ANTIBACTERIAL ACTIVITY OF DIFFERENT ESSENTIAL OILS ON LISTERIA MONOCYTOGENES STRAINS ISOLATED FROM READY-TO-EAT FOODS
Yıl 2020,
, 861 - 871, 19.08.2020
Simge Aktop
Hacer Aslan Canberi
,
Esra Şentürk
Pinar Şanlıbaba
Öz
Listeria monocytogenes is one of the food-borne pathogens that cause major health problems worldwide. Application of essential oils (EOs) is used to control this pathogen and reduce microbial levels. The aim of the present study was to investigate the antibacterial activity of 15 different EOs obtained from plants on L. monocytogenes strains from ready-to-eat foods. In this study, thyme oil (mean zone 24.850±3.714 mm) showed the highest antibacterial activity against L. monocytogenes. Clove oil (mean zone 12.383±2.215 mm) and sage oil (mean zone 11.117±3.170 mm) were also determined high antibacterial activity. Ginger oil and garlic oil did not have any antibacterial activity against L. monocytogenes strains. This study shows that using of EOs against food-borne pathogens in food systems could be useful.
Kaynakça
- Referans1
Alexopoulos, A., Kimbaris, A.C., Plessas, S., Mantzourani, I., Theodoridou, I., Stavropoulou, E., et al., (2011). Antibacterial activities of essential oils from eight Greek aromatic plants against clinical isolates of Staphylococcus aureus. Anaerobe, 17(6), 399-402. https://doi.org/10.1016/j.anaerobe.2011.03.024
- Referans2
Al-Nabulsi, A.A., Osaili, T.M., Olaimat, A.N., Almasri, W.E., Ayyash, M., Al-Holy, M.A., et al., (2020). Inactivation of Salmonella spp. in tahini using plant essential oil extracts. Food Microbiol, 86, 103338. https://doi.org/10.1016/j.fm.2019.103338
- Referans3
Canberi, H.A., Şentürk, E., Aktop, S., Şanlıbaba, P. (2020). Determination of Antimicrobial Activity of Different Essential Oils Obtained from Plants on Staphylococcus aureus Strains Isolated from Foods. Turkish JAF Sci Tech, 8(4), 1012-1017. https://doi.org/10.24925/turjaf.v8i4.1012-1017.3368
- Referans4
Cho, Y., Kim, H., Beuchat, L.R., Ryu, J.H. (2020). Synergistic activities of gaseous oregano and thyme thymol essential oils against Listeria monocytogenes on surfaces of a laboratory medium and radish sprouts. Food Microbiol, 86, 103357. https://doi.org/10.1016/j.fm.2019.103357
- Referans5
Condò, C., Anacarso, I., Sabia, C., Iseppi, R., Anfelli, I., Forti, L., et al., (2020). Antimicrobial activity of spices essential oils and its effectiveness on mature biofilms of human pathogens. Nat Prod Res, 34(4), 567-574. https://doi.org/10.1080/14786419.2018.1490904
- Referans6
de Aguiar, F.C., Solarte, A.L., Tarradas, C., Luque, I., Maldonado, A., Galán‐Relaño, Á., Huerta, B. (2018). Antimicrobial activity of selected essential oils against Streptococcus suis isolated from pigs. Microbiology open, 7(6), e00613. https://doi.org/10.1002/mbo3.613
- Referans7
Desai, A.N., Anyoha, A., Madoff, L.C., Lassmann, B. (2019). Changing epidemiology of Listeria monocytogenes outbreaks, sporadic cases, and recalls globally: A review of ProMED reports from 1996 to 2018. Int J Infect Dis, 84, 48-53. https://doi.org/10.1016/j.ijid.2019.04.021
- Referans8
Elgayyar, M., Draughon, F.A., Golden, D.A., Mount, J.R. (2001). Antimicrobial activity of essential oils from plants against selected pathogenic and saprophytic microorganisms. J Food Prot, 64(7), 1019-1024. https://doi.org/10.4315/0362-028X-64.7.1019
- Referans9
Esmael, A., Hassan, M.G., Amer, M.M., Abdelrahman, S., Hamed, A.M., Abd-raboh, H.A., Foda, M.F. (2020). Antimicrobial activity of certain natural-based plant oils against the antibiotic-resistant acne bacteria. Saudi J Biol Sci, 27(1), 448-455. https://doi.org/10.1016/j.sjbs.2019.11.006
- Referans10
Fancello, F., Petretto, G.L., Marceddu, S., Venditti, T., Pintore, G., Zara, G., et al., (2020). Antimicrobial activity of gaseous Citrus limon var pompia leaf essential oil against Listeria monocytogenes on ricotta salata cheese. Food Microbiol, 87, 103386. https://doi.org/10.1016/j.fm.2019.103386
- Referans11
Ghorbani, A., Esmaeilizadeh, M. (2017). Pharmacological properties of Salvia officinalis and its components. J Tradit Complement Med, 7(4), 433-440. https://doi.org/10.1016/j.jtcme.2016.12.014
- Referans12
Gomez, D., Azon, E., Marco, N., Carraminana, J.J., Rota, C., Arino, A., Yangüela, J. (2014). Antimicrobial resistance of Listeria monocytogenes and Listeria innocua from meat products and meat-processing environment. Food Microbiol, 42, 61-65. https://dx.doi.org/10.1016/j.fm.2014.02.017
- Referans13
Gouveia, A.R., Alves, M., Silva, J.A., Saraiva, C. (2016). The antimicrobial effect of rosemary and thyme essential oils against Listeria monocytogenes in sous vide cook-chill beef during storage. Procedia Food Sci, 7, 173-176. doi: 10.1016/j.profoo.2016.10.001
- Referans14
Guo, J., Gao, Z., Li, G., Fu, F., Liang, Z., Zhu, H., Shan, Y. (2019). Antimicrobial and antibiofilm efficacy and mechanism of essential oil from Citrus Changshan-huyou YB chang against Listeria monocytogenes. Food Control, 105, 256-264. https://doi.org/10.1016/j.foodcont.2019.06.014
- Referans15
Güneş, S., Tıhmınlıoğlu, F. (2017). Hypericum perforatum incorporated chitosan films as potential bioactive wound dressing material. Int J Biol Macromol, 102, 933-943. https://doi.org/10.1016/j.ijbiomac.2017.04.080
- Referans16
Herman, A., Tambor, K., Herman, A. (2016). Linalool affects the antimicrobial efficacy of essential oils. Curr Microbiol, 72(2), 165-172. doi: 10.1007/s00284-015-0933-4
- Referans17
Hu, W., Jiang, A., Xiu, Z., Feng, K. (2018). Effect of thyme oil–alginate‐based coating on quality and microbial safety of fresh‐cut apples. J Sci Food Agric, 98(6), 2302-2311. https://doi.org/10.1002/jsfa.8720
- Referans18
Imane, N.I., Fouzia, H., Ahmed, E., Ismail, G., Idrissa, D., Mohamed, K. et al., (2020). Chemical composition, antibacterial and antioxidant activities of some essential oils against multidrug resistant bacteria. Eur J Integr Med, 101074. https://doi.org/10.1016/j.eujim.2020.101074
- Referans19
Jarzębski, M., Smułek, W., Baranowska, H.M., Masewicz, Ł., Kobus-Cisowska, J., Ligaj, M., Kaczorek, E. (2020). Characterization of St. John's wort (Hypericum perforatum L.) and the impact of filtration process on bioactive extracts incorporated into carbohydrate-based hydrogels. Food Hydrocoll, 104, 105748. https://doi.org/10.1016/j.foodhyd.2020.105748
- Referans20
Kuan, C.H., Rukayadi, Y., Ahmad, S.H., Wan Mohamed Radzi, C.W.J., Kuan, C.S., Yeo, S. K., et al., (2017). Antimicrobial resistance of Listeria monocytogenes and Salmonella Enteritidis isolated from vegetable farms and retail markets in Malaysia. Int Food Res J, 24(4), 1831-1839.
- Referans21
Lee, G., Kim, Y., Kim, H., Beuchat, L.R., Ryu, J.H. (2018). Antimicrobial activities of gaseous essential oils against Listeria monocytogenes on a laboratory medium and radish sprouts. Int J Food Microbiol, 265, 49-54. https://doi.org/10.1016/j.ijfoodmicro.2017.11.001
- Referans22
Mariottini, G.L., Grice, I.D. (2016). Antimicrobials from Cnidarians. A new perspective for anti-infective therapy?. Mar Drugs, 14(3), 48. https://doi.org/10.3390/md14030048
- Referans23
Miladi, H., Zmantar, T., Chaabouni, Y., Fedhila, K., Bakhrouf, A., Mahdouani, K., Chaieb, K. (2016). Antibacterial and efflux pump inhibitors of thymol and carvacrol against food-borne pathogens. Microb Pathog, 99, 95-100. https://doi.org/10.1016/j.micpath.2016.08.008
- Referans24
Moreira, M.R., Ponce, A.G., del Valle, C.E., Roura, S.I. (2005). Inhibitory parameters of essential oils to reduce a foodborne pathogen. LWT-Food Sci Technol, 38(5), 565-570. https://doi.org/10.1016/j.lwt.2004.07.012
- Referans25
Moussaoui, F., Alaoui, T. (2016). Evaluation of antibacterial activity and synergistic effect between antibiotic and the essential oils of some medicinal plants. Asian Pac J Trop Biomed, 6(1), 32-37. https://doi.org/10.1016/j.apjtb.2015.09.024
- Referans26
Nair, M.K.M., Vasudevan, P., Venkitanarayanan, K. (2005). Antibacterial effect of black seed oil on Listeria monocytogenes. Food Control, 16(5), 395-398. https://doi.org/10.1016/j.foodcont.2004.04.006
- Referans27
Nazlı, O., Baygar, T., Dönmez, Ç.E.D., Dere, Ö., Uysal, A.İ., Aksözek, A. et al., (2019). Antimicrobial and antibiofilm activity of polyurethane/Hypericum perforatum extract (PHPE) composite. Bioorg Chem, 82, 224-228. https://doi.org/10.1016/j.bioorg.2018.08.017
- Referans28
Nichols, M., Conrad, A., Whitlock, L., Stroika, S., Strain, E., Weltman, A., et al., (2020). Multistate outbreak of Listeria monocytogenes infections retrospectively linked to unpasteurized milk using whole-genome sequencing. Int J Dairy Sci, 103(1), 176-178. https://doi.org/10.3168/jds.2019-16703
- Referans29
Oggiano, G.P. (2015). Food Safety and Hygiene. J Nutrition Health Food Sci, 3(3), 1-2. http://dx.doi.org/10.15226/jnhfs.2015.00147
- Referans30
Ozogul, Y., Kuley, E., Uçar, Y., Ozogul, F. (2015). Antimicrobial impacts of essential oils on food borne-pathogens. Recent Pat Food Nutr Agric, 7(1), 53-61.
- Referans31
Paparella, A., Taccogna, L., Aguzzi, I., Chaves-López, C., Serio, A., Marsilio, F., Suzzi, G. (2008). Flow cytometric assessment of the antimicrobial activity of essential oils against Listeria monocytogenes. Food Control, 19(12), 1174-1182. https://doi.org/10.1016/j.foodcont.2008.01.002
- Referans32
Ponce, A.G., Fritz, R., del Valle, C., Roura, S.I. (2003). Antimicrobial activity of essential oils on the native microflora of organic Swiss chard. LWT-Food Sci Technol, 36(7), 679-684. https://doi.org/10.1016/S0023-6438(03)00088-4
- Referans33
Sakkas, H., Papadopoulou, C. (2017). Antimicrobial activity of basil, oregano, and thyme essential oils. J Microbiol Biotechn, 27(3), 429-438. https://doi.org/10.4014/jmb.1608.08024
- Referans34
Stefanakis, M.K., Touloupakis, E., Anastasopoulos, E., Ghanotakis, D., Katerinopoulos, H. E., Makridis, P. (2013). Antibacterial activity of essential oils from plants of the genus Origanum. Food control, 34(2), 539-546. https://doi.org/10.1016/j.foodcont.2013.05.024
- Referans35
Stratakos, A.C., Ijaz, U.Z., Ward, P., Linton, M., Kelly, C., Pinkerton, L., et al., (2020). In vitro and in vivo characterisation of Listeria monocytogenes outbreak isolates. Food Control, 107, 106784. https://doi.org/10.1016/j.foodcont.2019.106784
- Referans36
Tariq, S., Wani, S., Rasool, W., Shafi, K., Bhat, M.A., Prabhakar, A., et al., (2019). A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb Pathog, 134, 103580. https://doi.org/10.1016/j.micpath.2019.103580
- Referans37
Trinetta, V., Morgan, M.T., Coupland, J.N., Yucel, U. (2017). Essential oils against pathogen and spoilage microorganisms of fruit juices: use of versatile antimicrobial delivery systems. J Food Sci, 82(2), 471-476. https://doi.org/10.1111/1750-3841.13614
- Referans38
U.S. Food and Drug Administration (USFDA) (2019). Title 21-food and drugs. Part 182-Substances Generally Recognized as Safe. Essential oils, oleoresins (solvent-free), and natural extractives (including distillates); final rule. Federal Register. Revised as of April 1, 2019. Available at: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch. cfm?fr=182.20 Accessed date: 12 May 2020.
- Referans39
Vázquez-Sánchez, D., Cabo, M.L., Rodríguez-Herrera, J.J. (2015). Antimicrobial activity of essential oils against Staphylococcus aureus biofilms. Food Sci Technol Int, 21(8), 559-570. https://doi.org/10.1177/1082013214553996
- Referans40
Vázquez-Sánchez, D., Galvão, J.A., Ambrosio, C.M., Gloria, E.M., Oetterer, M. (2018). Single and binary applications of essential oils effectively control Listeria monocytogenes biofilms. Ind Crop Prod, 121, 452-460. https://doi.org/10.1016/j.indcrop.2018.05.045
- Referans41
Viuda-Martos, M., Mohamady, M.A., Fernández-López, J., ElRazik, K.A., Omer, E.A., Pérez-Alvarez, J.A., Sendra, E. (2011). In vitro antioxidant and antibacterial activities of essentials oils obtained from Egyptian aromatic plants. Food Control, 22(11), 1715-1722. https://doi.org/10.1016/j.foodcont.2011.04.003
- Referans42
Wińska, K., Mączka, W., Łyczko, J., Grabarczyk, M., Czubaszek, A., Szumny, A. (2019). Essential Oils as Antimicrobial Agents-Myth or Real Alternative?. Molecules, 24(11), 2130. https://doi.org/10.3390/molecules24112130
- Referans43
Xiao, S., Cui, P., Shi, W., Zhang, Y. (2020). Identification of essential oils with activity against stationary phase Staphylococcus aureus. BMC Complement Med Ther, 20(1), 1-10. https://doi.org/10.1186/s12906-020-02898-4
- Referans44
Yagi, S., Babiker, R., Tzanova, T., Schohn, H. (2016). Chemical composition, antiproliferative, antioxidant and antibacterial activities of essential oils from aromatic plants growing in Sudan. Asian Pac J Trop Med, 9(8), 763-770. https://doi.org/10.1016/j.apjtm.2016.06.009
- Referans45
Zhu, Q., Gooneratne, R., Hussain, M.A. (2017). Listeria monocytogenes in fresh produce: outbreaks, prevalence and contamination levels. Foods, 6(3), 21. https://doi.org/10.3390/foods6030021
ÇEŞİTLİ UÇUCU YAĞLARIN TÜKETİME HAZIR GIDALARDAN İZOLE EDİLEN LISTERIA MONOCYTOGENES SUŞLARI ÜZERİNDEKİ ANTİBAKTERİYEL AKTİVİTESİ
Yıl 2020,
, 861 - 871, 19.08.2020
Simge Aktop
Hacer Aslan Canberi
,
Esra Şentürk
Pinar Şanlıbaba
Öz
Listeria monocytogenes dünya çapında önemli sağlık sorunlarına neden olan gıda kaynaklı patojenlerden biridir. Uçucu yağların (EOs) uygulanması, patojenlerin kontrol edilmesi ve mikrobiyel seviyelerin azaltılması amacıyla kullanılan yöntemlerden biridir. Bu çalışmanın amacı, bitkilerden elde edilmiş olan 15 farklı EOs’un tüketime hazır gıdalardan izole edilmiş olan L. monocytogenes suşları üzerindeki antibakteriyel aktivitesini araştırmaktır. Bu çalışmada, kekik uçucu yağının (ortalama zon çapı 24.850±3.714 mm) L. monocytogenes’e karşı en yüksek antimikrobiyel aktiviteyi gösterdiği belirlenmiştir. Karanfil uçucu yağı (ortalama zon çapı 12.383±2.215 mm) ve adaçayı uçucu yağı (ortalama zon çapı 11.117±3.170 mm) ise, diğer yüksek antibakteriyel aktiviteye sahip uçucu yağlardır. Zencefil uçucu yağı ve sarımsak uçucu yağının, L. monocytogenes suşlarına karşı antibakteriyel etkisi saptanamamıştır. Bu çalışma, gıda sistemlerinde gıda kaynaklı patojen bakterilere karşı EO’ların kullanılmasının yararlı olabileceğini göstermektedir.
Kaynakça
- Referans1
Alexopoulos, A., Kimbaris, A.C., Plessas, S., Mantzourani, I., Theodoridou, I., Stavropoulou, E., et al., (2011). Antibacterial activities of essential oils from eight Greek aromatic plants against clinical isolates of Staphylococcus aureus. Anaerobe, 17(6), 399-402. https://doi.org/10.1016/j.anaerobe.2011.03.024
- Referans2
Al-Nabulsi, A.A., Osaili, T.M., Olaimat, A.N., Almasri, W.E., Ayyash, M., Al-Holy, M.A., et al., (2020). Inactivation of Salmonella spp. in tahini using plant essential oil extracts. Food Microbiol, 86, 103338. https://doi.org/10.1016/j.fm.2019.103338
- Referans3
Canberi, H.A., Şentürk, E., Aktop, S., Şanlıbaba, P. (2020). Determination of Antimicrobial Activity of Different Essential Oils Obtained from Plants on Staphylococcus aureus Strains Isolated from Foods. Turkish JAF Sci Tech, 8(4), 1012-1017. https://doi.org/10.24925/turjaf.v8i4.1012-1017.3368
- Referans4
Cho, Y., Kim, H., Beuchat, L.R., Ryu, J.H. (2020). Synergistic activities of gaseous oregano and thyme thymol essential oils against Listeria monocytogenes on surfaces of a laboratory medium and radish sprouts. Food Microbiol, 86, 103357. https://doi.org/10.1016/j.fm.2019.103357
- Referans5
Condò, C., Anacarso, I., Sabia, C., Iseppi, R., Anfelli, I., Forti, L., et al., (2020). Antimicrobial activity of spices essential oils and its effectiveness on mature biofilms of human pathogens. Nat Prod Res, 34(4), 567-574. https://doi.org/10.1080/14786419.2018.1490904
- Referans6
de Aguiar, F.C., Solarte, A.L., Tarradas, C., Luque, I., Maldonado, A., Galán‐Relaño, Á., Huerta, B. (2018). Antimicrobial activity of selected essential oils against Streptococcus suis isolated from pigs. Microbiology open, 7(6), e00613. https://doi.org/10.1002/mbo3.613
- Referans7
Desai, A.N., Anyoha, A., Madoff, L.C., Lassmann, B. (2019). Changing epidemiology of Listeria monocytogenes outbreaks, sporadic cases, and recalls globally: A review of ProMED reports from 1996 to 2018. Int J Infect Dis, 84, 48-53. https://doi.org/10.1016/j.ijid.2019.04.021
- Referans8
Elgayyar, M., Draughon, F.A., Golden, D.A., Mount, J.R. (2001). Antimicrobial activity of essential oils from plants against selected pathogenic and saprophytic microorganisms. J Food Prot, 64(7), 1019-1024. https://doi.org/10.4315/0362-028X-64.7.1019
- Referans9
Esmael, A., Hassan, M.G., Amer, M.M., Abdelrahman, S., Hamed, A.M., Abd-raboh, H.A., Foda, M.F. (2020). Antimicrobial activity of certain natural-based plant oils against the antibiotic-resistant acne bacteria. Saudi J Biol Sci, 27(1), 448-455. https://doi.org/10.1016/j.sjbs.2019.11.006
- Referans10
Fancello, F., Petretto, G.L., Marceddu, S., Venditti, T., Pintore, G., Zara, G., et al., (2020). Antimicrobial activity of gaseous Citrus limon var pompia leaf essential oil against Listeria monocytogenes on ricotta salata cheese. Food Microbiol, 87, 103386. https://doi.org/10.1016/j.fm.2019.103386
- Referans11
Ghorbani, A., Esmaeilizadeh, M. (2017). Pharmacological properties of Salvia officinalis and its components. J Tradit Complement Med, 7(4), 433-440. https://doi.org/10.1016/j.jtcme.2016.12.014
- Referans12
Gomez, D., Azon, E., Marco, N., Carraminana, J.J., Rota, C., Arino, A., Yangüela, J. (2014). Antimicrobial resistance of Listeria monocytogenes and Listeria innocua from meat products and meat-processing environment. Food Microbiol, 42, 61-65. https://dx.doi.org/10.1016/j.fm.2014.02.017
- Referans13
Gouveia, A.R., Alves, M., Silva, J.A., Saraiva, C. (2016). The antimicrobial effect of rosemary and thyme essential oils against Listeria monocytogenes in sous vide cook-chill beef during storage. Procedia Food Sci, 7, 173-176. doi: 10.1016/j.profoo.2016.10.001
- Referans14
Guo, J., Gao, Z., Li, G., Fu, F., Liang, Z., Zhu, H., Shan, Y. (2019). Antimicrobial and antibiofilm efficacy and mechanism of essential oil from Citrus Changshan-huyou YB chang against Listeria monocytogenes. Food Control, 105, 256-264. https://doi.org/10.1016/j.foodcont.2019.06.014
- Referans15
Güneş, S., Tıhmınlıoğlu, F. (2017). Hypericum perforatum incorporated chitosan films as potential bioactive wound dressing material. Int J Biol Macromol, 102, 933-943. https://doi.org/10.1016/j.ijbiomac.2017.04.080
- Referans16
Herman, A., Tambor, K., Herman, A. (2016). Linalool affects the antimicrobial efficacy of essential oils. Curr Microbiol, 72(2), 165-172. doi: 10.1007/s00284-015-0933-4
- Referans17
Hu, W., Jiang, A., Xiu, Z., Feng, K. (2018). Effect of thyme oil–alginate‐based coating on quality and microbial safety of fresh‐cut apples. J Sci Food Agric, 98(6), 2302-2311. https://doi.org/10.1002/jsfa.8720
- Referans18
Imane, N.I., Fouzia, H., Ahmed, E., Ismail, G., Idrissa, D., Mohamed, K. et al., (2020). Chemical composition, antibacterial and antioxidant activities of some essential oils against multidrug resistant bacteria. Eur J Integr Med, 101074. https://doi.org/10.1016/j.eujim.2020.101074
- Referans19
Jarzębski, M., Smułek, W., Baranowska, H.M., Masewicz, Ł., Kobus-Cisowska, J., Ligaj, M., Kaczorek, E. (2020). Characterization of St. John's wort (Hypericum perforatum L.) and the impact of filtration process on bioactive extracts incorporated into carbohydrate-based hydrogels. Food Hydrocoll, 104, 105748. https://doi.org/10.1016/j.foodhyd.2020.105748
- Referans20
Kuan, C.H., Rukayadi, Y., Ahmad, S.H., Wan Mohamed Radzi, C.W.J., Kuan, C.S., Yeo, S. K., et al., (2017). Antimicrobial resistance of Listeria monocytogenes and Salmonella Enteritidis isolated from vegetable farms and retail markets in Malaysia. Int Food Res J, 24(4), 1831-1839.
- Referans21
Lee, G., Kim, Y., Kim, H., Beuchat, L.R., Ryu, J.H. (2018). Antimicrobial activities of gaseous essential oils against Listeria monocytogenes on a laboratory medium and radish sprouts. Int J Food Microbiol, 265, 49-54. https://doi.org/10.1016/j.ijfoodmicro.2017.11.001
- Referans22
Mariottini, G.L., Grice, I.D. (2016). Antimicrobials from Cnidarians. A new perspective for anti-infective therapy?. Mar Drugs, 14(3), 48. https://doi.org/10.3390/md14030048
- Referans23
Miladi, H., Zmantar, T., Chaabouni, Y., Fedhila, K., Bakhrouf, A., Mahdouani, K., Chaieb, K. (2016). Antibacterial and efflux pump inhibitors of thymol and carvacrol against food-borne pathogens. Microb Pathog, 99, 95-100. https://doi.org/10.1016/j.micpath.2016.08.008
- Referans24
Moreira, M.R., Ponce, A.G., del Valle, C.E., Roura, S.I. (2005). Inhibitory parameters of essential oils to reduce a foodborne pathogen. LWT-Food Sci Technol, 38(5), 565-570. https://doi.org/10.1016/j.lwt.2004.07.012
- Referans25
Moussaoui, F., Alaoui, T. (2016). Evaluation of antibacterial activity and synergistic effect between antibiotic and the essential oils of some medicinal plants. Asian Pac J Trop Biomed, 6(1), 32-37. https://doi.org/10.1016/j.apjtb.2015.09.024
- Referans26
Nair, M.K.M., Vasudevan, P., Venkitanarayanan, K. (2005). Antibacterial effect of black seed oil on Listeria monocytogenes. Food Control, 16(5), 395-398. https://doi.org/10.1016/j.foodcont.2004.04.006
- Referans27
Nazlı, O., Baygar, T., Dönmez, Ç.E.D., Dere, Ö., Uysal, A.İ., Aksözek, A. et al., (2019). Antimicrobial and antibiofilm activity of polyurethane/Hypericum perforatum extract (PHPE) composite. Bioorg Chem, 82, 224-228. https://doi.org/10.1016/j.bioorg.2018.08.017
- Referans28
Nichols, M., Conrad, A., Whitlock, L., Stroika, S., Strain, E., Weltman, A., et al., (2020). Multistate outbreak of Listeria monocytogenes infections retrospectively linked to unpasteurized milk using whole-genome sequencing. Int J Dairy Sci, 103(1), 176-178. https://doi.org/10.3168/jds.2019-16703
- Referans29
Oggiano, G.P. (2015). Food Safety and Hygiene. J Nutrition Health Food Sci, 3(3), 1-2. http://dx.doi.org/10.15226/jnhfs.2015.00147
- Referans30
Ozogul, Y., Kuley, E., Uçar, Y., Ozogul, F. (2015). Antimicrobial impacts of essential oils on food borne-pathogens. Recent Pat Food Nutr Agric, 7(1), 53-61.
- Referans31
Paparella, A., Taccogna, L., Aguzzi, I., Chaves-López, C., Serio, A., Marsilio, F., Suzzi, G. (2008). Flow cytometric assessment of the antimicrobial activity of essential oils against Listeria monocytogenes. Food Control, 19(12), 1174-1182. https://doi.org/10.1016/j.foodcont.2008.01.002
- Referans32
Ponce, A.G., Fritz, R., del Valle, C., Roura, S.I. (2003). Antimicrobial activity of essential oils on the native microflora of organic Swiss chard. LWT-Food Sci Technol, 36(7), 679-684. https://doi.org/10.1016/S0023-6438(03)00088-4
- Referans33
Sakkas, H., Papadopoulou, C. (2017). Antimicrobial activity of basil, oregano, and thyme essential oils. J Microbiol Biotechn, 27(3), 429-438. https://doi.org/10.4014/jmb.1608.08024
- Referans34
Stefanakis, M.K., Touloupakis, E., Anastasopoulos, E., Ghanotakis, D., Katerinopoulos, H. E., Makridis, P. (2013). Antibacterial activity of essential oils from plants of the genus Origanum. Food control, 34(2), 539-546. https://doi.org/10.1016/j.foodcont.2013.05.024
- Referans35
Stratakos, A.C., Ijaz, U.Z., Ward, P., Linton, M., Kelly, C., Pinkerton, L., et al., (2020). In vitro and in vivo characterisation of Listeria monocytogenes outbreak isolates. Food Control, 107, 106784. https://doi.org/10.1016/j.foodcont.2019.106784
- Referans36
Tariq, S., Wani, S., Rasool, W., Shafi, K., Bhat, M.A., Prabhakar, A., et al., (2019). A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb Pathog, 134, 103580. https://doi.org/10.1016/j.micpath.2019.103580
- Referans37
Trinetta, V., Morgan, M.T., Coupland, J.N., Yucel, U. (2017). Essential oils against pathogen and spoilage microorganisms of fruit juices: use of versatile antimicrobial delivery systems. J Food Sci, 82(2), 471-476. https://doi.org/10.1111/1750-3841.13614
- Referans38
U.S. Food and Drug Administration (USFDA) (2019). Title 21-food and drugs. Part 182-Substances Generally Recognized as Safe. Essential oils, oleoresins (solvent-free), and natural extractives (including distillates); final rule. Federal Register. Revised as of April 1, 2019. Available at: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch. cfm?fr=182.20 Accessed date: 12 May 2020.
- Referans39
Vázquez-Sánchez, D., Cabo, M.L., Rodríguez-Herrera, J.J. (2015). Antimicrobial activity of essential oils against Staphylococcus aureus biofilms. Food Sci Technol Int, 21(8), 559-570. https://doi.org/10.1177/1082013214553996
- Referans40
Vázquez-Sánchez, D., Galvão, J.A., Ambrosio, C.M., Gloria, E.M., Oetterer, M. (2018). Single and binary applications of essential oils effectively control Listeria monocytogenes biofilms. Ind Crop Prod, 121, 452-460. https://doi.org/10.1016/j.indcrop.2018.05.045
- Referans41
Viuda-Martos, M., Mohamady, M.A., Fernández-López, J., ElRazik, K.A., Omer, E.A., Pérez-Alvarez, J.A., Sendra, E. (2011). In vitro antioxidant and antibacterial activities of essentials oils obtained from Egyptian aromatic plants. Food Control, 22(11), 1715-1722. https://doi.org/10.1016/j.foodcont.2011.04.003
- Referans42
Wińska, K., Mączka, W., Łyczko, J., Grabarczyk, M., Czubaszek, A., Szumny, A. (2019). Essential Oils as Antimicrobial Agents-Myth or Real Alternative?. Molecules, 24(11), 2130. https://doi.org/10.3390/molecules24112130
- Referans43
Xiao, S., Cui, P., Shi, W., Zhang, Y. (2020). Identification of essential oils with activity against stationary phase Staphylococcus aureus. BMC Complement Med Ther, 20(1), 1-10. https://doi.org/10.1186/s12906-020-02898-4
- Referans44
Yagi, S., Babiker, R., Tzanova, T., Schohn, H. (2016). Chemical composition, antiproliferative, antioxidant and antibacterial activities of essential oils from aromatic plants growing in Sudan. Asian Pac J Trop Med, 9(8), 763-770. https://doi.org/10.1016/j.apjtm.2016.06.009
- Referans45
Zhu, Q., Gooneratne, R., Hussain, M.A. (2017). Listeria monocytogenes in fresh produce: outbreaks, prevalence and contamination levels. Foods, 6(3), 21. https://doi.org/10.3390/foods6030021