502 Bad Gateway


nginx
502 Bad Gateway

502 Bad Gateway


nginx
Yıl 2019, Cilt 44 , Sayı 4, Sayfalar 692 - 706 2019-08-01

GIDALARDA BULUNAN KÜFLERİN TANIMLANMASINDA KULLANILAN YÖNTEMLER
METHODS FOR IDENTIFICATION OF MOLDS IN FOODS

Gülten Gündüz [1] , İlkim Emenli [2]


Küfler doğada hava, toprak, su ve organik maddeler üzerinde yaygın olarak bulunabilen mikroorganizmalardır. Küfler tarafından üretilen toksik metabolitler nedeniyle, küflerin insan ve hayvan sağlığı üzerinde olumsuz etkileri bulunmaktadır. Küfler gıdaların bozulmasına neden olarak ekonomik kayıplara da sebep olmaktadır. Gıdalarda gelişen küflerin tanımlanması dirençli türler, mikotoksijenik türler ve küf gelişiminin inhibisyonu gibi konularda çalışmalar yapılmasında gereklidir. Küflerin tanımlanması koloni morfolojisi ve mikroskobik özelliklerinin belirlenmesine dayanan geleneksel yöntemler ile gerçekleştirilmektedir. Geleneksel yöntemlerin zaman alıcı olması ve deneyimli personel gerektirmesi nedeniyle, daha hızlı ve güvenilir yöntemlere ihtiyaç duyulmaktadır. Hızlı yöntemlerin maliyeti yüksek olup, aynı zamanda veri tabanlarının yetersiz olması nedeniyle kapsamlı araştırmalar ile standartlaştırılması gerekmektedir. Geleneksel ve hızlı yöntemlerin birlikte kullanılması çalışmaların doğruluğunu arttırmaktadır. Bu derleme çalışmasında, küflerin tanımlanmasında kullanılan geleneksel yöntemler, moleküler yöntemler, matriks ile desteklenmiş lazer desorpsiyon/iyonizasyon uçuş zamanı kütle spektrometresi (MALDI-TOF MS) ve fourier transform infrared spektroskopisi (FT-IR) yöntemleri incelenmiştir.

Molds are ubiquitous microorganisms in nature found on air, soil, water and organic matter. Molds can adversely affect the health of humans and animals by producing toxic metabolites. Molds also cause spoilage of foods which results in economic loss. Identification of molds grown in foods is crucial for the studies on inhibition of mold growth on foods, knowledge of resistant and mycotoxigenic species. Conventional identification procedures are based on the recognition of the colony morphology and microscobic observations. Since traditional identification procedures are time consuming and require specified personnel, there is a need for more rapid and reliable techniques to identify molds. Rapid methods are expensive and need to be standardized with extensive studies due to insufficient databases. Combination of conventional and rapid methods increases the accuracy of the studies. In this review, conventional, molecular, matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) and fourier transform infrared spectroscopy (FT-IR) methods used to identify molds were investigated.

  • Alía, A., Andrade, M.J., Rodríguez, A., Reyes-Prieto, M., Bernáldez, V., Córdoba, J.J. (2016). Identification and control of moulds responsible for black spot spoilage in dry-cured ham. Meat Science122: 16-24, doi: 10.1016/j.meatsci.2016.07.007.
  • Angeletti, S. (2017). Matrix assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology. Journal of Microbiological Methods 138: 20-29.
  • Anwer, S.S., Ali, G.A., Hamadamin, C.Z., Jaafar, H.Y. (2017). Isolation and identification of fungi from fast food restaurants in Langa Bazar. International Journal of Environment, Agriculture and Biotechnology 2(4): 1517-1522.
  • Banjara, N., Suhr, M.J., Hallen-Adams, H.E. (2015). Diversity of yeast and mold species from a variety of cheese types. Current microbiology 70(6): 792-800.
  • Bavaro, S.L., Susca, A., Frisvad, J.C., Tufariello, M., Chytiri, A., Perrone, G., Mita, G., Logrieco, A.F., Bleve, G. (2017). Isolation, characterization, and selection of molds associated to fermented black table olives. Frontiers in microbiology 8: 1356, doi: 10.3389/fmicb.2017.01356.
  • Bernáldez, V., Rodríguez, A., Rodríguez, M., Sánchez-Montero, L., Córdoba, J.J. (2017). Evaluation of different RNA extraction methods of filamentous fungi in various food matrices. LWT-Food Science and Technology 78: 47-53.
  • Bhunia, A.K. (2018). Molds and Mycotoxins. In: Foodborne Microbial Pathogens, Springer, New York, NY, pp. 167-174.
  • Cassagne, C., Normand, A.C., L'ollivier, C., Ranque, S., Piarroux, R. (2016). Performance of MALDI-TOF MS platforms for fungal identification. Mycoses 59(11): 678-690.
  • Cassagne, C., Ranque, S., Normand, A.C., Fourquet, P., Thiebault, S., Planard, C.,Hendrickx M, Piarroux, R. (2011). Mould routine identification in the clinical laboratory by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. PLoS One 6(12): e28425.
  • Chalupová, J., Raus, M., Sedlářová, M., Šebela, M. (2014). Identification of fungal microorganisms by MALDI-TOF mass spectrometry. Biotechnology Advances 32(1): 230-241.
  • Ciardo, D.E., Schär, G., Altwegg, M., Böttger, E.C., Bosshard, P.P. (2007). Identification of moulds in the diagnostic laboratory-an algorithm implementing molecular and phenotypic methods. Diagnostic Microbiology and Infectious Disease 59(1): 49-60.
  • Criseo, G., Scordino, F., Romeo, O. (2015). Current methods for identifying clinically important cryptic Candida species. Journal of Microbiological Methods 111: 50-56.
  • Çavuş, S., Tornuk, F., Sarioglu, K., Yetim, H. (2018). Determination of mold contamination and aflatoxin levels of the meat products/ingredients collected from Turkey market. Journal of Food Safety 38(5): e12494, doi: 10.1111/jfs.12494
  • Drissner, D., Freimoser, F.M. (2017). MALDI-TOF mass spectroscopy of yeasts and filamentous fungi for research and diagnostics in the agricultural value chain. Chemical and Biological Technologies in Agriculture 4(1): 13, doi: 10.1186/s40538-017-0095-7.
  • Dulla, E.L., Kathera, C., Gurijala, H.K., Mallakuntla, T.R., Srinivasan, P., Prasad, V., Mopati R.D., Jasti, P.K. (2016). Highlights of DNA Barcoding in identification of salient microorganisms like fungi. Journal de Mycologie Medicale 26(4): 291-297.
  • El-Fadaly, H.M., El-Kadi, S.M., Hamad, M.N., Habib, A.A. (2015). Isolation and identification of Egyptian Ras Cheese (Romy) contaminating fungi during ripening period. Journal of Microbiology Research 5(1): 1-10.
  • Erukhimovitch, V., Tsror, L., Hazanovsky, M., Talyshinsky, M., Mukmanov, I., Souprun, Y., Huleihel, M. (2005). Identification of fungal phyto-pathogens by Fourier-Transform Infrared (FTIR) microscopy. J Agric Technol 1(1): 145-52.
  • Fatimoh, A.O., Moses, A.A., Adekunle, O.B., Dare, O.E. (2017). Isolation and identification of rot fungi on post-harvest of pepper. Aascıt Journal of Biology 3(5): 24-29.
  • Fapohunda, S.O., Moore, G.G., Aroyeun, S.O., Ayeni, K.I., Aduroja, D.E., Odetunde, S.K. (2018). Isolation and characterization of fungi isolated from Nigerian cocoa samples. Current Life Sciences 4(3): 46-52.
  • Fischer, G., Braun, S., Thissen, R., Dott, W. (2006). FT-IR spectroscopy as a tool for rapid identification and intra-species characterization of airborne filamentous fungi. Journal of Microbiological Methods 64(1): 63-77.
  • Flórez, A.B., Álvarez-Martín, P., López-Díaz, T.M., Mayo, B. (2007). Morphotypic and molecular identification of filamentous fungi from Spanish blue-veined Cabrales cheese, and typing of Penicillium roqueforti and Geotrichum candidum isolates. International Dairy Journal 17(4): 350-357.
  • Francesca, N., Gaglio, R., Stucchi, C., De Martino, S., Moschetti, G., Settanni, L. (2018). Yeasts and moulds contaminants of food ice cubes and their survival in different drinks. Journal of Applied Microbiology 124(1): 188-196.
  • Garcia, M.V., Parussolo, G., Moro, C.B., Bernardi, A.O., Copetti, M.V. (2018). Fungi in spices and mycotoxigenic potential of some Aspergilli isolated. Food microbiology 73: 93-98.
  • Garnier, L., Valence, F., Pawtowski, A., Auhustsinava-Galerne, L., Frotté, N., Baroncelli, R., Deniel, F., Coton, E., Mounier, J. (2017). Diversity of spoilage fungi associated with various French dairy products. International Journal of Food Microbiology 241: 191-197.
  • Gautier, M., Ranque, S., Normand, A.C., Becker, P., Packeu, A., Cassagne, C., L’Ollivier, C., Hendrickx, M., Piarroux, R. (2014). Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: revolutionizing clinical laboratory diagnosis of mould infections. Clinical Microbiology and Infection 20(12): 1366-1371.
  • Guimaraes, A., Santiago, A., Teixeira, J.A., Venâncio, A., Abrunhosa, L. (2018). Anti-aflatoxigenic effect of organic acids produced by Lactobacillus plantarum. International journal of food microbiology 264: 31-38.
  • Hawksworth, D.L. (2015). Naming fungi involved in spoilage of food, drink, and water. Current Opinion in Food Science 5: 23-28.
  • Hayaloğlu, A.A., Kırbağ, S. (2007). Microbial quality and presence of moulds in Kuflu cheese. International Journal of Food Microbiology 115(3): 376-380.
  • Hendrickx, M. (2017). MALDI-TOF MS and filamentous fungal identification: A Success Story. Current Fungal Infection Reports 11(2): 60-65.
  • Hertwig, A.M., Sant'Ana, A.S., Sartori, D., da Silva, J.J., Nascimento, M.S., Iamanaka, B.T., Fungaro, M.H.P., Taniwaki, M.H. (2018). Real-time PCR-based method for rapid detection of Aspergillus niger and Aspergillus welwitschiae isolated from coffee. Journal of microbiological methods 148: 87-92, doi: 10.1016/j.mimet.2018.03.010.
  • Houbraken, J., Samson, R.A. (2017). Current taxonomy and identification of foodborne fungi. Current Opinion in Food Science 17: 84-88.
  • Jedidi, I., Soldevilla, C., Lahouar, A., Marín, P., González-Jaén, M.T., Said, S. (2018). Mycoflora isolation and molecular characterization of Aspergillus and Fusarium species in Tunisian cereals. Saudi Journal of Biological Sciences 25(5): 868-874.
  • Jiang, J., Qiao, X., He, R. (2016). Use of Near-Infrared hyperspectral images to identify moldy peanuts. Journal of Food Engineering 169: 284-290.
  • Jogee, P.S., Ingle, A.P., Rai, M. (2017). Isolation and identification of toxigenic fungi from infected peanuts and efficacy of silver nanoparticles against them. Food Control 71: 143-151.
  • Kim, Y., Nandakumar, M.P., Marten, M.R. (2007). Proteomics of filamentous fungi. Trends in Biotechnology 25(9): 395-400.
  • Kure, C.F., Skaar, I., Brendehaug, J. (2004). Mould contamination in production of semi-hard cheese. International Journal of Food Microbiology 93(1): 41-49.
  • Lecellier, A., Gaydou, V., Mounier, J., Hermet, A., Castrec, L., Barbier, G., Ablain, W., Manfait, M., Toubas, D., Sockalingum, G.D. (2015). Implementation of an FTIR spectral library of 486 filamentous fungi strains for rapid identification of molds. Food Microbiology 45: 126-134.
  • Lecellier, A., Mounier, J., Gaydou, V., Castrec, L., Barbier, G., Ablain, W., Manfait M., Toubas, D., Sockalingum, G.D. (2014). Differentiation and identification of filamentous fungi by high-throughput FTIR spectroscopic analysis of mycelia. International Journal of Food Microbiology 168: 32-41.
  • Lima, N., Santos, C. (2017). MALDI-TOF MS for identification of food spoilage filamentous fungi. Current Opinion in Food Science 13: 26-30.
  • Lozano-Ojalvo, D., Rodríguez, A., Cordero, M., Bernáldez, V., Reyes-Prieto, M.,Córdoba, J.J. (2015). Characterisation and detection of spoilage mould responsible for black spot in dry-cured fermented sausages. Meat Science 100: 283-290.
  • Luethy, P.M., Zelazny, A.M. (2018). Rapid one-step extraction method for the identification of molds using MALDI-TOF MS. Diagnostic Microbiology and Infectious Disease 91(2): 130-135.
  • Lüthje, P., Pranada, A.B., Carruthers-Lay, D., Desjardins, M., Gaillot, O., Wareham, D., Ciesielczuk, H., Özenci, V. (2017). Identification of microorganisms grown on chromogenic media by MALDI-TOF MS. Journal of Microbiological Methods 136: 17-20.
  • Mailafia, S., Okoh, G.R., Olabode, H.O.K., Osanupin, R. (2017). Isolation and identification of fungi associated with spoilt fruits vended in Gwagwalada market, Abuja, Nigeria. Veterinary World 10(4): 393-397, doi: 10.14202/vetworld.2017.393-397
  • Miguel, M.G.D.C.P., de Castro Reis, L.V., Efraim, P., Santos, C., Lima, N., Schwan, R.F. (2017). Cocoa fermentation: Microbial identification by MALDI-TOF MS and sensory evaluation of produced chocolate. LWT-Food Science and Technology77: 362-369, doi: 10.1016/j.lwt.2016.11.076.
  • Moubasher, A.A., Abdel-Sater, M.A., Soliman, Z.S.M. (2018). Yeasts and filamentous fungi associated with some dairy products in Egypt. Journal de Mycologie Medicale 28(1): 76-86.
  • Oberle, J., Dighton, J., Arbuckle-Keil, G. (2015). Comparison of methodologies for separation of fungal isolates using Fourier Transform Infrared (FTIR) spectroscopy and Fourier Transform Infrared-Attenuated total reflectance (FTIR-ATR) microspectroscopy. Fungal Biology 119(11): 1100-1114.
  • Oliveira, M.M.E., Santos, C., Sampaio, P., Romeo, O., Almeida-Paes, R., Pais, C., Lima, N., Zancopé-Oliveira, R.M. (2015). Development and optimization of a new MALDI-TOF protocol for identification of the Sporothrix species complex. Research in Microbiology 166(2): 102-110.
  • Panda, A., Ghosh, A.K., Mirdha, B.R., Xess, I., Paul, S., Samantaray, J.C., Srinivasan A., Khalil, S., Rastogi, N., Dabas, Y. (2015). MALDI-TOF mass spectrometry for rapid identification of clinical fungal isolates based on ribosomal protein biomarkers. Journal of Microbiological Methods 109: 93-105.
  • Persad, A.S., Stedeford, T., Banasik, M., Suchecki, T.T., Muro-Cacho, C.A. (2018). A review of inhalation exposure to mold and adverse health outcomes. Florida State University Journal of Land Use and Environmental Law 19(2): 15.
  • Pinheiro, A. C., Macedo, M. F., Jurado, V., Saiz-Jimenez, C., Viegas, C., Brandão, J., Rosado, L. (2011). Mould and yeast identification in archival settings: Preliminary results on the use of traditional methods and molecular biology options in Portuguese archives. International Biodeterioration and Biodegradation 65(4): 619-627.
  • Pitt, J.I., Hocking, A.D. (2009). Fungi and Food Spoilage. 3rd Edition, Springer, New York, 519p, ISBN: 978-0-387-92206-5.
  • Quéro, L., Girard, V., Pawtowski, A., Tréguer, S., Weill, A., Arend, S., Cellière, B., Polsinelli, S., Monnin, V., Belkum, A.V., Nodet, P., Mounier, J., Vasseur, V. (2018). Development and application of MALDI-TOF MS for identification of food spoilage fungi. Food Microbiology 1-13, doi: 10.1016/j.fm.2018.05.001.
  • Raja, H.A., Miller, A.N., Pearce, C.J., Oberlies, N.H. (2017). Fungal identification using molecular tools: a primer for the natural products research community. Journal of natural products 80(3): 756-770.
  • Ranque, S., Normand, A.C., Cassagne, C., Murat, J.B., Bourgeois, N., Dalle, F., Gari-Toussaint, M., Fourquet, P., Hendrickx, M., Piarroux, R. (2014). MALDI‐TOF mass spectrometry identification of filamentous fungi in the clinical laboratory. Mycoses 57(3): 135-140.
  • Rico-Munoz, E., Samson, R.A., Houbraken, J. (2018). Mould spoilage of foods and beverages: Using the right methodology. Food Microbiology 1-12, doi: 10.1016/j.fm.2018.03.016.
  • Sacristán, N., Mayo, B., Fernández, E., Fresno, J.M., Tornadijo, M.E., Castro, J.M. (2013). Molecular study of Geotrichum strains isolated from Armada cheese. Food microbiology 36(2): 481-487.
  • Sanguinetti, M., Posteraro, B. (2017). Identification of molds by matrix-assisted laser desorption ionization–time of flight mass spectrometry. Journal of Clinical Microbiology 55(2): 369-379.
  • Santos, C., Fraga, M.E., Kozakiewicz, Z., Lima, N. (2010). Fourier transform infrared as a powerful technique for the identification and characterization of filamentous fungi and yeasts. Research in Microbiology 161(2): 168-175.
  • Shapaval, V., Moretro, T., Suso, H.P., Åsli, A.W., Schmitt, J., Lillehaug, D., Martens, H., Böcker, U., Kohler, A. (2010). A high-throughput microcultivation protocol for FTIR spectroscopic characterization and identification of fungi. Journal of Biophotonics 3(8-9): 512-521.
  • Shapaval, V., Møretrø, T., Wold Åsli, A., Suso, H.P., Schmitt, J., Lillehaug, D., Kohler, A. (2017). A novel library‐independent approach based on high‐throughput cultivation in Bioscreen and fingerprinting by FTIR spectroscopy for microbial source tracking in food industry. Letters in Applied Microbiology 64(5): 335-342.
  • Shehu, K., Tafinta, I.Y. (2017). Identification of fungi associated with fruit rot of coconut (Cocosnucifera L.) in Sokoto State, North-Western Nigeria. Journal of Zoological and Bioscience Research 1(1): 20-23.
  • Sivaraman, G.K., Visnuvinayagam, S., Jha, A.K., Remya, S., Renuka, V., Ajeesh, K., Vanik, D. (2018). Molecular divergence and identification of Aspergillus species in dry fishes of Gujarat India. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 88(2): 505-515.
  • Stübiger, G., Wuczkowski, M., Mancera, L., Lopandic, K., Sterflinger, K., Belgacem, O. (2016). Characterization of yeasts and filamentous fungi using MALDI lipid phenotyping. Journal of Microbiological Methods 130: 27-37.
  • Surženko, M., Kontram, K., Sarand, I. (2017). PCR–based fingerprinting and identification of contaminative fungi isolated from rye breads. Agronomy Research 15(1): 288-297.
  • Ushasri, K., Kumar, B.A. (2018). Isolation and identıfıcatıon of fungal pathogen from (Allium Cepa L.) In Piler vegetable market, Andhrapradesh, Indıa. World Journal of Pharmacy and Pharmaceutical Sciences 7(3): 955-963.
  • Vij, D.R., (2007). Handbook of applied solid state spectroscopy. Springer Science and Business Media, New York, 742p, ISBN: 0-387-32497-6.
  • Wakai, S., Arazoe, T., Ogino, C., Kondo, A. (2017). Future insights in fungal metabolic engineering. Bioresource Technology 245: 1314-1326.
  • Wattal, C., Oberoi, J.K., Goel, N., Raveendran, R., Khanna, S. (2017). Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) for rapid identification of microorganisms in the routine clinical microbiology laboratory. European Journal of Clinical Microbiology & Infectious Diseases 36(5): 807-812.
  • Zhao, J., Liu, W., Liu, D., Lu, C., Zhang, D., Wu, H., Dong, D., Meng, L. (2018). Identification and evaluation of Aspergillus tubingensis as a potential biocontrol agent against grey mould on tomato. Journal of General Plant Pathology 84: 148-159.
Birincil Dil tr
Konular Fen
Yayımlanma Tarihi 2019
Bölüm Makaleler
Yazarlar

Yazar: Gülten Gündüz (Sorumlu Yazar)
Kurum: EGE ÜNİVERSİTESİ
Ülke: Turkey


Yazar: İlkim Emenli
Kurum: EGE ÜNİVERSİTESİ
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 1 Ağustos 2019

Bibtex @derleme { gida528567, journal = {Gıda}, issn = {1300-3070}, eissn = {1309-6273}, address = {}, publisher = {Gıda Teknolojisi Derneği}, year = {2019}, volume = {44}, pages = {692 - 706}, doi = {10.15237/gida.GD19044}, title = {GIDALARDA BULUNAN KÜFLERİN TANIMLANMASINDA KULLANILAN YÖNTEMLER}, key = {cite}, author = {Gündüz, Gülten and Emenli, İlkim} }
APA Gündüz, G , Emenli, İ . (2019). GIDALARDA BULUNAN KÜFLERİN TANIMLANMASINDA KULLANILAN YÖNTEMLER. Gıda , 44 (4) , 692-706 . DOI: 10.15237/gida.GD19044
MLA Gündüz, G , Emenli, İ . "GIDALARDA BULUNAN KÜFLERİN TANIMLANMASINDA KULLANILAN YÖNTEMLER". Gıda 44 (2019 ): 692-706 <https://dergipark.org.tr/tr/pub/gida/issue/46722/528567>
Chicago Gündüz, G , Emenli, İ . "GIDALARDA BULUNAN KÜFLERİN TANIMLANMASINDA KULLANILAN YÖNTEMLER". Gıda 44 (2019 ): 692-706
RIS TY - JOUR T1 - GIDALARDA BULUNAN KÜFLERİN TANIMLANMASINDA KULLANILAN YÖNTEMLER AU - Gülten Gündüz , İlkim Emenli Y1 - 2019 PY - 2019 N1 - doi: 10.15237/gida.GD19044 DO - 10.15237/gida.GD19044 T2 - Gıda JF - Journal JO - JOR SP - 692 EP - 706 VL - 44 IS - 4 SN - 1300-3070-1309-6273 M3 - doi: 10.15237/gida.GD19044 UR - https://doi.org/10.15237/gida.GD19044 Y2 - 2019 ER -
EndNote %0 Gıda GIDALARDA BULUNAN KÜFLERİN TANIMLANMASINDA KULLANILAN YÖNTEMLER %A Gülten Gündüz , İlkim Emenli %T GIDALARDA BULUNAN KÜFLERİN TANIMLANMASINDA KULLANILAN YÖNTEMLER %D 2019 %J Gıda %P 1300-3070-1309-6273 %V 44 %N 4 %R doi: 10.15237/gida.GD19044 %U 10.15237/gida.GD19044
ISNAD Gündüz, Gülten , Emenli, İlkim . "GIDALARDA BULUNAN KÜFLERİN TANIMLANMASINDA KULLANILAN YÖNTEMLER". Gıda 44 / 4 (Ağustos 2019): 692-706 . https://doi.org/10.15237/gida.GD19044
AMA Gündüz G , Emenli İ . GIDALARDA BULUNAN KÜFLERİN TANIMLANMASINDA KULLANILAN YÖNTEMLER. GIDA. 2019; 44(4): 692-706.
Vancouver Gündüz G , Emenli İ . GIDALARDA BULUNAN KÜFLERİN TANIMLANMASINDA KULLANILAN YÖNTEMLER. Gıda. 2019; 44(4): 706-692.