Araştırma Makalesi
BibTex RIS Kaynak Göster

EVALUATION OF POLYPHENOL BIOACCESSIBILITY IN FRESH AND FROZEN APPLES AND APPLE POMACE

Yıl 2019, Cilt: 44 Sayı: 3, 409 - 418, 15.05.2019
https://doi.org/10.15237/gida.gd19026

Öz

Apples can be consumed as fresh
or processed into various products including frozen apples. As a result of
processing, pomace which is rich in bioactive compounds, is generated. The aim
of this study was to evaluate the bioaccessibility of polyphenols in fresh and
frozen apples and apple pomace using an
in vitro gastrointestinal
digestion model. Total phenolics, flavonoids, and antioxidant capacity were
determined spectrophotometrically, whereas the quantification of polyphenols
were carried out chromatographically using high performance liquid
chromatography–photodiode array detector (HPLC–PDA). Considering the
bioaccessible polyphenols determined using HPLC-PDA after
in vitro
gastrointestinal digestion simulation, it was found that frozen apples and
pomace contained 11–16% more bioaccessible polyphenols compared to fresh
apples. In conclusion, results obtained in this study showed that food
processing affects the release of polyphenols from the matrix during digestion
and that the values determined for undigested samples may be different from the
bioaccessibility values.

Kaynakça

  • Alminger, M., Aura A.M., Bohn T., Dufour C., El S.N., Gomes A., Karakaya S., Martinez-Cuesta M.C., McDougall G.J., Requena T. (2014). In vitro models for studying secondary plant metabolite digestion and bioaccessibility. Comprehensive Reviews in Food Science and Food Safety 13(4): 413-436.
  • Apak, R., Guclu K., Ozyurek M., Karademir S.E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry 52(26): 7970-7981.
  • Apak, R., Ozyurek M., Guclu K., Capanoglu E. (2016). Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. Journal of Agricultural and Food Chemistry 64(5): 997-1027.
  • Benzie, I.F., Strain J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry 239(1): 70-76.
  • Bohn, T. (2014). Dietary factors affecting polyphenol bioavailability. Nutrition Reviews 72(7): 429-452.
  • Bouayed, J., Deußer H., Hoffmann L., Bohn T. (2012). Bioaccessible and dialysable polyphenols in selected apple varieties following in vitro digestion vs. their native patterns. Food Chemistry 131(4): 1466-1472.
  • Bouayed, J., Hoffmann L., Bohn T. (2011). Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chemistry 128(1): 14-21.
  • Boyer, J., Liu R.H. (2004). Apple phytochemicals and their health benefits. Nutrition Journal 3(1): 1-15.
  • Capanoglu, E., Beekwilder J., Boyacioglu D., Hall R., De Vos R. (2008). Changes in antioxidant and metabolite profiles during production of tomato paste. Journal of Agricultural and Food Chemistry 56(3): 964-973.
  • Capanoglu, E., Kamiloglu S., Ozkan G., Apak R. (2018). Evaluation of antioxidant activity/capacity measurement methods for food products. In: Apak, R., Capanoglu, E. & Shahidi, F. (eds.) Measurement of Antioxidant Activity and Capacity: Recent Trends and Applications. Chicester, United Kingdom: John Wiley & Sons Ltd.
  • Chethan, S., Malleshi N. (2007). Finger millet polyphenols: Optimization of extraction and the effect of pH on their stability. Food Chemistry 105(2): 862-870.
  • FAO (2017). Erişim tarihi: Aralık, 2018. http://www.fao.org/faostat/en/ - home.
  • Guven, O., Sensoy I., Senyuva H., Karakaya S. (2018). Food processing and digestion: The effect of extrusion process on bioactive compounds in extrudates with artichoke leaf powder and resulting in vitro cynarin and cynaroside bioaccessibility. LWT 90:232-237.
  • Ho, Y.C., Yu H.T., Su N.W. (2012). Re-examination of chromogenic quantitative assays for determining flavonoid content. Journal of Agricultural and Food Chemistry 60(10): 2674-2681.
  • Huang, H.W., Hsu C.P., Yang B.B., Wang C.Y. (2013). Advances in the extraction of natural ingredients by high pressure extraction technology. Trends in Food Science & Technology 33(1): 54-62.
  • Kahle, K., Kempf M., Schreier P., Scheppach W., Schrenk D., Kautenburger T., Hecker D., Huemmer W., Ackermann M., Richling E. (2011). Intestinal transit and systemic metabolism of apple polyphenols. European Journal of Nutrition 50(7): 507-522.
  • Kamiloglu, S., Capanoglu E. (2015). Polyphenol content in figs (Ficus carica L.): Effect of sun-drying. International Journal of Food Properties 18(3): 521-535.
  • Kamiloglu, S., Ozkan G., Isik H., Horoz O., Van Camp J., Capanoglu E. (2017). Black carrot pomace as a source of polyphenols for enhancing the nutritional value of cake: An in vitro digestion study with a standardized static model. LWT-Food Science and Technology 77:475-481.
  • Kamiloğlu, S., Paslı A.A., Çapanoğlu E., Özçelik B. (2014). Kuru Meyvelerin Kuruyemişler ile Birlikte Tüketiminin Flavonoidlerin In Vitro Biyoyararlılığına Etkisinin İncelenmesi. GIDA 39(4): 227-233.
  • Karaman, Ş., Tütem E., Başkan K.S., Apak R. (2013). Comparison of antioxidant capacity and phenolic composition of peel and flesh of some apple varieties. Journal of the Science of Food and Agriculture 93(4): 867-875.
  • Kim, D.O., Jeong S.W., Lee C.Y. (2003). Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry 81(3): 321-326.
  • Kumaran, A., Karunakaran R.J. (2006). Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chemistry 97(1): 109-114.
  • Miller, N.J., Rice-Evans C. (1997). Factors influencing the antioxidant activity determined by the ABTS•+ radical cation assay. Free Radical Research 26(6): 195-199.
  • Minekus, M., Alminger M., Alvito P., Ballance S., Bohn T., Bourlieu C., Carriere F., Boutrou R., Corredig M., Dupont D., Dufour C., Egger L., Golding M., Karakaya S., Kirkhus B., Le Feunteun S., Lesmes U., Macierzanka A., Mackie A., Marze S., McClements D.J., Menard O., Recio I., Santos C.N., Singh R.P., Vegarud G.E., Wickham M.S.J., Weitschies W., Brodkorb A. (2014). A standardised static in vitro digestion method suitable for food–an international consensus. Food & Function 5(6): 1113-1124.
  • Palafox-Carlos, H., Ayala-Zavala J.F., Gonzalez-Aguilar G.A. (2011). The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants. Journal of Food Science 76(1): R6-R15.
  • Skinner, R.C., Gigliotti J.C., Ku K.M., Tou J.C. (2018). A comprehensive analysis of the composition, health benefits, and safety of apple pomace. Nutrition Reviews 76(12): 893-909.
  • Tagliazucchi, D., Helal A., Verzelloni E., Conte A. (2012). The type and concentration of milk increase the in vitro bioaccessibility of coffee chlorogenic acids. Journal of Agricultural and Food Chemistry 60(44): 11056-11064.
  • Vallejo, F., Gil-Izquierdo A., Perez-Vicente A., Garcia-Viguera C. (2004). In vitro gastrointestinal digestion study of broccoli inflorescence phenolic compounds, glucosinolates, and vitamin C. Journal of Agricultural and Food Chemistry 52(1): 135-138.
  • Velioglu, Y.S., Mazza G., Gao L., Oomah B.D. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry 46(10): 4113-4117.
  • Wijngaard, H., Hossain M.B., Rai D.K., Brunton N. (2012). Techniques to extract bioactive compounds from food by-products of plant origin. Food Research International 46(2): 505-513.
  • Younis, K., Ahmad S. (2015). Waste utilization of apple pomace as a source of functional ingredient in buffalo meat sausage. Cogent Food & Agriculture 1(1): 1119397.

TAZE VE DONDURULMUŞ ELMALARDA VE ELMA POSASINDA POLİFENOL BİYOERİŞİLEBİLİRLİĞİNİN DEĞERLENDİRİLMESİ

Yıl 2019, Cilt: 44 Sayı: 3, 409 - 418, 15.05.2019
https://doi.org/10.15237/gida.gd19026

Öz

Elma taze tüketilebildiği gibi dondurulmuş elma gibi
çeşitli formlara işlenerek de tüketilebilmektedir. Elma işleme sonucu posa
olarak adlandırılan biyoaktif bileşenler açısından zengin bir atık ürün
oluşmaktadır. Bu çalışmada taze ve dondurulmuş elmalarda ve elma posasında
bulunan polifenollerin biyoerişilebilirliklerinin
in vitro
gastrointestinal sindirim modeli kullanılarak değerlendirilmesi amaçlanmıştır.
Toplam fenolik madde, toplam flavonoid madde ve toplam antioksidan kapasiteki
değişimler spektrofotometrik yöntemlerle tespit edilmiş olup, polifenolik
bileşiklerin miktarının tespiti yüksek performanslı sıvı
kromatografisi–fotodiyot dizi dedektörü (HPLC–PDA) kullanılarak kromatografik
yöntemle yapılmıştır.
İn vitro gastrointestinal sindirim simülasyonu
sonrasında HPLC–PDA ile belirlenen toplam biyoerişilebilir polifenol miktarları
göz önüne alındığında, dondurulmuş elma ve elma posasının taze elmalara kıyasla
%11–16 kadar daha fazla biyoerişilebilir polifenole sahip olduğu görülmüştür.
Sonuç olarak, bu çalışmada elde edilen bulgular gıda işlemenin sindirim
sırasında polifenollerin matriksten salınımını etkilediğini göstermiş olup,
sindirilmemiş örnekler için tespit edilen değerlerin biyoerişilebilirlik
değerlerinden farklı olabileceğine dikkat çekmiştir.

Kaynakça

  • Alminger, M., Aura A.M., Bohn T., Dufour C., El S.N., Gomes A., Karakaya S., Martinez-Cuesta M.C., McDougall G.J., Requena T. (2014). In vitro models for studying secondary plant metabolite digestion and bioaccessibility. Comprehensive Reviews in Food Science and Food Safety 13(4): 413-436.
  • Apak, R., Guclu K., Ozyurek M., Karademir S.E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry 52(26): 7970-7981.
  • Apak, R., Ozyurek M., Guclu K., Capanoglu E. (2016). Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. Journal of Agricultural and Food Chemistry 64(5): 997-1027.
  • Benzie, I.F., Strain J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry 239(1): 70-76.
  • Bohn, T. (2014). Dietary factors affecting polyphenol bioavailability. Nutrition Reviews 72(7): 429-452.
  • Bouayed, J., Deußer H., Hoffmann L., Bohn T. (2012). Bioaccessible and dialysable polyphenols in selected apple varieties following in vitro digestion vs. their native patterns. Food Chemistry 131(4): 1466-1472.
  • Bouayed, J., Hoffmann L., Bohn T. (2011). Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chemistry 128(1): 14-21.
  • Boyer, J., Liu R.H. (2004). Apple phytochemicals and their health benefits. Nutrition Journal 3(1): 1-15.
  • Capanoglu, E., Beekwilder J., Boyacioglu D., Hall R., De Vos R. (2008). Changes in antioxidant and metabolite profiles during production of tomato paste. Journal of Agricultural and Food Chemistry 56(3): 964-973.
  • Capanoglu, E., Kamiloglu S., Ozkan G., Apak R. (2018). Evaluation of antioxidant activity/capacity measurement methods for food products. In: Apak, R., Capanoglu, E. & Shahidi, F. (eds.) Measurement of Antioxidant Activity and Capacity: Recent Trends and Applications. Chicester, United Kingdom: John Wiley & Sons Ltd.
  • Chethan, S., Malleshi N. (2007). Finger millet polyphenols: Optimization of extraction and the effect of pH on their stability. Food Chemistry 105(2): 862-870.
  • FAO (2017). Erişim tarihi: Aralık, 2018. http://www.fao.org/faostat/en/ - home.
  • Guven, O., Sensoy I., Senyuva H., Karakaya S. (2018). Food processing and digestion: The effect of extrusion process on bioactive compounds in extrudates with artichoke leaf powder and resulting in vitro cynarin and cynaroside bioaccessibility. LWT 90:232-237.
  • Ho, Y.C., Yu H.T., Su N.W. (2012). Re-examination of chromogenic quantitative assays for determining flavonoid content. Journal of Agricultural and Food Chemistry 60(10): 2674-2681.
  • Huang, H.W., Hsu C.P., Yang B.B., Wang C.Y. (2013). Advances in the extraction of natural ingredients by high pressure extraction technology. Trends in Food Science & Technology 33(1): 54-62.
  • Kahle, K., Kempf M., Schreier P., Scheppach W., Schrenk D., Kautenburger T., Hecker D., Huemmer W., Ackermann M., Richling E. (2011). Intestinal transit and systemic metabolism of apple polyphenols. European Journal of Nutrition 50(7): 507-522.
  • Kamiloglu, S., Capanoglu E. (2015). Polyphenol content in figs (Ficus carica L.): Effect of sun-drying. International Journal of Food Properties 18(3): 521-535.
  • Kamiloglu, S., Ozkan G., Isik H., Horoz O., Van Camp J., Capanoglu E. (2017). Black carrot pomace as a source of polyphenols for enhancing the nutritional value of cake: An in vitro digestion study with a standardized static model. LWT-Food Science and Technology 77:475-481.
  • Kamiloğlu, S., Paslı A.A., Çapanoğlu E., Özçelik B. (2014). Kuru Meyvelerin Kuruyemişler ile Birlikte Tüketiminin Flavonoidlerin In Vitro Biyoyararlılığına Etkisinin İncelenmesi. GIDA 39(4): 227-233.
  • Karaman, Ş., Tütem E., Başkan K.S., Apak R. (2013). Comparison of antioxidant capacity and phenolic composition of peel and flesh of some apple varieties. Journal of the Science of Food and Agriculture 93(4): 867-875.
  • Kim, D.O., Jeong S.W., Lee C.Y. (2003). Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry 81(3): 321-326.
  • Kumaran, A., Karunakaran R.J. (2006). Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chemistry 97(1): 109-114.
  • Miller, N.J., Rice-Evans C. (1997). Factors influencing the antioxidant activity determined by the ABTS•+ radical cation assay. Free Radical Research 26(6): 195-199.
  • Minekus, M., Alminger M., Alvito P., Ballance S., Bohn T., Bourlieu C., Carriere F., Boutrou R., Corredig M., Dupont D., Dufour C., Egger L., Golding M., Karakaya S., Kirkhus B., Le Feunteun S., Lesmes U., Macierzanka A., Mackie A., Marze S., McClements D.J., Menard O., Recio I., Santos C.N., Singh R.P., Vegarud G.E., Wickham M.S.J., Weitschies W., Brodkorb A. (2014). A standardised static in vitro digestion method suitable for food–an international consensus. Food & Function 5(6): 1113-1124.
  • Palafox-Carlos, H., Ayala-Zavala J.F., Gonzalez-Aguilar G.A. (2011). The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants. Journal of Food Science 76(1): R6-R15.
  • Skinner, R.C., Gigliotti J.C., Ku K.M., Tou J.C. (2018). A comprehensive analysis of the composition, health benefits, and safety of apple pomace. Nutrition Reviews 76(12): 893-909.
  • Tagliazucchi, D., Helal A., Verzelloni E., Conte A. (2012). The type and concentration of milk increase the in vitro bioaccessibility of coffee chlorogenic acids. Journal of Agricultural and Food Chemistry 60(44): 11056-11064.
  • Vallejo, F., Gil-Izquierdo A., Perez-Vicente A., Garcia-Viguera C. (2004). In vitro gastrointestinal digestion study of broccoli inflorescence phenolic compounds, glucosinolates, and vitamin C. Journal of Agricultural and Food Chemistry 52(1): 135-138.
  • Velioglu, Y.S., Mazza G., Gao L., Oomah B.D. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry 46(10): 4113-4117.
  • Wijngaard, H., Hossain M.B., Rai D.K., Brunton N. (2012). Techniques to extract bioactive compounds from food by-products of plant origin. Food Research International 46(2): 505-513.
  • Younis, K., Ahmad S. (2015). Waste utilization of apple pomace as a source of functional ingredient in buffalo meat sausage. Cogent Food & Agriculture 1(1): 1119397.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Senem Kamiloglu 0000-0003-3902-4360

Yayımlanma Tarihi 15 Mayıs 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 44 Sayı: 3

Kaynak Göster

APA Kamiloglu, S. (2019). TAZE VE DONDURULMUŞ ELMALARDA VE ELMA POSASINDA POLİFENOL BİYOERİŞİLEBİLİRLİĞİNİN DEĞERLENDİRİLMESİ. Gıda, 44(3), 409-418. https://doi.org/10.15237/gida.gd19026
AMA Kamiloglu S. TAZE VE DONDURULMUŞ ELMALARDA VE ELMA POSASINDA POLİFENOL BİYOERİŞİLEBİLİRLİĞİNİN DEĞERLENDİRİLMESİ. GIDA. Mayıs 2019;44(3):409-418. doi:10.15237/gida.gd19026
Chicago Kamiloglu, Senem. “TAZE VE DONDURULMUŞ ELMALARDA VE ELMA POSASINDA POLİFENOL BİYOERİŞİLEBİLİRLİĞİNİN DEĞERLENDİRİLMESİ”. Gıda 44, sy. 3 (Mayıs 2019): 409-18. https://doi.org/10.15237/gida.gd19026.
EndNote Kamiloglu S (01 Mayıs 2019) TAZE VE DONDURULMUŞ ELMALARDA VE ELMA POSASINDA POLİFENOL BİYOERİŞİLEBİLİRLİĞİNİN DEĞERLENDİRİLMESİ. Gıda 44 3 409–418.
IEEE S. Kamiloglu, “TAZE VE DONDURULMUŞ ELMALARDA VE ELMA POSASINDA POLİFENOL BİYOERİŞİLEBİLİRLİĞİNİN DEĞERLENDİRİLMESİ”, GIDA, c. 44, sy. 3, ss. 409–418, 2019, doi: 10.15237/gida.gd19026.
ISNAD Kamiloglu, Senem. “TAZE VE DONDURULMUŞ ELMALARDA VE ELMA POSASINDA POLİFENOL BİYOERİŞİLEBİLİRLİĞİNİN DEĞERLENDİRİLMESİ”. Gıda 44/3 (Mayıs 2019), 409-418. https://doi.org/10.15237/gida.gd19026.
JAMA Kamiloglu S. TAZE VE DONDURULMUŞ ELMALARDA VE ELMA POSASINDA POLİFENOL BİYOERİŞİLEBİLİRLİĞİNİN DEĞERLENDİRİLMESİ. GIDA. 2019;44:409–418.
MLA Kamiloglu, Senem. “TAZE VE DONDURULMUŞ ELMALARDA VE ELMA POSASINDA POLİFENOL BİYOERİŞİLEBİLİRLİĞİNİN DEĞERLENDİRİLMESİ”. Gıda, c. 44, sy. 3, 2019, ss. 409-18, doi:10.15237/gida.gd19026.
Vancouver Kamiloglu S. TAZE VE DONDURULMUŞ ELMALARDA VE ELMA POSASINDA POLİFENOL BİYOERİŞİLEBİLİRLİĞİNİN DEĞERLENDİRİLMESİ. GIDA. 2019;44(3):409-18.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/