Araştırma Makalesi
BibTex RIS Kaynak Göster

FARKLI KURUTMA YÖNTEMLERİNİN BALKABAĞI POSASINDAN FENOLİK EKSTRAKSİYONU ÜZERİNE ETKİSİ

Yıl 2021, , 883 - 894, 17.05.2021
https://doi.org/10.15237/gida.GD20124

Öz

Bu çalışmanın amacı, farklı kurutma metotlarının (dondurarak kurutma, sıcak hava, vakum ve mikrodalga kurutma) balkabağı posasının (BP) renk parametreleri, toplam fenolik (TF) içeriği, toplam flavonoid (TFl) içeriği ve antioksidan aktivite (AA) üzerindeki etkisini gözlemlemektir. Ek olarak, fenolik madde ekstraksiyon koşulları Yanıt Yüzey Yöntemi ile dondurularak kurutulmuş BP ekstraktı kullanılarak optimize edilmiştir. BP kurutma koşulları; sıcak hava ve vakum kurutma için 30 ve 60 °C ve mikrodalga kurutma için 120 ve 600 W olarak belirlenmiştir. Kurutulmuş BP için; TF içeriği, TFl içeriği ve AA sırasıyla 1.88 ± 0.01- 4.86 ± 0.27 mg gallik asit eşdeğeri/g kuru madde, 1.32 ± 0.05-3.09 ± 0.29 mg kateşin eşdeğeri/g kuru madde ve 1.45 ± 0.15-4.27 ± 0.27 mg askorbik asit eş değeri/g kuru madde arasında değişmiştir. Bu çalışma kurutulmuş BP’nin biyoaktif potansiyeline bağlı olarak fonksiyonel bir bileşen olarak kullanılabileceğini göstermiştir.

Kaynakça

  • Alibas, I., 2007. Microwave, air and combined microwave-air-drying parameters of pumpkin slices. LWT - Food Sci. Technol. 40, 1445–1451. https://doi.org/10.1016/j.lwt.2006.09.002
  • Aruwa, C.E., Amoo, S., Kudanga, T., 2019. Phenolic compound profile and biological activities of Southern African Opuntia ficus-indica fruit pulp and peels. LWT 111, 337–344. https://doi.org/10.1016/j.lwt.2019.05.028
  • Aydin, E., Gocmen, D., 2015. The influences of drying method and metabisulfite pre-treatment onthe color, functional properties and phenolic acids contents and bioaccessibility of pumpkin flour. LWT - Food Sci. Technol. 60, 385–392. https://doi.org/10.1016/j.lwt.2014.08.025
  • Bao, Y., Reddivari, L., Huang, J.Y., 2020. Enhancement of phenolic compounds extraction from grape pomace by high voltage atmospheric cold plasma. LWT 133, 109970. https://doi.org/10.1016/j.lwt.2020.109970
  • Cacace, J.E., Mazza, G., 2003. J.1365-2621.2003.Tb14146.X. J. Food Sci. 68, 240–248.
  • Cano-Lamadrid, M., Lech, K., Calín-Sánchez, Á., Rosas-Burgos, E.C., Figiel, A., Wojdyło, A., Wasilewska, M., Carbonell-Barrachina, Á.A., 2018. Quality of pomegranate pomace as affected by drying method. J. Food Sci. Technol. 55, 1074–1082. https://doi.org/10.1007/s13197-017-3022-9
  • Demirkol, M., Tarakci, Z., 2018. Effect of grape (Vitis labrusca L.) pomace dried by different methods on physicochemical, microbiological and bioactive properties of yoghurt. LWT 97, 770–777. https://doi.org/10.1016/j.lwt.2018.07.058
  • Gulati, A., Rawat, R., Singh, B., Ravindranath, S.D., 2003. Application of microwave energy in the manufacture of enhanced-quality green tea. J. Agric. Food Chem. 51, 4764–4768. https://doi.org/10.1021/jf026227q
  • Hayat, K., Zhang, X., Farooq, U., Abbas, S., Xia, S., Jia, C., Zhong, F., Zhang, J., 2010. Effect of microwave treatment on phenolic content and antioxidant activity of citrus mandarin pomace. Food Chem. 123, 423–429. https://doi.org/10.1016/j.foodchem.2010.04.060
  • Hernández-Carranza, P., Ávila-Sosa, R., Guerrero-Beltrán, J.A., Navarro-Cruz, A.R., Corona-Jiménez, E., Ochoa-Velasco, C.E., 2016. Optimization of Antioxidant Compounds Extraction from Fruit By-Products: Apple Pomace, Orange and Banana Peel. J. Food Process. Preserv. 40, 103–115. https://doi.org/10.1111/jfpp.12588
  • Irakli, M., Chatzopoulou, P., Ekateriniadou, L., 2018. Optimization of ultrasound-assisted extraction of phenolic compounds: Oleuropein, phenolic acids, phenolic alcohols and flavonoids from olive leaves and evaluation of its antioxidant activities. Ind. Crops Prod. 124, 382–388. https://doi.org/10.1016/j.indcrop.2018.07.070
  • Jamali, S.N., Kashaninejad, M., Amirabadi, A.A., Aalami, M., Khomeiri, M., 2018. Kinetics of peroxidase inactivation, color and temperature changes during pumpkin (Cucurbita moschata) blanching using infrared heating. LWT 93, 456–462. https://doi.org/10.1016/j.lwt.2018.03.074
  • Kammoun Bejar, A., Kechaou, N., Boudhrioua Mihoubi, N., 2011. Effect of Microwave Treatment On Physical and Functional Properties of. J. Food Process. Technol. 2, 1–7. https://doi.org/10.4172/2157-7110.1000109
  • Kulczynski, B., Gramza-Michałowska, A., 2019. The Profile of Carotenoids and Other Bioactive Molecules in Various Pumpkin Fruits (Cucurbita maxima Duchesne) Cultivars. Molecules 24. https://doi.org/10.3390/molecules24183212
  • M’hiri, N., Ioannou, I., Mihoubi Boudhrioua, N., Ghoul, M., 2015. Effect of different operating conditions on the extraction of phenolic compounds in orange peel. Food Bioprod. Process. 96, 161–170. https://doi.org/10.1016/j.fbp.2015.07.010
  • Monteiro, R.L., Link, J.V., Tribuzi, G., Carciofi, B.A.M., Laurindo, J.B., 2018. Effect of multi-flash drying and microwave vacuum drying on the microstructure and texture of pumpkin slices. LWT 96, 612–619. https://doi.org/10.1016/j.lwt.2018.06.023
  • Ping, W., Jiecai, L., Qingyan, Z., Lizhen, H., 2002. Studies on nutrient composition and utilization of pumpkin fruit. J. Inn. Mong. Agric. Univ. Sci. Ed. 23, 52–54.
  • Romero-Díez, R., Matos, M., Rodrigues, L., Bronze, M.R., Rodríguez-Rojo, S., Cocero, M.J., Matias, A.A., 2019. Microwave and ultrasound pre-treatments to enhance anthocyanins extraction from different wine lees. Food Chem. 272, 258–266. https://doi.org/10.1016/j.foodchem.2018.08.016
  • Seremet, L., Botez, E., Nistor, O.V., Andronoiu, D.G., Mocanu, G.D., 2016. Effect of different drying methods on moisture ratio and rehydration of pumpkin slices. Food Chem. 195, 104–109. https://doi.org/10.1016/j.foodchem.2015.03.125
  • Tseng, A., Zhao, Y., 2012. Effect of Different Drying Methods and Storage Time on the Retention of Bioactive Compounds and Antibacterial Activity of Wine Grape Pomace (Pinot Noir and Merlot). J. Food Sci. 77. https://doi.org/10.1111/j.1750-3841.2012.02840.x
  • Vashisth, T., Singh, R.K., Pegg, R.B., 2011. Effects of drying on the phenolics content and antioxidant activity of muscadine pomace. LWT - Food Sci. Technol. 44, 1649–1657. https://doi.org/10.1016/j.lwt.2011.02.011
  • Wang, L., Boussetta, N., Lebovka, N., Vorobiev, E., 2018. Effects of ultrasound treatment and concentration of ethanol on selectivity of phenolic extraction from apple pomace. Int. J. Food Sci. Technol. 53, 2104–2109. https://doi.org/10.1111/ijfs.13835
  • Yadav, M., Jain, S., Tomar, R., Prasad, G.B.K.S., Yadav, H., 2010. Medicinal and biological potential of pumpkin: An updated review. Nutr. Res. Rev. 23, 184–190. https://doi.org/10.1017/S0954422410000107
  • Zainal-Abidin, M.H., Hayyan, M., Hayyan, A., Jayakumar, N.S., 2017. New horizons in the extraction of bioactive compounds using deep eutectic solvents: A review. Anal. Chim. Acta. https://doi.org/10.1016/j.aca.2017.05.012
  • Zhou, S. huan, Fang, Z. xiang, Lü, Y., Chen, J. chu, Liu, D. hong, Ye, X. qian, 2009. Phenolics and antioxidant properties of bayberry (Myrica rubra Sieb. et Zucc.) pomace. Food Chem. 112, 394–399. https://doi.org/10.1016/j.foodchem.2008.05.104

EFFECT OF DIFFERENT DRYING METHODS ON THE PHENOLIC EXTRACTION FROM BUTTERNUT SQUASH POMACE

Yıl 2021, , 883 - 894, 17.05.2021
https://doi.org/10.15237/gida.GD20124

Öz

Bu çalışmanın amacı, farklı kurutma metotlarının (dondurarak kurutma, sıcak hava, vakum ve mikrodalga kurutma) balkabağı posasının (BP) renk parametreleri, toplam fenolik (TF) içeriği, toplam flavonoid (TFl) içeriği ve antioksidan aktivite (AA) üzerindeki etkisini gözlemlemektir. Ek olarak, fenolik madde ekstraksiyon koşulları Yanıt Yüzey Yöntemi ile dondurularak kurutulmuş BP ekstraktı kullanılarak optimize edilmiştir. BP kurutma koşulları; sıcak hava ve vakum kurutma için 30 ve 60 °C ve mikrodalga kurutma için 120 ve 600 W olarak belirlenmiştir. Kurutulmuş BP için; TF içeriği, TFl içeriği ve AA sırasıyla 1.88 ± 0.01- 4.86 ± 0.27 mg gallik asit eşdeğeri/g kuru madde, 1.32 ± 0.05-3.09 ± 0.29 mg kateşin eşdeğeri/g kuru madde ve 1.45 ± 0.15-4.27 ± 0.27 mg askorbik asit eş değeri/g kuru madde arasında değişmiştir. Bu çalışma kurutulmuş BP’nin biyoaktif potansiyeline bağlı olarak fonksiyonel bir bileşen olarak kullanılabileceğini göstermiştir.

Kaynakça

  • Alibas, I., 2007. Microwave, air and combined microwave-air-drying parameters of pumpkin slices. LWT - Food Sci. Technol. 40, 1445–1451. https://doi.org/10.1016/j.lwt.2006.09.002
  • Aruwa, C.E., Amoo, S., Kudanga, T., 2019. Phenolic compound profile and biological activities of Southern African Opuntia ficus-indica fruit pulp and peels. LWT 111, 337–344. https://doi.org/10.1016/j.lwt.2019.05.028
  • Aydin, E., Gocmen, D., 2015. The influences of drying method and metabisulfite pre-treatment onthe color, functional properties and phenolic acids contents and bioaccessibility of pumpkin flour. LWT - Food Sci. Technol. 60, 385–392. https://doi.org/10.1016/j.lwt.2014.08.025
  • Bao, Y., Reddivari, L., Huang, J.Y., 2020. Enhancement of phenolic compounds extraction from grape pomace by high voltage atmospheric cold plasma. LWT 133, 109970. https://doi.org/10.1016/j.lwt.2020.109970
  • Cacace, J.E., Mazza, G., 2003. J.1365-2621.2003.Tb14146.X. J. Food Sci. 68, 240–248.
  • Cano-Lamadrid, M., Lech, K., Calín-Sánchez, Á., Rosas-Burgos, E.C., Figiel, A., Wojdyło, A., Wasilewska, M., Carbonell-Barrachina, Á.A., 2018. Quality of pomegranate pomace as affected by drying method. J. Food Sci. Technol. 55, 1074–1082. https://doi.org/10.1007/s13197-017-3022-9
  • Demirkol, M., Tarakci, Z., 2018. Effect of grape (Vitis labrusca L.) pomace dried by different methods on physicochemical, microbiological and bioactive properties of yoghurt. LWT 97, 770–777. https://doi.org/10.1016/j.lwt.2018.07.058
  • Gulati, A., Rawat, R., Singh, B., Ravindranath, S.D., 2003. Application of microwave energy in the manufacture of enhanced-quality green tea. J. Agric. Food Chem. 51, 4764–4768. https://doi.org/10.1021/jf026227q
  • Hayat, K., Zhang, X., Farooq, U., Abbas, S., Xia, S., Jia, C., Zhong, F., Zhang, J., 2010. Effect of microwave treatment on phenolic content and antioxidant activity of citrus mandarin pomace. Food Chem. 123, 423–429. https://doi.org/10.1016/j.foodchem.2010.04.060
  • Hernández-Carranza, P., Ávila-Sosa, R., Guerrero-Beltrán, J.A., Navarro-Cruz, A.R., Corona-Jiménez, E., Ochoa-Velasco, C.E., 2016. Optimization of Antioxidant Compounds Extraction from Fruit By-Products: Apple Pomace, Orange and Banana Peel. J. Food Process. Preserv. 40, 103–115. https://doi.org/10.1111/jfpp.12588
  • Irakli, M., Chatzopoulou, P., Ekateriniadou, L., 2018. Optimization of ultrasound-assisted extraction of phenolic compounds: Oleuropein, phenolic acids, phenolic alcohols and flavonoids from olive leaves and evaluation of its antioxidant activities. Ind. Crops Prod. 124, 382–388. https://doi.org/10.1016/j.indcrop.2018.07.070
  • Jamali, S.N., Kashaninejad, M., Amirabadi, A.A., Aalami, M., Khomeiri, M., 2018. Kinetics of peroxidase inactivation, color and temperature changes during pumpkin (Cucurbita moschata) blanching using infrared heating. LWT 93, 456–462. https://doi.org/10.1016/j.lwt.2018.03.074
  • Kammoun Bejar, A., Kechaou, N., Boudhrioua Mihoubi, N., 2011. Effect of Microwave Treatment On Physical and Functional Properties of. J. Food Process. Technol. 2, 1–7. https://doi.org/10.4172/2157-7110.1000109
  • Kulczynski, B., Gramza-Michałowska, A., 2019. The Profile of Carotenoids and Other Bioactive Molecules in Various Pumpkin Fruits (Cucurbita maxima Duchesne) Cultivars. Molecules 24. https://doi.org/10.3390/molecules24183212
  • M’hiri, N., Ioannou, I., Mihoubi Boudhrioua, N., Ghoul, M., 2015. Effect of different operating conditions on the extraction of phenolic compounds in orange peel. Food Bioprod. Process. 96, 161–170. https://doi.org/10.1016/j.fbp.2015.07.010
  • Monteiro, R.L., Link, J.V., Tribuzi, G., Carciofi, B.A.M., Laurindo, J.B., 2018. Effect of multi-flash drying and microwave vacuum drying on the microstructure and texture of pumpkin slices. LWT 96, 612–619. https://doi.org/10.1016/j.lwt.2018.06.023
  • Ping, W., Jiecai, L., Qingyan, Z., Lizhen, H., 2002. Studies on nutrient composition and utilization of pumpkin fruit. J. Inn. Mong. Agric. Univ. Sci. Ed. 23, 52–54.
  • Romero-Díez, R., Matos, M., Rodrigues, L., Bronze, M.R., Rodríguez-Rojo, S., Cocero, M.J., Matias, A.A., 2019. Microwave and ultrasound pre-treatments to enhance anthocyanins extraction from different wine lees. Food Chem. 272, 258–266. https://doi.org/10.1016/j.foodchem.2018.08.016
  • Seremet, L., Botez, E., Nistor, O.V., Andronoiu, D.G., Mocanu, G.D., 2016. Effect of different drying methods on moisture ratio and rehydration of pumpkin slices. Food Chem. 195, 104–109. https://doi.org/10.1016/j.foodchem.2015.03.125
  • Tseng, A., Zhao, Y., 2012. Effect of Different Drying Methods and Storage Time on the Retention of Bioactive Compounds and Antibacterial Activity of Wine Grape Pomace (Pinot Noir and Merlot). J. Food Sci. 77. https://doi.org/10.1111/j.1750-3841.2012.02840.x
  • Vashisth, T., Singh, R.K., Pegg, R.B., 2011. Effects of drying on the phenolics content and antioxidant activity of muscadine pomace. LWT - Food Sci. Technol. 44, 1649–1657. https://doi.org/10.1016/j.lwt.2011.02.011
  • Wang, L., Boussetta, N., Lebovka, N., Vorobiev, E., 2018. Effects of ultrasound treatment and concentration of ethanol on selectivity of phenolic extraction from apple pomace. Int. J. Food Sci. Technol. 53, 2104–2109. https://doi.org/10.1111/ijfs.13835
  • Yadav, M., Jain, S., Tomar, R., Prasad, G.B.K.S., Yadav, H., 2010. Medicinal and biological potential of pumpkin: An updated review. Nutr. Res. Rev. 23, 184–190. https://doi.org/10.1017/S0954422410000107
  • Zainal-Abidin, M.H., Hayyan, M., Hayyan, A., Jayakumar, N.S., 2017. New horizons in the extraction of bioactive compounds using deep eutectic solvents: A review. Anal. Chim. Acta. https://doi.org/10.1016/j.aca.2017.05.012
  • Zhou, S. huan, Fang, Z. xiang, Lü, Y., Chen, J. chu, Liu, D. hong, Ye, X. qian, 2009. Phenolics and antioxidant properties of bayberry (Myrica rubra Sieb. et Zucc.) pomace. Food Chem. 112, 394–399. https://doi.org/10.1016/j.foodchem.2008.05.104
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği
Bölüm Makaleler
Yazarlar

Meriç Şimşek 0000-0003-4609-7824

Özge Süfer

Büşra Gündoğdu Bu kişi benim 0000-0002-9567-6753

Yayımlanma Tarihi 17 Mayıs 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Şimşek, M., Süfer, Ö., & Gündoğdu, B. (2021). EFFECT OF DIFFERENT DRYING METHODS ON THE PHENOLIC EXTRACTION FROM BUTTERNUT SQUASH POMACE. Gıda, 46(4), 883-894. https://doi.org/10.15237/gida.GD20124
AMA Şimşek M, Süfer Ö, Gündoğdu B. EFFECT OF DIFFERENT DRYING METHODS ON THE PHENOLIC EXTRACTION FROM BUTTERNUT SQUASH POMACE. GIDA. Mayıs 2021;46(4):883-894. doi:10.15237/gida.GD20124
Chicago Şimşek, Meriç, Özge Süfer, ve Büşra Gündoğdu. “EFFECT OF DIFFERENT DRYING METHODS ON THE PHENOLIC EXTRACTION FROM BUTTERNUT SQUASH POMACE”. Gıda 46, sy. 4 (Mayıs 2021): 883-94. https://doi.org/10.15237/gida.GD20124.
EndNote Şimşek M, Süfer Ö, Gündoğdu B (01 Mayıs 2021) EFFECT OF DIFFERENT DRYING METHODS ON THE PHENOLIC EXTRACTION FROM BUTTERNUT SQUASH POMACE. Gıda 46 4 883–894.
IEEE M. Şimşek, Ö. Süfer, ve B. Gündoğdu, “EFFECT OF DIFFERENT DRYING METHODS ON THE PHENOLIC EXTRACTION FROM BUTTERNUT SQUASH POMACE”, GIDA, c. 46, sy. 4, ss. 883–894, 2021, doi: 10.15237/gida.GD20124.
ISNAD Şimşek, Meriç vd. “EFFECT OF DIFFERENT DRYING METHODS ON THE PHENOLIC EXTRACTION FROM BUTTERNUT SQUASH POMACE”. Gıda 46/4 (Mayıs 2021), 883-894. https://doi.org/10.15237/gida.GD20124.
JAMA Şimşek M, Süfer Ö, Gündoğdu B. EFFECT OF DIFFERENT DRYING METHODS ON THE PHENOLIC EXTRACTION FROM BUTTERNUT SQUASH POMACE. GIDA. 2021;46:883–894.
MLA Şimşek, Meriç vd. “EFFECT OF DIFFERENT DRYING METHODS ON THE PHENOLIC EXTRACTION FROM BUTTERNUT SQUASH POMACE”. Gıda, c. 46, sy. 4, 2021, ss. 883-94, doi:10.15237/gida.GD20124.
Vancouver Şimşek M, Süfer Ö, Gündoğdu B. EFFECT OF DIFFERENT DRYING METHODS ON THE PHENOLIC EXTRACTION FROM BUTTERNUT SQUASH POMACE. GIDA. 2021;46(4):883-94.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/