LISTERIA MONOCYTOGENES SPESİFİK FAJLARIN İZOLASYONU
Yıl 2019,
Cilt: 44 Sayı: 3, 463 - 471, 15.05.2019
Pinar Şanlıbaba
,
Başar Uymaz Tezel
Öz
Bu çalışmada Listeria monocytogenes'i enfekte eden
litik fajların izole edilmesi, saflaştırılması ve konakçı etkinliklerinin
belirlenmesi amaçlanmıştır. Toplamda 68 örnek taranmış ve dışkı, gıda işleme
atık suları, balıkçılık atık suları ve balık örneklerinden 4 pozitif izolat
elde edilmiştir. Faj varlığı bakımından taranan örneklerin % 5.88’inde L.
monocytogenes fajı izole edilmiştir. Faj konakçı etkinliğinin belirlenmesi
amacıyla, çift tabaka agar yöntemi kullanılmıştır. 11 L. monocytogenes suşu denenen dört
faja karşı dirençli bulunurken, 24 suşta ise duyarlılık saptanmıştır. Dört fajın 24 L. monocytogenes suşuna
karşı oluşturduğu faj plak çapı ise 0.4 ve 2.6 mm arasında değişmiştir. Hiçbir
faj birbiri ile aynı konakçı etkinliği göstermemiştir.
Proje Numarası
15B0443010
Kaynakça
- Akhtar, M., Viazis, S., Christensen, K., Kraemer, P., Diez-Gonzalez, F. (2017). Isolation, characterization and evaluation of virulent bacteriophages against Listeria monocytogenes. Food Control, 75: 108-115. doi:10.1016/j.foodcont.2016.12.035
- Arachchi, G. J. G., Mutukumira, A. N., Dias-Wanigasekera, B. M., Cruz, C. D., Mclntyre, L., Young, J., Flint, S. H., Billington, C. (2013). Characteristics of three listeriophages isolated from New Zealand Seafood environments. J. Appl. Microbiol., 115: 1427-1438. doi:10.1111/jam.12332
- Ata, A.(2018). Türkiye’de sık rastlanan Salmonella Enteritidis serovarlarına spesifik bakteriyofajların izolasyonu. Etlik Vet. Mikrobiyol. Derg., 29(2): 136-142.
- Bigot, B., Lee, W. –J, Mclntyre, L., Wilson, T., Hudson, J. A., Billington, C., Heinemann, J. A. (2011). Control of Listeria monocytogenes growth in a ready-to-eat poultry products using a bacteriophage. Food Microbiol., 28: 1448-1452. doi:10.1016/j.fm.2011.07.001
- Carlton, R. M., Noordman, W. H., Biswas, B., de Meester, E. D., Loessner, M. J.(2005). Bacteriophage P100 for control of Listeria monocytogenes in foods: Genome sequence, bioinformatic analyses, oral toxicity study, and application. Regul. Toxicol. Pharmacol., 43: 301-312. doi:10.1016/j.yrtph.2005.08.005
- CDC (Centers of Disease Control and Prevention). (2019a). National Enteric Disease Surveillance: Listeria Annual Summary, 2014. https://www.cdc.gov/ nationalsurveillance/pdfs/listeria-annual-summary-2014-508.pdf, Access Date: (02.02.2019).
- CDC (Centers of Disease Control and Prevention). (2019b). Outbreak of Listeria Infections Linked to Deli Ham (Final Update).https://www.cdc.gov/listeria/outbreaks/countryham-10-18/index.html, Access Date: (02.02.2019).
- Clokie, M. R. J., Millard, A. D., Letarov, A. V., Heaphy, S. (2011). Phages in nature. Bacteriophage, 1(1):31-45. doi:10.4161/bact.1.1.14942
- Coffey, B., Mills, S., Coffey, A., McAlliffe, O., Ross, R. P.(2010). Phage and their lysins as biocontrol agents for food safety applications. Annu. Rev. Food Sci. Technol., 1: 449-468. doi:10.1146/annurev.food.102308.124046
- EFSA (European Food Safety Authority). (2019). Listeria monocytogenes: update on foodborne outbreak. https://www.efsa.europa.eu/en/press/news/180703, Access Date: (02.02.2019).
- George, S., Menon, K. V., Latha, C., Sunil, B., Sethulekshmi, C., Jolly, D. (2014). Isolation of Listeria-specific bacteriophage from three different towns in Kerala, India. In. J. Curr. Microbiol. Sci., 3(9): 667-669.
- Guenther, S., Huwyler, D., Richard, S., Loessner, M. J. (2009). Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready-to eat foods. Appl. Environ. Microbiol., 75(1): 93-100. doi:10.1128/AEM.01711-08
- Gutierrez, D., Rodriquez-Rubio, L., Fernandez, L., Martinez, B., Rodriquez, A., Garcia, P. (2017). Applicability of commercial phage-based products against Listeria monocytogenes for improvement of food safety in Spanish dry-cured ham and food contact surfaces. Food Control, 73: 1474-1482. doi:10.1016/j.foodcont.2016.11.007
- Hagens, S., Loessner, M. J. (2014). Phages of Listeria offer novel tools for diagnostics and biocontrol.Front Microbiol., 5: Article 159. doi:10.3389/fmicb.2014.00159
- Kim, J. –K., Siletzky, R. M., Kathariou, S. (2008). Host ranges of Listeria monocytogenes from the turkey processing plant environment in the United States. Appl. Environ. Microbiol., 74(21): 6623-6630. doi:10.1128/AEM.01282-08
- Klumpp, J., Loessner, M. J. (2013). Listeria phages. Bacteriophage, 3:3 e26861, doi:10.4161/bact.26861
- Lacumin, L., Manzano, M., Comi, G. (2016). Phage inactivation of Listeria monocytogenes on san daniele dry-cured ham and elimination of biofilms from equipment and working environments. Microorganisms, 4:4. doi:10.3390/microorganisms4010004
- Lee, S., Kim, M. G., Lee, H. S., Heo, S., Kwon, M., Kim, G. (2017). Isolation and characterization of Listeria phages for control of growth of Listeria monocytogenes in milk. Korean J. Food. Sci. An., 37(2):320-328. doi:10.5851/kosfa.2017.37.2.320
- Loessner, M. J., Busse, M. (1990). Bacteriophage typing of Listeria species. Appl. Environ. Microbiol., 56:1912–1918.
- Lone, A., Anany, H., Hakeem, M., Aguis, L., Avdjian, A-C, Bouget, M., Atashi, A., Brovko, L., Rochefort, D., Griffiths, M. W. (2016). Development of prototypes of bioactive packaging materials based on immobilized bacteriophages for control of growth of bacterial pathogens in foods. Int. J. Food Microbiol., 217: 49-58. doi:10.1016/j.ijfoodmicro.2015.10.011
- Özkan, I., Akturk, E., Yeshenkulov, N., Atmaca, S., Rahmanov, N., Atabay, H.I. (2016). Lytic activity of various phage cocktails on multidrug-resistant bacteria. Clin. Invest. Med., 39(6): 66-70.
- Perera, M. N., Abuladze, T., Li, M., Woolston, J., Sulakvelidze, A. (2015). Bacteriophage cocktail significantly reduces or eliminates Listeria monocytogenes contamination on lettuce, apples, cheese, smoked salmon and frozen foods. Food Microbiol., 52: 42-48. doi:10.1016/j.fm.2015.06.006
- Pulido, R. P., Burgos, M. J. G., Galvez, A., Lopez, R. L. (2016). Application of bacteriophages in post-harvest control of human pathogenic and food spoiling bacteria. Crit. Rev. Biotechnol., 36(5): 851-861. doi:10.3109/07388551.2015.1049935
- Roy, B., Philippe, C., Loessner, M., Goulet, J., Moineau, S. (2018). Production of bacteriophages by Listeria cells entrapped in organic polymers. Viruses, 10:324. doi:10.3390/v10060324
- Sadekuzzaman, M., Yang, S., Mizan, Md. F. R., Kim, H. –S., Ha, S. –D.(2017). Effectiveness of a phage cocktail as a biocontrol agent against L. monocytogenes biofilms. Food Control, 78: 256-263. doi:10.1016/j.foodcont.2016.10.056
- Sağlam, A. G., Şahin, M., Çelik, E., Çelebi, Ö., Akça, D., Otlu, S. (2017). The role of staphylococci in subclinical mastitis of cows and lytic phage isolation against Staphylococcus aureus. Veterinary World, 10(12): 1481-1485.
- Şanlıbaba, P., Tezel, B. U., Çakmak, G. A.(2018).Prevalence and Antibiotic Resistance of Listeria monocytogenes Isolated from Ready-to-Eat Foods in Turkey,Hindawi Journal of Food Quality, 2018:Article ID 7693782, 9 pages, doi:10.1155/2018/7693782
- Soni, K. A., Nannapaneni, R. (2010). Bacteriophage significantly reduces Listeria monocytogenes on raw salmon fillet tissue. J. Food Prot., 73(1): 32-38.
- Soni, K. A., Nannapaneni, R., Hagens, S. (2010). Reduction of Listeria monocytogenes on the surface of fresh channel catfish fillets by bacteriophage Listex P100. Foodborne Pathog. Dis., 7(4): 427-434. doi:10.1089/fpd.2009.0432
- Sulakvelidze, A.(2013). Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens. J. Sci. Food Agric., 93: 3137-3146. doi:10.1002/lsfa.6222
- Uğur, E., Öner, Z. (2018). Ticari Salmonella faj preparatının beyaz peynirde Salmonella spp. üzerine etkisinin araştırılması. Türk Tarım-Gıda Bilim Teknol. Derg., 6(8): 995-1001. doi:10.24925/turjaf.v6i8.995-1001.1828
- Yang, S., Sadekuzzaman, M., Ha, S. –D. (2017). Reduction of Listeria monocytogenes onchicken breasts by combined treatment with UV-C light and bacteriophage ListShield. LWT-Food Sci. Technol., 86: 193-200. doi:10.1016/j.lwt.2017.07.060
- Yıldırım, Z., Sakin, T., Çoban, F. (2018). Isolation of anti-Escherichia coli O157:H7 bacteriophages and determination of their host ranges. TURJAF, 6(9): 1200-1208. doi:10.24925/turjaf.v6i9.1200-1208.2000
- Zinno, P., Devirgiliis, C., Ercolini, D., Ongeng, D., Mauriello, G. (2014). Bacteriophage P22 to challenge Salmonella in foods. Int. J. Food Microbiol., 191: 69-74. doi:10.1016/j.ijfoodmicro.2014.08.037
ISOLATION OF PHAGES INFECTING LISTERIA MONOCYTOGENES
Yıl 2019,
Cilt: 44 Sayı: 3, 463 - 471, 15.05.2019
Pinar Şanlıbaba
,
Başar Uymaz Tezel
Öz
It was aimed to isolate, purify
and determine host ranges of lytic phages that infect Listeria monocytogenes
in this study. Out of 68 samples screened, 4 positive isolates were recovered
from feces, food processing waste water, fisheries waste water, and fish
samples. Recovery status of the L. monocytogenes phage was found to be
5.88%. To determine host ranges of phages, soft agar overlay plaque assay was
used. While eleven L. monocytogenes strains showed resistant to all four
isolated phages, 24 strains were sensitive. The plaque sizes of the 4 phages
against 24 L. monocytogenes strains ranged from 0.4 and 2.6 mm. None of
the phages had identical host ranges.
Destekleyen Kurum
Ankara University Scientific Research Projects Coordination Unit
Proje Numarası
15B0443010
Kaynakça
- Akhtar, M., Viazis, S., Christensen, K., Kraemer, P., Diez-Gonzalez, F. (2017). Isolation, characterization and evaluation of virulent bacteriophages against Listeria monocytogenes. Food Control, 75: 108-115. doi:10.1016/j.foodcont.2016.12.035
- Arachchi, G. J. G., Mutukumira, A. N., Dias-Wanigasekera, B. M., Cruz, C. D., Mclntyre, L., Young, J., Flint, S. H., Billington, C. (2013). Characteristics of three listeriophages isolated from New Zealand Seafood environments. J. Appl. Microbiol., 115: 1427-1438. doi:10.1111/jam.12332
- Ata, A.(2018). Türkiye’de sık rastlanan Salmonella Enteritidis serovarlarına spesifik bakteriyofajların izolasyonu. Etlik Vet. Mikrobiyol. Derg., 29(2): 136-142.
- Bigot, B., Lee, W. –J, Mclntyre, L., Wilson, T., Hudson, J. A., Billington, C., Heinemann, J. A. (2011). Control of Listeria monocytogenes growth in a ready-to-eat poultry products using a bacteriophage. Food Microbiol., 28: 1448-1452. doi:10.1016/j.fm.2011.07.001
- Carlton, R. M., Noordman, W. H., Biswas, B., de Meester, E. D., Loessner, M. J.(2005). Bacteriophage P100 for control of Listeria monocytogenes in foods: Genome sequence, bioinformatic analyses, oral toxicity study, and application. Regul. Toxicol. Pharmacol., 43: 301-312. doi:10.1016/j.yrtph.2005.08.005
- CDC (Centers of Disease Control and Prevention). (2019a). National Enteric Disease Surveillance: Listeria Annual Summary, 2014. https://www.cdc.gov/ nationalsurveillance/pdfs/listeria-annual-summary-2014-508.pdf, Access Date: (02.02.2019).
- CDC (Centers of Disease Control and Prevention). (2019b). Outbreak of Listeria Infections Linked to Deli Ham (Final Update).https://www.cdc.gov/listeria/outbreaks/countryham-10-18/index.html, Access Date: (02.02.2019).
- Clokie, M. R. J., Millard, A. D., Letarov, A. V., Heaphy, S. (2011). Phages in nature. Bacteriophage, 1(1):31-45. doi:10.4161/bact.1.1.14942
- Coffey, B., Mills, S., Coffey, A., McAlliffe, O., Ross, R. P.(2010). Phage and their lysins as biocontrol agents for food safety applications. Annu. Rev. Food Sci. Technol., 1: 449-468. doi:10.1146/annurev.food.102308.124046
- EFSA (European Food Safety Authority). (2019). Listeria monocytogenes: update on foodborne outbreak. https://www.efsa.europa.eu/en/press/news/180703, Access Date: (02.02.2019).
- George, S., Menon, K. V., Latha, C., Sunil, B., Sethulekshmi, C., Jolly, D. (2014). Isolation of Listeria-specific bacteriophage from three different towns in Kerala, India. In. J. Curr. Microbiol. Sci., 3(9): 667-669.
- Guenther, S., Huwyler, D., Richard, S., Loessner, M. J. (2009). Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready-to eat foods. Appl. Environ. Microbiol., 75(1): 93-100. doi:10.1128/AEM.01711-08
- Gutierrez, D., Rodriquez-Rubio, L., Fernandez, L., Martinez, B., Rodriquez, A., Garcia, P. (2017). Applicability of commercial phage-based products against Listeria monocytogenes for improvement of food safety in Spanish dry-cured ham and food contact surfaces. Food Control, 73: 1474-1482. doi:10.1016/j.foodcont.2016.11.007
- Hagens, S., Loessner, M. J. (2014). Phages of Listeria offer novel tools for diagnostics and biocontrol.Front Microbiol., 5: Article 159. doi:10.3389/fmicb.2014.00159
- Kim, J. –K., Siletzky, R. M., Kathariou, S. (2008). Host ranges of Listeria monocytogenes from the turkey processing plant environment in the United States. Appl. Environ. Microbiol., 74(21): 6623-6630. doi:10.1128/AEM.01282-08
- Klumpp, J., Loessner, M. J. (2013). Listeria phages. Bacteriophage, 3:3 e26861, doi:10.4161/bact.26861
- Lacumin, L., Manzano, M., Comi, G. (2016). Phage inactivation of Listeria monocytogenes on san daniele dry-cured ham and elimination of biofilms from equipment and working environments. Microorganisms, 4:4. doi:10.3390/microorganisms4010004
- Lee, S., Kim, M. G., Lee, H. S., Heo, S., Kwon, M., Kim, G. (2017). Isolation and characterization of Listeria phages for control of growth of Listeria monocytogenes in milk. Korean J. Food. Sci. An., 37(2):320-328. doi:10.5851/kosfa.2017.37.2.320
- Loessner, M. J., Busse, M. (1990). Bacteriophage typing of Listeria species. Appl. Environ. Microbiol., 56:1912–1918.
- Lone, A., Anany, H., Hakeem, M., Aguis, L., Avdjian, A-C, Bouget, M., Atashi, A., Brovko, L., Rochefort, D., Griffiths, M. W. (2016). Development of prototypes of bioactive packaging materials based on immobilized bacteriophages for control of growth of bacterial pathogens in foods. Int. J. Food Microbiol., 217: 49-58. doi:10.1016/j.ijfoodmicro.2015.10.011
- Özkan, I., Akturk, E., Yeshenkulov, N., Atmaca, S., Rahmanov, N., Atabay, H.I. (2016). Lytic activity of various phage cocktails on multidrug-resistant bacteria. Clin. Invest. Med., 39(6): 66-70.
- Perera, M. N., Abuladze, T., Li, M., Woolston, J., Sulakvelidze, A. (2015). Bacteriophage cocktail significantly reduces or eliminates Listeria monocytogenes contamination on lettuce, apples, cheese, smoked salmon and frozen foods. Food Microbiol., 52: 42-48. doi:10.1016/j.fm.2015.06.006
- Pulido, R. P., Burgos, M. J. G., Galvez, A., Lopez, R. L. (2016). Application of bacteriophages in post-harvest control of human pathogenic and food spoiling bacteria. Crit. Rev. Biotechnol., 36(5): 851-861. doi:10.3109/07388551.2015.1049935
- Roy, B., Philippe, C., Loessner, M., Goulet, J., Moineau, S. (2018). Production of bacteriophages by Listeria cells entrapped in organic polymers. Viruses, 10:324. doi:10.3390/v10060324
- Sadekuzzaman, M., Yang, S., Mizan, Md. F. R., Kim, H. –S., Ha, S. –D.(2017). Effectiveness of a phage cocktail as a biocontrol agent against L. monocytogenes biofilms. Food Control, 78: 256-263. doi:10.1016/j.foodcont.2016.10.056
- Sağlam, A. G., Şahin, M., Çelik, E., Çelebi, Ö., Akça, D., Otlu, S. (2017). The role of staphylococci in subclinical mastitis of cows and lytic phage isolation against Staphylococcus aureus. Veterinary World, 10(12): 1481-1485.
- Şanlıbaba, P., Tezel, B. U., Çakmak, G. A.(2018).Prevalence and Antibiotic Resistance of Listeria monocytogenes Isolated from Ready-to-Eat Foods in Turkey,Hindawi Journal of Food Quality, 2018:Article ID 7693782, 9 pages, doi:10.1155/2018/7693782
- Soni, K. A., Nannapaneni, R. (2010). Bacteriophage significantly reduces Listeria monocytogenes on raw salmon fillet tissue. J. Food Prot., 73(1): 32-38.
- Soni, K. A., Nannapaneni, R., Hagens, S. (2010). Reduction of Listeria monocytogenes on the surface of fresh channel catfish fillets by bacteriophage Listex P100. Foodborne Pathog. Dis., 7(4): 427-434. doi:10.1089/fpd.2009.0432
- Sulakvelidze, A.(2013). Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens. J. Sci. Food Agric., 93: 3137-3146. doi:10.1002/lsfa.6222
- Uğur, E., Öner, Z. (2018). Ticari Salmonella faj preparatının beyaz peynirde Salmonella spp. üzerine etkisinin araştırılması. Türk Tarım-Gıda Bilim Teknol. Derg., 6(8): 995-1001. doi:10.24925/turjaf.v6i8.995-1001.1828
- Yang, S., Sadekuzzaman, M., Ha, S. –D. (2017). Reduction of Listeria monocytogenes onchicken breasts by combined treatment with UV-C light and bacteriophage ListShield. LWT-Food Sci. Technol., 86: 193-200. doi:10.1016/j.lwt.2017.07.060
- Yıldırım, Z., Sakin, T., Çoban, F. (2018). Isolation of anti-Escherichia coli O157:H7 bacteriophages and determination of their host ranges. TURJAF, 6(9): 1200-1208. doi:10.24925/turjaf.v6i9.1200-1208.2000
- Zinno, P., Devirgiliis, C., Ercolini, D., Ongeng, D., Mauriello, G. (2014). Bacteriophage P22 to challenge Salmonella in foods. Int. J. Food Microbiol., 191: 69-74. doi:10.1016/j.ijfoodmicro.2014.08.037