1058-1076. https://doi.org/10.15237/gida.GD25076.
JAMA Kuluçlu A, Özdemir N, Kök Taş T. MİKROENKAPSÜLE SU KEFİRİ: PROBİYOTİK STABİLİTE, DEPOLAMA VE SİNDİRİM SİSTEMİNDE CANLILIK ÜZERİNE ETKİSİ. GIDA. 2025;50:1058–1076.
MLA Kuluçlu, Aysun vd. “MİKROENKAPSÜLE SU KEFİRİ: PROBİYOTİK STABİLİTE, DEPOLAMA VE SİNDİRİM SİSTEMİNDE CANLILIK ÜZERİNE ETKİSİ”. Gıda, c. 50, sy. 6, 2025, ss. 1058-76, doi:10.15237/gida.GD25076.
Vancouver Kuluçlu A, Özdemir N, Kök Taş T. MİKROENKAPSÜLE SU KEFİRİ: PROBİYOTİK STABİLİTE, DEPOLAMA VE SİNDİRİM SİSTEMİNDE CANLILIK ÜZERİNE ETKİSİ. GIDA. 2025;50(6):1058-76.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/