Derleme
BibTex RIS Kaynak Göster

SÜRDÜRÜLEBİLİR PROTEİN KAYNAĞI OLARAK YENİLEBİLİR BÖCEKLERİN BESLEYİCİ ÖZELLİKLERİ ve TÜKETİCİ KABULÜ

Yıl 2021, , 1105 - 1116, 05.08.2021
https://doi.org/10.15237/gida.GD21074

Öz

Nüfus artışı, tarım alanlarının yetersizliği ve iklim değişiklikleri gibi sorunlar nedeniyle, gıda kaynaklarının sürdürülebilirliği giderek önem kazanmaktadır. Gelecekte özellikle protein gereksiniminin karşılanması temel bir sorun olarak öngörülmektedir. Yenilebilir böcekler geleneksel protein kaynakları ile kıyaslandığında üretimlerindeki avantajlar nedeniyle sürdürülebilir gıda kaynakları olarak değerlendirilmektedir. Güney Amerika ülkeleri ve Çin gibi ülkelerde geleneksel olarak tüketilen ancak batı toplumlarında neofobi ve tiksinme nedeniyle kabul görmezken bütün formu yerine un formunda kullanılması entomofajiyi uygulamak için umut verici bir seçenek olarak görülmektedir. Yenilebilir böceklerin, besleyici özellikleri ile antidiyabetik ve antimikrobiyel gibi potansiyel etkileriyle sağlık üzerine faydalarının incelendiği çalışmalar artmaktayken toksik ve alerjik etkileri üzerine çalışmalar halen yetersizdir. Yenilebilir böceklerin, özellikle Avrupa Gıda Güvenliği Kurumu’nun (European Food and Safety Authority, EFSA) 2021 yılı başında yayınladığı sarı un kurdunun gıda olarak tüketilmesini onaylayan yönetmelik ile yenilebilir böceklerin bilim dünyasında daha fazla konu olacağı düşünülmektedir.

Kaynakça

  • Ahn, M. Y., Han, J. W., Hwang, J. S., Yun, E. Y. ve Lee, B. M. (2014). Anti-Inflammatory Effect of Glycosaminoglycan Derived From Gryllus bimaculatus (A Type of Cricket, Insect) on Adjuvant-Treated Chronic Arthritis Rat Model. Journal of Toxicology and Environmental Health, Part A, 77(22-24), 1332-1345. doi:10.1080/15287394.2014.951591
  • Ahn, M. Y., Hwang, J. S., Kim, M.-J. ve Park, K.-K. (2016). Antilipidemic effects and gene expression profiling of the glycosaminoglycans from cricket in rats on a high fat diet. Archives of Pharmacal Research, 39(7), 926-936. doi:10.1007/s12272-016-0749-1
  • Ahn, M. Y., Kim, B. J., Kim, H. J., Jin, J. M., Yoon, H. J., Hwang, J. S. ve Lee, B. M. (2019). Glycosaminoglycan derived from field cricket and its inhibition activity of diabetes based on anti-oxidative action. doi: 10.20944/preprints201903.0136.v1
  • Aiking, H. ve de Boer, J. (2020). The next protein transition. Trends in Food Science & Technology, 105, 515-522. doi:10.1016/j.tifs.2018.07.008
  • Bessa, L. W., Pieterse, E., Sigge, G. ve Hoffman, L. C. (2020). Insects as human food; from farm to fork. Journal of the Science of Food and Agriculture, 100(14), 5017-5022. doi: 10.1002/jsfa.8860
  • Bose, U., Broadbent, J. A., Juhász, A., Karnaneedi, S., Johnston, E. B., Stockwell, S., ... & Colgrave, M. L. (2021). Protein extraction protocols for optimal proteome measurement and arginine kinase quantitation from cricket Acheta domesticus for food safety assessment. Food Chemistry, 348, 129110.doi: 10.1016/j.foodchem.2021.129110
  • Boulos, S., Tännler, A. ve Nyström, L. (2020). Nitrogen-to-Protein Conversion Factors for Edible Insects on the Swiss Market: T. molitor, A. domesticus, and L. migratoria. Frontiers in Nutrition, 7(89). doi:10.3389/fnut.2020.00089
  • Cadinu, L. A., Barra, P., Torre, F., Delogu, F. ve Madau, F. A. (2020). Insect Rearing: Potential, Challenges, and Circularity. Sustainability, 12(11), 4567. doi:10.3390/su12114567
  • Castro, M. ve Chambers IV, E. (2019). Willingness to eat an insect based product and impact on brand equity: A global perspective. Journal of Sensory Studies, 34(2), e12486. doi:10.1111/joss.12486
  • Chalamaiah, M., Dinesh kumar, B., Hemalatha, R. ve Jyothirmayi, T. (2012). Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chemistry, 135(4), 3020-3038. doi:10.1016/j.foodchem.2012.06.100
  • Da Rocha, M., Alemán, A., Baccan, G. C., López-Caballero, M. E., Gómez-Guillén, C., Montero, P. ve Prentice, C. (2018). Anti-Inflammatory, Antioxidant, and Antimicrobial Effects of Underutilized Fish Protein Hydrolysate. Journal of Aquatic Food Product Technology, 27(5), 592-608. doi:10.1080/10498850.2018.1461160
  • de Carvalho, N. M., Teixeira, F., Silva, S., Madureira, A. R., & Pintado, M. E. (2019). Potential prebiotic activity of Tenebrio molitor insect flour using an optimized in vitro gut microbiota model. Food & function, 10(7), 3909-3922. doi:10.1039/C8FO01536H
  • de Castro, R. J. S., Ohara, A., Aguilar, J. G. d. S. ve Domingues, M. A. F. (2018). Nutritional, functional and biological properties of insect proteins: Processes for obtaining, consumption and future challenges. Trends in Food Science & Technology, 76, 82-89. doi:10.1016/j.tifs.2018.04.006
  • Di Mattia, C., Battista, N., Sacchetti, G. ve Serafini, M. (2019). Antioxidant Activities in vitro of Water and Liposoluble Extracts Obtained by Different Species of Edible Insects and Invertebrates. Frontiers in Nutrition, 6(106). doi:10.3389/fnut.2019.00106
  • EFSA Panel on Nutrition, N. F., Allergens, F., Turck, D., Castenmiller, J., De Henauw, S., Hirsch‐Ernst, K. I., . . . Naska, A. (2021). Safety of dried yellow mealworm (Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA Journal, 19(1), e06343. doi:10.2903/j.efsa.2021.6343
  • FAO, F. (2017). The future of food and agriculture–Trends and challenges. Annual Report.
  • Ganguly, S., Neog, P., Gogoi, M., Bordoloi, P. L., & Para, P. A. (2018). Edible Insects as Sources of Novel Bioactive Compounds. Recent Research Trends in Veterinary Sciences and Animal Husbandry, March, 55–69. doi.org/10.22271/ed.book04.a05
  • Govorushko, S. (2019). Global status of insects as food and feed source: A review. Trends in Food Science & Technology, 91, 436-445. doi:10.1016/j.tifs.2019.07.032
  • Hall, F. ve Liceaga, A. (2020). Effect of microwave-assisted enzymatic hydrolysis of cricket (Gryllodes sigillatus) protein on ACE and DPP-IV inhibition and tropomyosin-IgG binding. Journal of Functional Foods, 64, 103634. doi:10.1016/j.jff.2019.103634
  • Han, S.-R., Lee, B.-S., Jung, K.-J., Yu, H.-J., Yun, E.-Y., Hwang, J. S. ve Moon, K.-S. (2016). Safety assessment of freeze-dried powdered Tenebrio molitor larvae (yellow mealworm) as novel food source: Evaluation of 90-day toxicity in Sprague-Dawley rats. Regulatory Toxicology and Pharmacology, 77, 206-212. doi:10.1016/j.yrtph.2016.03.006
  • Hartmann, C., Shi, J., Giusto, A. ve Siegrist, M. (2015). The psychology of eating insects: A cross-cultural comparison between Germany and China. Food Quality and Preference, 44, 148-156. doi:10.1016/j.foodqual.2015.04.013
  • Higa, J. E., Ruby, M. B. ve Rozin, P. (2020). Americans’ acceptance of black soldier fly larvae as food for themselves, their dogs, and farmed animals. Food Quality and Preference, 104119. doi:10.1016/j.foodqual.2020.104119
  • Imathiu, S. (2020). Benefits and food safety concerns associated with consumption of edible insects. NFS Journal, 18, 1-11. doi:10.1016/j.nfs.2019.11.002
  • Jantzen da Silva Lucas, A., Menegon de Oliveira, L., da Rocha, M. ve Prentice, C. (2020). Edible insects: An alternative of nutritional, functional and bioactive compounds. Food Chemistry, 311, 126022. doi:10.1016/j.foodchem.2019.126022
  • Jonas-Levi, A. ve Martinez, J.-J. I. (2017). The high level of protein content reported in insects for food and feed is overestimated. Journal of Food Composition and Analysis, 62, 184-188. doi:10.1016/j.jfca.2017.06.004
  • Jung, E. Y., Lee, H.-S., Lee, H. J., Kim, J.-M., Lee, K.-W. ve Suh, H. J. (2010). Feeding silk protein hydrolysates to C57BL/KsJ-db/db mice improves blood glucose and lipid profiles. Nutrition Research, 30(11), 783-790. doi:10.1016/j.nutres.2010.10.006
  • Kinyuru, J. N., Konyole, S. O., Roos, N., Onyango, C. A., Owino, V. O., Owuor, B. O., . . . Kenji, G. M. (2013). Nutrient composition of four species of winged termites consumed in western Kenya. Journal of Food Composition and Analysis, 30(2), 120-124. doi:10.1016/j.jfca.2013.02.008
  • Kornher, L., Schellhorn, M. ve Vetter, S. (2019). Disgusting or Innovative-Consumer Willingness to Pay for Insect Based Burger Patties in Germany. Sustainability, 11(7), 1878. doi:10.3390/su11071878
  • Liu, Y., Yu, L., Guo, X., Guo, T., Wang, S. ve Lu, C. (2006). Analysis of tissue-specific region in sericin 1 gene promoter of Bombyx mori. Biochemical and Biophysical Research Communications, 342(1), 273-279. doi:10.1016/j.bbrc.2006.01.140
  • Murefu, T. R., Macheka, L., Musundire, R. ve Manditsera, F. A. (2019). Safety of wild harvested and reared edible insects: A review. Food Control, 101, 209-224. doi:10.1016/j.foodcont.2019.03.003
  • Najafian, L. ve Babji, A. S. (2012). A review of fish-derived antioxidant and antimicrobial peptides: Their production, assessment, and applications. Peptides, 33(1), 178-185. doi:10.1016/j.peptides.2011.11.013
  • Nissen, L., Samaei, S. P., Babini, E. ve Gianotti, A. (2020). Gluten free sourdough bread enriched with cricket flour for protein fortification: Antioxidant improvement and Volatilome characterization. Food Chemistry, 333, 127410. doi:10.1016/j.foodchem.2020.127410
  • Nongonierma, A. B. ve FitzGerald, R. J. (2017). Unlocking the biological potential of proteins from edible insects through enzymatic hydrolysis: A review. Innovative Food Science & Emerging Technologies, 43, 239-252. doi:10.1016/j.ifset.2017.08.014
  • Nowakowski, A. C., Miller, A. C., Miller, M. E., Xiao, H. ve Wu, X. (2021). Potential health benefits of edible insects. Critical Reviews in Food Science and Nutrition, 1-10. doi:10.1080/10408398.2020.1867053
  • Oonincx, D. G. A. B. ve Dierenfeld, E. S. (2012). An Investigation Into the Chemical Composition of Alternative Invertebrate Prey. Zoo Biology, 31(1), 40-54. doi:10.1002/zoo.20382
  • Ordoñez-Araque, R. ve Egas-Montenegro, E. (2021). Edible insects: A food alternative for the sustainable development of the planet. International Journal of Gastronomy and Food Science, 23, 100304. doi:10.1016/j.ijgfs.2021.100304
  • Poma, G., Cuykx, M., Amato, E., Calaprice, C., Focant, J. F., & Covaci, A. (2017). Evaluation of hazardous chemicals in edible insects and insect-based food intended for human consumption. Food and Chemical Toxicology, 100, 70-79. doi:10.1016/j.fct.2016.12.006
  • Piha, S., Pohjanheimo, T., Lähteenmäki-Uutela, A., Křečková, Z. ve Otterbring, T. (2018). The effects of consumer knowledge on the willingness to buy insect food: An exploratory cross-regional study in Northern and Central Europe. Food Quality and Preference, 70, 1-10. doi:10.1016/j.foodqual.2016.12.006
  • Rahnamaeian, M., Cytryńska, M., Zdybicka-Barabas, A., Dobslaff, K., Wiesner, J., Twyman, R. M., . . . Vilcinskas, A. (2015). Insect antimicrobial peptides show potentiating functional interactions against Gram-negative bacteria. Proceedings of the Royal Society B: Biological Sciences, 282(1806), 20150293. doi:10.1098/rspb.2015.0293
  • Ravi, H. K., Degrou, A., Costil, J., Trespeuch, C., Chemat, F. ve Vian, M. A. (2020). Larvae Mediated Valorization of Industrial, Agriculture and Food Wastes: Biorefinery Concept through Bioconversion, Processes, Procedures, and Products. Processes, 8(7), 857. doi:10.3390/pr8070857
  • Ribeiro, J. C., Cunha, L. M., Sousa-Pinto, B. ve Fonseca, J. (2018). Allergic risks of consuming edible insects: A systematic review. Molecular Nutrition & Food Research, 62(1), 1700030. doi:10.1002/mnfr.201700030
  • Ruby, M. B. ve Rozin, P. (2019). Disgust, sushi consumption, and other predictors of acceptance of insects as food by Americans and Indians. Food Quality and Preference, 74, 155-162. doi:10.1016/j.foodqual.2019.01.013
  • Ribeiro, J. C., Sousa-Pinto, B., Fonseca, J., Fonseca, S. C., & Cunha, L. M. (2021). Edible insects and food safety: allergy. Journal of Insects as Food and Feed, 1-16. doi: 10.3920/JIFF2020.0065
  • Ruby, M. B., Rozin, P. ve Chan, C. (2015). Determinants of willingness to eat insects in the USA and India. Journal of Insects as Food and Feed, 1(3), 215-225. doi: 10.3920/JIFF2015.0029
  • Rumpold, B. A. ve Schlüter, O. K. (2013). Nutritional composition and safety aspects of edible insects. Molecular Nutrition & Food Research, 57(5), 802-823. doi:10.1002/mnfr.201200735
  • Sarmadi, B. H. ve Ismail, A. (2010). Antioxidative peptides from food proteins: A review. Peptides, 31(10), 1949-1956. doi:10.1016/j.peptides.2010.06.020
  • Stone, A. K., Tanaka, T. ve Nickerson, M. T. (2019). Protein quality and physicochemical properties of commercial cricket and mealworm powders. Journal of Food Science and Technology, 56(7), 3355-3363. doi:10.1007/s13197-019-03818-2
  • Stull, V. J., Finer, E., Bergmans, R. S., Febvre, H. P., Longhurst, C., Manter, D. K., . . . Weir, T. L. (2018). Impact of Edible Cricket Consumption on Gut Microbiota in Healthy Adults, a Double-blind, Randomized Crossover Trial. Scientific Reports, 8(1), 10762. doi:10.1038/s41598-018-29032-2
  • Sun-Waterhouse, D., Waterhouse, G. I. N., You, L., Zhang, J., Liu, Y., Ma, L., . . . Dong, Y. (2016). Transforming insect biomass into consumer wellness foods: A review. Food Research International, 89, 129-151. doi:10.1016/j.foodres.2016.10.001
  • Tao, J. ve Li, Y. O. (2018). Edible insects as a means to address global malnutrition and food insecurity issues. Food Quality and Safety, 2(1), 17-26. doi:10.1093/fqsafe/fyy001
  • Tuccillo, F., Marino, M. G. ve Torri, L. (2020). Italian consumers’ attitudes towards entomophagy: Influence of human factors and properties of insects and insect-based food. Food Research International, 137, 109619. doi:10.1016/j.foodres.2020.109619
  • Van Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G. ve Vantomme, P. (2013). Edible insects: future prospects for food and feed security (No. 171). Food and Agriculture Organization of the United Nations.
  • van der Fels-Klerx, H. J., Camenzuli, L., Belluco, S., Meijer, N. ve Ricci, A. (2018). Food Safety Issues Related to Uses of Insects for Feeds and Foods. Comprehensive Reviews in Food Science and Food Safety, 17(5), 1172-1183. doi:10.1111/1541-4337.12385
  • Vercruysse, L., Smagghe, G., Herregods, G. ve Van Camp, J. (2005). ACE Inhibitory Activity in Enzymatic Hydrolysates of Insect Protein. Journal of Agricultural and Food Chemistry, 53(13), 5207-5211. doi:10.1021/jf050337q
  • Wade, M. ve Hoelle, J. (2020). A review of edible insect industrialization: scales of production and implications for sustainability. Environmental Research Letters, 15(12), 123013. doi:10.1088/1748-9326/aba1c1
  • Woolf, E., Zhu, Y., Emory, K., Zhao, J. ve Liu, C. (2019). Willingness to consume insect-containing foods: A survey in the United States. LWT, 102, 100-105. doi:10.1016/j.lwt.2018.12.010
  • Yi, H. Y., Chowdhury, M., Huang, Y. D., & Yu, X. Q. (2014). Insect antimicrobial peptides and their applications. Applied Microbiology and Biotechnology, 98(13), 5807–5822. doi:10.1007/s00253-014-5792-6
  • Yi, L., Lakemond, C. M. M., Sagis, L. M. C., Eisner-Schadler, V., van Huis, A. ve van Boekel, M. A. J. S. (2013). Extraction and characterisation of protein fractions from five insect species. Food Chemistry, 141(4), 3341-3348. doi:10.1016/j.foodchem.2013.05.115
  • Yüksel, E. ve Canhilal, R. (2018). A survey of public opinion about entomophagy in Erciyes University. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 4(2), 203-208. doi:10.24180/ijaws.440555
  • Zielińska, E., Baraniak, B., Karaś, M., Rybczyńska, K., & Jakubczyk, A. (2015). Selected species of edible insects as a source of nutrient composition. Food Research International, 77, 460-466. doi:10.1016/j.foodres.2015.09.008
  • Zielińska, E., Baraniak, B. ve Karaś, M. (2017). Antioxidant and Anti-Inflammatory Activities of Hydrolysates and Peptide Fractions Obtained by Enzymatic Hydrolysis of Selected Heat-Treated Edible Insects. Nutrients, 9(9), 970. doi:10.3390/nu9090970
  • Zielińska, E. ve Pankiewicz, U. (2020). Nutritional, Physiochemical, and Antioxidative Characteristics of Shortcake Biscuits Enriched with Tenebrio molitor Flour. Molecules, 25(23), 5629. doi:10.3390/molecules25235629

NUTRITIONAL VALUE AND CONSUMER ACCEPTANCE EDIBLE INSECTS AS A SUSTAINABLE SOURCE OF PROTEIN

Yıl 2021, , 1105 - 1116, 05.08.2021
https://doi.org/10.15237/gida.GD21074

Öz

As a result of world population growth, scarcity of agricultural land and climate change, the importance of sustainable resources is increasing. In the future, people's need for sustainable protein sources will be a problem globally. Edible insects are one of the sustainable protein sources that have advantages compared to traditional ones. They are traditionally consumed in countries such as South American countries and China but are not accepted due to neophobia and disgust in western societies. Their use in flour form is seen as a promising option for implementing entomophagy. Studies on their nutritional benefits and potential effects such as antidiabetic and antimicrobial are increasing while studies on their toxicity and allergenicity are still insufficient. It is thought that studies on edible insects will gradually increase with the regulation of approving the consumption of yellow mealworm as food published by the European Food Safety Authority (EFSA) in early 2021.

Kaynakça

  • Ahn, M. Y., Han, J. W., Hwang, J. S., Yun, E. Y. ve Lee, B. M. (2014). Anti-Inflammatory Effect of Glycosaminoglycan Derived From Gryllus bimaculatus (A Type of Cricket, Insect) on Adjuvant-Treated Chronic Arthritis Rat Model. Journal of Toxicology and Environmental Health, Part A, 77(22-24), 1332-1345. doi:10.1080/15287394.2014.951591
  • Ahn, M. Y., Hwang, J. S., Kim, M.-J. ve Park, K.-K. (2016). Antilipidemic effects and gene expression profiling of the glycosaminoglycans from cricket in rats on a high fat diet. Archives of Pharmacal Research, 39(7), 926-936. doi:10.1007/s12272-016-0749-1
  • Ahn, M. Y., Kim, B. J., Kim, H. J., Jin, J. M., Yoon, H. J., Hwang, J. S. ve Lee, B. M. (2019). Glycosaminoglycan derived from field cricket and its inhibition activity of diabetes based on anti-oxidative action. doi: 10.20944/preprints201903.0136.v1
  • Aiking, H. ve de Boer, J. (2020). The next protein transition. Trends in Food Science & Technology, 105, 515-522. doi:10.1016/j.tifs.2018.07.008
  • Bessa, L. W., Pieterse, E., Sigge, G. ve Hoffman, L. C. (2020). Insects as human food; from farm to fork. Journal of the Science of Food and Agriculture, 100(14), 5017-5022. doi: 10.1002/jsfa.8860
  • Bose, U., Broadbent, J. A., Juhász, A., Karnaneedi, S., Johnston, E. B., Stockwell, S., ... & Colgrave, M. L. (2021). Protein extraction protocols for optimal proteome measurement and arginine kinase quantitation from cricket Acheta domesticus for food safety assessment. Food Chemistry, 348, 129110.doi: 10.1016/j.foodchem.2021.129110
  • Boulos, S., Tännler, A. ve Nyström, L. (2020). Nitrogen-to-Protein Conversion Factors for Edible Insects on the Swiss Market: T. molitor, A. domesticus, and L. migratoria. Frontiers in Nutrition, 7(89). doi:10.3389/fnut.2020.00089
  • Cadinu, L. A., Barra, P., Torre, F., Delogu, F. ve Madau, F. A. (2020). Insect Rearing: Potential, Challenges, and Circularity. Sustainability, 12(11), 4567. doi:10.3390/su12114567
  • Castro, M. ve Chambers IV, E. (2019). Willingness to eat an insect based product and impact on brand equity: A global perspective. Journal of Sensory Studies, 34(2), e12486. doi:10.1111/joss.12486
  • Chalamaiah, M., Dinesh kumar, B., Hemalatha, R. ve Jyothirmayi, T. (2012). Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chemistry, 135(4), 3020-3038. doi:10.1016/j.foodchem.2012.06.100
  • Da Rocha, M., Alemán, A., Baccan, G. C., López-Caballero, M. E., Gómez-Guillén, C., Montero, P. ve Prentice, C. (2018). Anti-Inflammatory, Antioxidant, and Antimicrobial Effects of Underutilized Fish Protein Hydrolysate. Journal of Aquatic Food Product Technology, 27(5), 592-608. doi:10.1080/10498850.2018.1461160
  • de Carvalho, N. M., Teixeira, F., Silva, S., Madureira, A. R., & Pintado, M. E. (2019). Potential prebiotic activity of Tenebrio molitor insect flour using an optimized in vitro gut microbiota model. Food & function, 10(7), 3909-3922. doi:10.1039/C8FO01536H
  • de Castro, R. J. S., Ohara, A., Aguilar, J. G. d. S. ve Domingues, M. A. F. (2018). Nutritional, functional and biological properties of insect proteins: Processes for obtaining, consumption and future challenges. Trends in Food Science & Technology, 76, 82-89. doi:10.1016/j.tifs.2018.04.006
  • Di Mattia, C., Battista, N., Sacchetti, G. ve Serafini, M. (2019). Antioxidant Activities in vitro of Water and Liposoluble Extracts Obtained by Different Species of Edible Insects and Invertebrates. Frontiers in Nutrition, 6(106). doi:10.3389/fnut.2019.00106
  • EFSA Panel on Nutrition, N. F., Allergens, F., Turck, D., Castenmiller, J., De Henauw, S., Hirsch‐Ernst, K. I., . . . Naska, A. (2021). Safety of dried yellow mealworm (Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA Journal, 19(1), e06343. doi:10.2903/j.efsa.2021.6343
  • FAO, F. (2017). The future of food and agriculture–Trends and challenges. Annual Report.
  • Ganguly, S., Neog, P., Gogoi, M., Bordoloi, P. L., & Para, P. A. (2018). Edible Insects as Sources of Novel Bioactive Compounds. Recent Research Trends in Veterinary Sciences and Animal Husbandry, March, 55–69. doi.org/10.22271/ed.book04.a05
  • Govorushko, S. (2019). Global status of insects as food and feed source: A review. Trends in Food Science & Technology, 91, 436-445. doi:10.1016/j.tifs.2019.07.032
  • Hall, F. ve Liceaga, A. (2020). Effect of microwave-assisted enzymatic hydrolysis of cricket (Gryllodes sigillatus) protein on ACE and DPP-IV inhibition and tropomyosin-IgG binding. Journal of Functional Foods, 64, 103634. doi:10.1016/j.jff.2019.103634
  • Han, S.-R., Lee, B.-S., Jung, K.-J., Yu, H.-J., Yun, E.-Y., Hwang, J. S. ve Moon, K.-S. (2016). Safety assessment of freeze-dried powdered Tenebrio molitor larvae (yellow mealworm) as novel food source: Evaluation of 90-day toxicity in Sprague-Dawley rats. Regulatory Toxicology and Pharmacology, 77, 206-212. doi:10.1016/j.yrtph.2016.03.006
  • Hartmann, C., Shi, J., Giusto, A. ve Siegrist, M. (2015). The psychology of eating insects: A cross-cultural comparison between Germany and China. Food Quality and Preference, 44, 148-156. doi:10.1016/j.foodqual.2015.04.013
  • Higa, J. E., Ruby, M. B. ve Rozin, P. (2020). Americans’ acceptance of black soldier fly larvae as food for themselves, their dogs, and farmed animals. Food Quality and Preference, 104119. doi:10.1016/j.foodqual.2020.104119
  • Imathiu, S. (2020). Benefits and food safety concerns associated with consumption of edible insects. NFS Journal, 18, 1-11. doi:10.1016/j.nfs.2019.11.002
  • Jantzen da Silva Lucas, A., Menegon de Oliveira, L., da Rocha, M. ve Prentice, C. (2020). Edible insects: An alternative of nutritional, functional and bioactive compounds. Food Chemistry, 311, 126022. doi:10.1016/j.foodchem.2019.126022
  • Jonas-Levi, A. ve Martinez, J.-J. I. (2017). The high level of protein content reported in insects for food and feed is overestimated. Journal of Food Composition and Analysis, 62, 184-188. doi:10.1016/j.jfca.2017.06.004
  • Jung, E. Y., Lee, H.-S., Lee, H. J., Kim, J.-M., Lee, K.-W. ve Suh, H. J. (2010). Feeding silk protein hydrolysates to C57BL/KsJ-db/db mice improves blood glucose and lipid profiles. Nutrition Research, 30(11), 783-790. doi:10.1016/j.nutres.2010.10.006
  • Kinyuru, J. N., Konyole, S. O., Roos, N., Onyango, C. A., Owino, V. O., Owuor, B. O., . . . Kenji, G. M. (2013). Nutrient composition of four species of winged termites consumed in western Kenya. Journal of Food Composition and Analysis, 30(2), 120-124. doi:10.1016/j.jfca.2013.02.008
  • Kornher, L., Schellhorn, M. ve Vetter, S. (2019). Disgusting or Innovative-Consumer Willingness to Pay for Insect Based Burger Patties in Germany. Sustainability, 11(7), 1878. doi:10.3390/su11071878
  • Liu, Y., Yu, L., Guo, X., Guo, T., Wang, S. ve Lu, C. (2006). Analysis of tissue-specific region in sericin 1 gene promoter of Bombyx mori. Biochemical and Biophysical Research Communications, 342(1), 273-279. doi:10.1016/j.bbrc.2006.01.140
  • Murefu, T. R., Macheka, L., Musundire, R. ve Manditsera, F. A. (2019). Safety of wild harvested and reared edible insects: A review. Food Control, 101, 209-224. doi:10.1016/j.foodcont.2019.03.003
  • Najafian, L. ve Babji, A. S. (2012). A review of fish-derived antioxidant and antimicrobial peptides: Their production, assessment, and applications. Peptides, 33(1), 178-185. doi:10.1016/j.peptides.2011.11.013
  • Nissen, L., Samaei, S. P., Babini, E. ve Gianotti, A. (2020). Gluten free sourdough bread enriched with cricket flour for protein fortification: Antioxidant improvement and Volatilome characterization. Food Chemistry, 333, 127410. doi:10.1016/j.foodchem.2020.127410
  • Nongonierma, A. B. ve FitzGerald, R. J. (2017). Unlocking the biological potential of proteins from edible insects through enzymatic hydrolysis: A review. Innovative Food Science & Emerging Technologies, 43, 239-252. doi:10.1016/j.ifset.2017.08.014
  • Nowakowski, A. C., Miller, A. C., Miller, M. E., Xiao, H. ve Wu, X. (2021). Potential health benefits of edible insects. Critical Reviews in Food Science and Nutrition, 1-10. doi:10.1080/10408398.2020.1867053
  • Oonincx, D. G. A. B. ve Dierenfeld, E. S. (2012). An Investigation Into the Chemical Composition of Alternative Invertebrate Prey. Zoo Biology, 31(1), 40-54. doi:10.1002/zoo.20382
  • Ordoñez-Araque, R. ve Egas-Montenegro, E. (2021). Edible insects: A food alternative for the sustainable development of the planet. International Journal of Gastronomy and Food Science, 23, 100304. doi:10.1016/j.ijgfs.2021.100304
  • Poma, G., Cuykx, M., Amato, E., Calaprice, C., Focant, J. F., & Covaci, A. (2017). Evaluation of hazardous chemicals in edible insects and insect-based food intended for human consumption. Food and Chemical Toxicology, 100, 70-79. doi:10.1016/j.fct.2016.12.006
  • Piha, S., Pohjanheimo, T., Lähteenmäki-Uutela, A., Křečková, Z. ve Otterbring, T. (2018). The effects of consumer knowledge on the willingness to buy insect food: An exploratory cross-regional study in Northern and Central Europe. Food Quality and Preference, 70, 1-10. doi:10.1016/j.foodqual.2016.12.006
  • Rahnamaeian, M., Cytryńska, M., Zdybicka-Barabas, A., Dobslaff, K., Wiesner, J., Twyman, R. M., . . . Vilcinskas, A. (2015). Insect antimicrobial peptides show potentiating functional interactions against Gram-negative bacteria. Proceedings of the Royal Society B: Biological Sciences, 282(1806), 20150293. doi:10.1098/rspb.2015.0293
  • Ravi, H. K., Degrou, A., Costil, J., Trespeuch, C., Chemat, F. ve Vian, M. A. (2020). Larvae Mediated Valorization of Industrial, Agriculture and Food Wastes: Biorefinery Concept through Bioconversion, Processes, Procedures, and Products. Processes, 8(7), 857. doi:10.3390/pr8070857
  • Ribeiro, J. C., Cunha, L. M., Sousa-Pinto, B. ve Fonseca, J. (2018). Allergic risks of consuming edible insects: A systematic review. Molecular Nutrition & Food Research, 62(1), 1700030. doi:10.1002/mnfr.201700030
  • Ruby, M. B. ve Rozin, P. (2019). Disgust, sushi consumption, and other predictors of acceptance of insects as food by Americans and Indians. Food Quality and Preference, 74, 155-162. doi:10.1016/j.foodqual.2019.01.013
  • Ribeiro, J. C., Sousa-Pinto, B., Fonseca, J., Fonseca, S. C., & Cunha, L. M. (2021). Edible insects and food safety: allergy. Journal of Insects as Food and Feed, 1-16. doi: 10.3920/JIFF2020.0065
  • Ruby, M. B., Rozin, P. ve Chan, C. (2015). Determinants of willingness to eat insects in the USA and India. Journal of Insects as Food and Feed, 1(3), 215-225. doi: 10.3920/JIFF2015.0029
  • Rumpold, B. A. ve Schlüter, O. K. (2013). Nutritional composition and safety aspects of edible insects. Molecular Nutrition & Food Research, 57(5), 802-823. doi:10.1002/mnfr.201200735
  • Sarmadi, B. H. ve Ismail, A. (2010). Antioxidative peptides from food proteins: A review. Peptides, 31(10), 1949-1956. doi:10.1016/j.peptides.2010.06.020
  • Stone, A. K., Tanaka, T. ve Nickerson, M. T. (2019). Protein quality and physicochemical properties of commercial cricket and mealworm powders. Journal of Food Science and Technology, 56(7), 3355-3363. doi:10.1007/s13197-019-03818-2
  • Stull, V. J., Finer, E., Bergmans, R. S., Febvre, H. P., Longhurst, C., Manter, D. K., . . . Weir, T. L. (2018). Impact of Edible Cricket Consumption on Gut Microbiota in Healthy Adults, a Double-blind, Randomized Crossover Trial. Scientific Reports, 8(1), 10762. doi:10.1038/s41598-018-29032-2
  • Sun-Waterhouse, D., Waterhouse, G. I. N., You, L., Zhang, J., Liu, Y., Ma, L., . . . Dong, Y. (2016). Transforming insect biomass into consumer wellness foods: A review. Food Research International, 89, 129-151. doi:10.1016/j.foodres.2016.10.001
  • Tao, J. ve Li, Y. O. (2018). Edible insects as a means to address global malnutrition and food insecurity issues. Food Quality and Safety, 2(1), 17-26. doi:10.1093/fqsafe/fyy001
  • Tuccillo, F., Marino, M. G. ve Torri, L. (2020). Italian consumers’ attitudes towards entomophagy: Influence of human factors and properties of insects and insect-based food. Food Research International, 137, 109619. doi:10.1016/j.foodres.2020.109619
  • Van Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G. ve Vantomme, P. (2013). Edible insects: future prospects for food and feed security (No. 171). Food and Agriculture Organization of the United Nations.
  • van der Fels-Klerx, H. J., Camenzuli, L., Belluco, S., Meijer, N. ve Ricci, A. (2018). Food Safety Issues Related to Uses of Insects for Feeds and Foods. Comprehensive Reviews in Food Science and Food Safety, 17(5), 1172-1183. doi:10.1111/1541-4337.12385
  • Vercruysse, L., Smagghe, G., Herregods, G. ve Van Camp, J. (2005). ACE Inhibitory Activity in Enzymatic Hydrolysates of Insect Protein. Journal of Agricultural and Food Chemistry, 53(13), 5207-5211. doi:10.1021/jf050337q
  • Wade, M. ve Hoelle, J. (2020). A review of edible insect industrialization: scales of production and implications for sustainability. Environmental Research Letters, 15(12), 123013. doi:10.1088/1748-9326/aba1c1
  • Woolf, E., Zhu, Y., Emory, K., Zhao, J. ve Liu, C. (2019). Willingness to consume insect-containing foods: A survey in the United States. LWT, 102, 100-105. doi:10.1016/j.lwt.2018.12.010
  • Yi, H. Y., Chowdhury, M., Huang, Y. D., & Yu, X. Q. (2014). Insect antimicrobial peptides and their applications. Applied Microbiology and Biotechnology, 98(13), 5807–5822. doi:10.1007/s00253-014-5792-6
  • Yi, L., Lakemond, C. M. M., Sagis, L. M. C., Eisner-Schadler, V., van Huis, A. ve van Boekel, M. A. J. S. (2013). Extraction and characterisation of protein fractions from five insect species. Food Chemistry, 141(4), 3341-3348. doi:10.1016/j.foodchem.2013.05.115
  • Yüksel, E. ve Canhilal, R. (2018). A survey of public opinion about entomophagy in Erciyes University. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 4(2), 203-208. doi:10.24180/ijaws.440555
  • Zielińska, E., Baraniak, B., Karaś, M., Rybczyńska, K., & Jakubczyk, A. (2015). Selected species of edible insects as a source of nutrient composition. Food Research International, 77, 460-466. doi:10.1016/j.foodres.2015.09.008
  • Zielińska, E., Baraniak, B. ve Karaś, M. (2017). Antioxidant and Anti-Inflammatory Activities of Hydrolysates and Peptide Fractions Obtained by Enzymatic Hydrolysis of Selected Heat-Treated Edible Insects. Nutrients, 9(9), 970. doi:10.3390/nu9090970
  • Zielińska, E. ve Pankiewicz, U. (2020). Nutritional, Physiochemical, and Antioxidative Characteristics of Shortcake Biscuits Enriched with Tenebrio molitor Flour. Molecules, 25(23), 5629. doi:10.3390/molecules25235629
Toplam 62 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Makaleler
Yazarlar

Burak Erdoğan Bu kişi benim 0000-0001-6135-6770

Doğa Peksever 0000-0003-2719-2412

Ayşe Görür Bu kişi benim 0000-0002-5507-0490

Ogeday Sümer 0000-0002-9541-9212

Sedef El 0000-0002-2996-0537

Yayımlanma Tarihi 5 Ağustos 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Erdoğan, B., Peksever, D., Görür, A., Sümer, O., vd. (2021). SÜRDÜRÜLEBİLİR PROTEİN KAYNAĞI OLARAK YENİLEBİLİR BÖCEKLERİN BESLEYİCİ ÖZELLİKLERİ ve TÜKETİCİ KABULÜ. Gıda, 46(5), 1105-1116. https://doi.org/10.15237/gida.GD21074
AMA Erdoğan B, Peksever D, Görür A, Sümer O, El S. SÜRDÜRÜLEBİLİR PROTEİN KAYNAĞI OLARAK YENİLEBİLİR BÖCEKLERİN BESLEYİCİ ÖZELLİKLERİ ve TÜKETİCİ KABULÜ. GIDA. Ağustos 2021;46(5):1105-1116. doi:10.15237/gida.GD21074
Chicago Erdoğan, Burak, Doğa Peksever, Ayşe Görür, Ogeday Sümer, ve Sedef El. “SÜRDÜRÜLEBİLİR PROTEİN KAYNAĞI OLARAK YENİLEBİLİR BÖCEKLERİN BESLEYİCİ ÖZELLİKLERİ Ve TÜKETİCİ KABULÜ”. Gıda 46, sy. 5 (Ağustos 2021): 1105-16. https://doi.org/10.15237/gida.GD21074.
EndNote Erdoğan B, Peksever D, Görür A, Sümer O, El S (01 Ağustos 2021) SÜRDÜRÜLEBİLİR PROTEİN KAYNAĞI OLARAK YENİLEBİLİR BÖCEKLERİN BESLEYİCİ ÖZELLİKLERİ ve TÜKETİCİ KABULÜ. Gıda 46 5 1105–1116.
IEEE B. Erdoğan, D. Peksever, A. Görür, O. Sümer, ve S. El, “SÜRDÜRÜLEBİLİR PROTEİN KAYNAĞI OLARAK YENİLEBİLİR BÖCEKLERİN BESLEYİCİ ÖZELLİKLERİ ve TÜKETİCİ KABULÜ”, GIDA, c. 46, sy. 5, ss. 1105–1116, 2021, doi: 10.15237/gida.GD21074.
ISNAD Erdoğan, Burak vd. “SÜRDÜRÜLEBİLİR PROTEİN KAYNAĞI OLARAK YENİLEBİLİR BÖCEKLERİN BESLEYİCİ ÖZELLİKLERİ Ve TÜKETİCİ KABULÜ”. Gıda 46/5 (Ağustos 2021), 1105-1116. https://doi.org/10.15237/gida.GD21074.
JAMA Erdoğan B, Peksever D, Görür A, Sümer O, El S. SÜRDÜRÜLEBİLİR PROTEİN KAYNAĞI OLARAK YENİLEBİLİR BÖCEKLERİN BESLEYİCİ ÖZELLİKLERİ ve TÜKETİCİ KABULÜ. GIDA. 2021;46:1105–1116.
MLA Erdoğan, Burak vd. “SÜRDÜRÜLEBİLİR PROTEİN KAYNAĞI OLARAK YENİLEBİLİR BÖCEKLERİN BESLEYİCİ ÖZELLİKLERİ Ve TÜKETİCİ KABULÜ”. Gıda, c. 46, sy. 5, 2021, ss. 1105-16, doi:10.15237/gida.GD21074.
Vancouver Erdoğan B, Peksever D, Görür A, Sümer O, El S. SÜRDÜRÜLEBİLİR PROTEİN KAYNAĞI OLARAK YENİLEBİLİR BÖCEKLERİN BESLEYİCİ ÖZELLİKLERİ ve TÜKETİCİ KABULÜ. GIDA. 2021;46(5):1105-16.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/