A NATURAL FOOD FORTIFICATION APPROACH TO REDUCE IRON-POLYPHENOL COMPLEX FORMATION: ORANGE PEEL-ADDED BLACK TEA
Yıl 2025,
Cilt: 50 Sayı: 6, 1091 - 1104, 08.12.2025
Nada Bawadi
Bahar Fındık
,
Hilal Yıldız
Öz
This study aims to develop a novel functional beverage through a food-to-food fortification strategy to reduce the prevalence of iron deficiency. Hot and cold infusions were prepared with varying orange peel concentrations. The addition of orange peel to black tea prevented the iron-polyphenol complex formation by up to 70%, while tea pH significantly affected iron-binding capacity. The antioxidant activity and total polyphenol content of hot infusions were found to be higher than cold infusions. Addition of orange peel to tea samples decreased the antioxidant activity of tea according to 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays, while hydroxyl radical scavenging activity increased. Sensory evaluation revealed that black tea containing 12% orange peel was the most promising sample, based on consumer acceptance. These findings highlight the potential of orange peel-fortified functional tea as a promising strategy for combating iron deficiency while preserving the characteristic sensory qualities of traditional tea.
Etik Beyan
Not applicable
Destekleyen Kurum
TUBITAK
Proje Numarası
TUBITAK/2209-A University Student Research Program.
Teşekkür
We gratefully acknowledge the financial support provided by TÜBİTAK (The Scientific and Technological Research Council of Türkiye) through the 2209-A University Student Research Program.
Kaynakça
-
Anghel, L., Dinu, C., Patraș, D., Ciubară, A., Chiscop, I. (2025). Iron Deficiency Treatment in Heart Failure—Challenges and Therapeutic Solutions. In Journal of Clinical Medicine (Vol. 14, Issue 9). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/ jcm14092934
-
Burns, J. L., Miller, C. H., Fontaine-Bisson, B., Connor, K. L. (2025). Iron deficiency and iron deficiency anaemia in women of reproductive age: Sex- and gender-based risk factors and inequities. Journal of Trace Elements in Medicine and Biology, 90, 127684. https://doi.org/10.1016/ J.JTEMB.2025.127684
-
Ciniviz, M., Yildiz, H. (2020). Determination of phenolic acid profiles by HPLC in lacto-fermented fruits and vegetables (pickle): Effect of pulp and juice portions. Journal of Food Processing and Preservation, 44(7), 1–11. https://doi.org/ 10.1111/jfpp.14542
-
Dasdemir, Y., Findik, B. T., Yildiz, H., Birisci, E. (2023). Blueberry-added black tea: Effects of infusion temperature, drying method, fruit concentration on the iron-polyphenol complex formation, polyphenols profile, antioxidant activity, and sensory properties. Food Chemistry, 410, 135463. https://doi.org/10.1016/ J.FOODCHEM.2023.135463
-
Ding, F., Liu, Z., Luo, J., Yang, T., Dai, Y., Zhang, T., Fang, S., Li, Q., Yang, X., Pan, K., Shen, Q. (2025). Dynamic evolution and formation mechanisms of aroma compounds in Qianmei 502 black tea during processing: insights from transcriptomic and metabolomic analyses. LWT, 228, 118124. https://doi.org/10.1016/ J.LWT.2025.118124
-
Dueik, V., Chen, B. K., Diosady, L. L. (2017). Iron-Polyphenol Interaction Reduces Iron Bioavailability in Fortified Tea: Competing Complexation to Ensure Iron Bioavailability. Journal of Food Quality, 1–7. https://doi.org/ 10.1155/2017/1805047
-
Horžić, D., Komes, D., Belščak, A., Ganić, K. K., Iveković, D., Karlović, D. (2009). The composition of polyphenols and methylxanthines in teas and herbal infusions. Food Chemistry, 115(2), 441–448. https://doi.org/10.1016/ J.FOODCHEM.2008.12.022
-
Jayasekera, S., Molan, A. L., Garg, M., Moughan, P. J. (2011). Variation in antioxidant potential and total polyphenol content of fresh and fully-fermented Sri Lankan tea. Food Chemistry, 125(2), 536–541. https://doi.org/10.1016/ J.FOODCHEM.2010.09.045
-
Kelebek, H. (2016). LC-DAD–ESI-MS/MS characterization of phenolic constituents in Turkish black tea: Effect of infusion time and temperature. Food Chemistry, 204, 227–238. https://doi.org/10.1016/J.FOODCHEM.2016.02.132
-
Kelebek, H., Selli, S., Canbas, A., Cabaroglu, T. (2009). HPLC determination of organic acids, sugars, phenolic compositions and antioxidant capacity of orange juice and orange wine made from a Turkish cv. Kozan. Microchemical Journal, 91(2), 187–192. https://doi.org/10.1016/ J.MICROC.2008.10.008
-
Kumar, A., Sharma, E., Marley, A., Samaan, M. A., Brookes, M. J. (2022). Iron deficiency anaemia: Pathophysiology, assessment, practical management. In BMJ Open Gastroenterology (Vol. 9, Issue 1). BMJ Publishing Group. https://doi.org/10.1136/bmjgast-2021-000759
-
Li, N., Xu, J., Zhao, Y., Zhao, M., Liu, Z., Wang, K., Huang, J., Zhu, M. (2024). The influence of processing methods on polyphenol profiling of tea leaves from the same large-leaf cultivar (Camellia sinensis var. assamica cv. Yunkang-10): nontargeted/targeted polyphenomics and electronic sensory analysis. Food Chemistry, 460, 140515. https://doi.org/10.1016/ J.FOODCHEM.2024.140515
-
Mamma, D., Christakopoulos, P. (2014). Biotransformation of Citrus By-Products into Value Added Products. In Waste and Biomass Valorization (Vol. 5, Issue 4, pp. 529–549). Kluwer Academic Publishers. https://doi.org/10.1007/ s12649-013-9250-y
-
McGee, E. J. T., Diosady, L. L. (2018a). Development of Spectrophotometric Quantification Method of Iron-Polyphenol Complex in Iron-Fortified Black Tea at Relevant pH Levels. Food Analytical Methods, 11(6), 1645–1655. https://doi.org/10.1007/s12161-018-1147-8
-
McGee, E. J. T., Diosady, L. L. (2018b). Prevention of iron-polyphenol complex formation by chelation in black tea. LWT, 89, 756–762. https://doi.org/10.1016/ J.LWT.2017.11.041
-
Nyakundi, P. N., Kiio, J., Munyaka, A. W., Galgalo, D. A., Lohner, S. (2024). Consumption Pattern of Tea Is Associated with Serum Ferritin Levels of Women of Childbearing Age in Nandi County, Kenya: A Cross-Sectional Study. Annals of Nutrition and Metabolism, 80(2), 109–116. https://doi.org/10.1159/000536196
-
Ortiz-Sanchez, M., Cardona Alzate, C. A., Solarte-Toro, J. C. (2024). Orange Peel Waste as a Source of Bioactive Compounds and Valuable Products: Insights Based on Chemical Composition and Biorefining. In Biomass (Switzerland) (Vol. 4, Issue 1, pp. 107–131). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/ biomass4010006
-
Pandiarajan, A., Kamaraj, R., Vasudevan, S., Vasudevan, S. (2018). OPAC (orange peel activated carbon) derived from waste orange peel for the adsorption of chlorophenoxyacetic acid herbicides from water: Adsorption isotherm, kinetic modelling and thermodynamic studies. Bioresource Technology, 261, 329–341. https://doi.org/10.1016/J.BIORTECH.2018.04.005
-
Polat, A., Kalcıoğlu, Z., Müezzinoğlu, N. (2022). Effect of infusion time on black tea quality, mineral content and sensory properties prepared using traditional Turkish infusion method. International Journal of Gastronomy and Food Science, 29, 100559. https://doi.org/https://doi.org/ 10.1016/j.ijgfs.2022.100559
-
Revathi, V., Bora, S., Afzia, N., Ghosh, T. (2025). Orange peel composition, biopolymer extraction, and applications in paper and packaging sector: A review. Sustainable Chemistry and Pharmacy, 43, 101908. https://doi.org/10.1016/ J.SCP.2025.101908
-
Tarannum, N., Hossain, T. J., Ali, F., Das, T., Dhar, K., Nafiz, I. H. (2023). Antioxidant, antimicrobial and emulsification properties of exopolysaccharides from lactic acid bacteria of bovine milk: Insights from biochemical and genomic analysis. LWT, 186, 115263. https://doi.org/10.1016/J.LWT.2023.115263
-
Zhang, L., Guan, Q., Jiang, J., Khan, M. S. (2023). Tannin complexation with metal ions and its implication on human health, environment and industry: An overview. International Journal of Biological Macromolecules, 253, 127485. https://doi.org/10.1016/J.IJBIOMAC.2023.127485
-
Zhou, L., Luo, J., Xie, Q., Huang, L., Shen, D., Li, G. (2023). Dietary Fiber from Navel Orange Peel Prepared by Enzymatic and Ultrasound-Assisted Deep Eutectic Solvents: Physicochemical and Prebiotic Properties. Foods, 12(10). https://doi.org/10.3390/foods12102007
DEMİR-POLİFENOL KOMPLEKSİ OLUŞUMUNU AZALTMAYA YÖNELİK DOĞAL BİR GIDA ZENGİNLEŞTİRME YAKLAŞIMI: PORTAKAL KABUĞU KATKILI SİYAH ÇAY
Yıl 2025,
Cilt: 50 Sayı: 6, 1091 - 1104, 08.12.2025
Nada Bawadi
Bahar Fındık
,
Hilal Yıldız
Öz
Bu çalışma, demir eksikliği prevalansını azaltmak için gıdadan gıdaya zenginleştirme stratejisi yoluyla yeni bir fonksiyonel içecek geliştirmeyi amaçlamaktadır. Farklı portakal kabuğu konsantrasyonları kullanılarak sıcak ve soğuk infüzyonlar hazırlanmıştır. Siyah çaya portakal kabuğu ilavesi, demir-polifenol kompleksinin oluşumunu %70'e kadar önlerken, çayın pH değeri demir bağlama kapasitesini önemli ölçüde etkilemiştir. Sıcak infüzyonların antioksidan aktivitesi ve toplam polifenol içeriği soğuk infüzyonlardan daha yüksek bulunmuştur. Çay örneklerine portakal kabuğu eklenmesi, 2,2-diphenyl-1-picrylhydrazyl (DPPH) ve 2,2′-azino-bis(3ethylbenzothiazoline-6-sulfonic acid) (ABTS) yöntemlerine göre çayın antioksidan aktivitesini azaltırken, hidroksil radikali süpürme yöntemine göre ise antioksidan aktivitesini artırmıştır. Duyusal analizler ise tüm örnekler arasından %12 portakal kabuğu içeren siyah çayın tüketici kabulü açısından en umut verici örnek olduğunu ortaya koymuştur. Bu bulgular, geleneksel çayın karakteristik duyusal özelliklerini korurken demir eksikliğiyle mücadele için umut verici bir strateji olarak portakal kabuğu ile zenginleştirilmiş fonksiyonel çayın potansiyelini vurgulamaktadır.
Etik Beyan
Not applicable
Destekleyen Kurum
TUBITAK
Proje Numarası
TUBITAK/2209-A University Student Research Program.
Teşekkür
We gratefully acknowledge the financial support provided by TÜBİTAK (The Scientific and Technological Research Council of Türkiye) through the 2209-A University Student Research Program.
Kaynakça
-
Anghel, L., Dinu, C., Patraș, D., Ciubară, A., Chiscop, I. (2025). Iron Deficiency Treatment in Heart Failure—Challenges and Therapeutic Solutions. In Journal of Clinical Medicine (Vol. 14, Issue 9). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/ jcm14092934
-
Burns, J. L., Miller, C. H., Fontaine-Bisson, B., Connor, K. L. (2025). Iron deficiency and iron deficiency anaemia in women of reproductive age: Sex- and gender-based risk factors and inequities. Journal of Trace Elements in Medicine and Biology, 90, 127684. https://doi.org/10.1016/ J.JTEMB.2025.127684
-
Ciniviz, M., Yildiz, H. (2020). Determination of phenolic acid profiles by HPLC in lacto-fermented fruits and vegetables (pickle): Effect of pulp and juice portions. Journal of Food Processing and Preservation, 44(7), 1–11. https://doi.org/ 10.1111/jfpp.14542
-
Dasdemir, Y., Findik, B. T., Yildiz, H., Birisci, E. (2023). Blueberry-added black tea: Effects of infusion temperature, drying method, fruit concentration on the iron-polyphenol complex formation, polyphenols profile, antioxidant activity, and sensory properties. Food Chemistry, 410, 135463. https://doi.org/10.1016/ J.FOODCHEM.2023.135463
-
Ding, F., Liu, Z., Luo, J., Yang, T., Dai, Y., Zhang, T., Fang, S., Li, Q., Yang, X., Pan, K., Shen, Q. (2025). Dynamic evolution and formation mechanisms of aroma compounds in Qianmei 502 black tea during processing: insights from transcriptomic and metabolomic analyses. LWT, 228, 118124. https://doi.org/10.1016/ J.LWT.2025.118124
-
Dueik, V., Chen, B. K., Diosady, L. L. (2017). Iron-Polyphenol Interaction Reduces Iron Bioavailability in Fortified Tea: Competing Complexation to Ensure Iron Bioavailability. Journal of Food Quality, 1–7. https://doi.org/ 10.1155/2017/1805047
-
Horžić, D., Komes, D., Belščak, A., Ganić, K. K., Iveković, D., Karlović, D. (2009). The composition of polyphenols and methylxanthines in teas and herbal infusions. Food Chemistry, 115(2), 441–448. https://doi.org/10.1016/ J.FOODCHEM.2008.12.022
-
Jayasekera, S., Molan, A. L., Garg, M., Moughan, P. J. (2011). Variation in antioxidant potential and total polyphenol content of fresh and fully-fermented Sri Lankan tea. Food Chemistry, 125(2), 536–541. https://doi.org/10.1016/ J.FOODCHEM.2010.09.045
-
Kelebek, H. (2016). LC-DAD–ESI-MS/MS characterization of phenolic constituents in Turkish black tea: Effect of infusion time and temperature. Food Chemistry, 204, 227–238. https://doi.org/10.1016/J.FOODCHEM.2016.02.132
-
Kelebek, H., Selli, S., Canbas, A., Cabaroglu, T. (2009). HPLC determination of organic acids, sugars, phenolic compositions and antioxidant capacity of orange juice and orange wine made from a Turkish cv. Kozan. Microchemical Journal, 91(2), 187–192. https://doi.org/10.1016/ J.MICROC.2008.10.008
-
Kumar, A., Sharma, E., Marley, A., Samaan, M. A., Brookes, M. J. (2022). Iron deficiency anaemia: Pathophysiology, assessment, practical management. In BMJ Open Gastroenterology (Vol. 9, Issue 1). BMJ Publishing Group. https://doi.org/10.1136/bmjgast-2021-000759
-
Li, N., Xu, J., Zhao, Y., Zhao, M., Liu, Z., Wang, K., Huang, J., Zhu, M. (2024). The influence of processing methods on polyphenol profiling of tea leaves from the same large-leaf cultivar (Camellia sinensis var. assamica cv. Yunkang-10): nontargeted/targeted polyphenomics and electronic sensory analysis. Food Chemistry, 460, 140515. https://doi.org/10.1016/ J.FOODCHEM.2024.140515
-
Mamma, D., Christakopoulos, P. (2014). Biotransformation of Citrus By-Products into Value Added Products. In Waste and Biomass Valorization (Vol. 5, Issue 4, pp. 529–549). Kluwer Academic Publishers. https://doi.org/10.1007/ s12649-013-9250-y
-
McGee, E. J. T., Diosady, L. L. (2018a). Development of Spectrophotometric Quantification Method of Iron-Polyphenol Complex in Iron-Fortified Black Tea at Relevant pH Levels. Food Analytical Methods, 11(6), 1645–1655. https://doi.org/10.1007/s12161-018-1147-8
-
McGee, E. J. T., Diosady, L. L. (2018b). Prevention of iron-polyphenol complex formation by chelation in black tea. LWT, 89, 756–762. https://doi.org/10.1016/ J.LWT.2017.11.041
-
Nyakundi, P. N., Kiio, J., Munyaka, A. W., Galgalo, D. A., Lohner, S. (2024). Consumption Pattern of Tea Is Associated with Serum Ferritin Levels of Women of Childbearing Age in Nandi County, Kenya: A Cross-Sectional Study. Annals of Nutrition and Metabolism, 80(2), 109–116. https://doi.org/10.1159/000536196
-
Ortiz-Sanchez, M., Cardona Alzate, C. A., Solarte-Toro, J. C. (2024). Orange Peel Waste as a Source of Bioactive Compounds and Valuable Products: Insights Based on Chemical Composition and Biorefining. In Biomass (Switzerland) (Vol. 4, Issue 1, pp. 107–131). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/ biomass4010006
-
Pandiarajan, A., Kamaraj, R., Vasudevan, S., Vasudevan, S. (2018). OPAC (orange peel activated carbon) derived from waste orange peel for the adsorption of chlorophenoxyacetic acid herbicides from water: Adsorption isotherm, kinetic modelling and thermodynamic studies. Bioresource Technology, 261, 329–341. https://doi.org/10.1016/J.BIORTECH.2018.04.005
-
Polat, A., Kalcıoğlu, Z., Müezzinoğlu, N. (2022). Effect of infusion time on black tea quality, mineral content and sensory properties prepared using traditional Turkish infusion method. International Journal of Gastronomy and Food Science, 29, 100559. https://doi.org/https://doi.org/ 10.1016/j.ijgfs.2022.100559
-
Revathi, V., Bora, S., Afzia, N., Ghosh, T. (2025). Orange peel composition, biopolymer extraction, and applications in paper and packaging sector: A review. Sustainable Chemistry and Pharmacy, 43, 101908. https://doi.org/10.1016/ J.SCP.2025.101908
-
Tarannum, N., Hossain, T. J., Ali, F., Das, T., Dhar, K., Nafiz, I. H. (2023). Antioxidant, antimicrobial and emulsification properties of exopolysaccharides from lactic acid bacteria of bovine milk: Insights from biochemical and genomic analysis. LWT, 186, 115263. https://doi.org/10.1016/J.LWT.2023.115263
-
Zhang, L., Guan, Q., Jiang, J., Khan, M. S. (2023). Tannin complexation with metal ions and its implication on human health, environment and industry: An overview. International Journal of Biological Macromolecules, 253, 127485. https://doi.org/10.1016/J.IJBIOMAC.2023.127485
-
Zhou, L., Luo, J., Xie, Q., Huang, L., Shen, D., Li, G. (2023). Dietary Fiber from Navel Orange Peel Prepared by Enzymatic and Ultrasound-Assisted Deep Eutectic Solvents: Physicochemical and Prebiotic Properties. Foods, 12(10). https://doi.org/10.3390/foods12102007