Derleme
BibTex RIS Kaynak Göster

PÜSKÜRTMELİ KURUTMA VE DONDURARAK KURUTMA YÖNTEMLERİNİN TEMELLERİ VE BU YÖNTEMLER İLE GIDA ATIKLARINDAN TOZ ÜRÜNLERİN ÜRETİMİ

Yıl 2021, Cilt: 46 Sayı: 3, 583 - 607, 15.05.2021
https://doi.org/10.15237/gida.GD21009

Öz

Bu derleme makalede gıda atıkları ve/veya yan ürünlerinden gıda bileşenlerinin özütlenerek geri kazanımının ardından püskürtmeli ve dondurarak kurutma yöntemleri ile toz formda ürün üretimine yönelik çalışmalar ele alınmıştır. Gıda atıklarından özütlenen fenolik maddeler, vitaminler, renk maddeleri, aroma maddeleri, proteinler ve lifler gibi bileşiklerin hem dış etkenlere karşı dayanımlarını artırmak hem de gıda formülasyonlarında kullanımını kolaylaştırmak için özütler kurutularak toz forma dönüştürülmektedir. Püskürtmeli ve dondurarak kurutucu sistem bileşenlerinin, çalışma prensiplerinin ve işlemlerde etkili faktörlerin de değerlendirildiği bu makalede özellikle son yıllarda gerçekleştirilen, her iki yöntemin bir arada kullanıldığı ve karşılaştırıldığı çalışmalar ele alınmıştır. Püskürtmeli kurutma ve dondurarak kurutma işlemlerinin ve kurutma yardımcı maddelerinin elde edilen toz ürünlerin verim, higroskopisite, nem içeriği, yapışkanlık, renk, çözünürlük, camsı geçiş sıcaklığı, yığın yoğunluğu, mikroyapı, elektron mikroskobu altındaki görünüm, antioksidan kapasite, antosiyanin ve toplam karotenoit içeriği gibi özellikleri üzerinde etkili oldukları anlaşılmaktadır.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

217O066

Teşekkür

Yazarlar olarak TÜBİTAK Araştırma Destek Programları Başkanlığına (Proje No: 217O066) teşekkür ederiz.

Kaynakça

  • Abdelwahed, W., Degobert, G., Stainmesse, S., Fessi, H. (2006). Freeze-drying of nanoparticles: Formulation, process and storage considerations. Adv Drug Deliv Rev, 58(15): 1688-171, https://doi.org/10.1016/j.addr.2006.09.017.
  • Adhikari, B. Howes, T., Bhandari, B. R., Troung, V. (2003). Surface stickiness of drops of carbohydrate and organic acid solutions during convective drying: Experiments and modelling. Dry Technol, 21(5): 839-873, https://doi.org/10.1081/DRT-120021689.
  • Arsa, S., Theerakulkait, C. (2018). Preparation, aroma characteristics and volatile compounds of flavorings from enzymatic hydrolyzed rice bran protein concentrate. J Food Sci Agric, 98(12): 4479-4487; https://doi.org/10.1002/jsfa.8972.
  • Arshadi, M., Attard, T. M., Lukasik, R. M., Brnčić, M., Da Costa Lopes, A. M., Finell, m. et al. (2016). Pre-treatment and extraction techniques for recovery of added value compounds from wastes throughout the agri-food chain. Green Chem, 18(23): 6160-6204, https://doi.org/10.1039/C6GC01389A.
  • Ayadi, M. A., Khemakhem, M., Belgith, H., Attia, H. (2008). Effect of moderate spray drying conditions on functionality of dried egg white and whole egg. J Food Sci, 73: E281–E287, https://doi.org/10.1111/j.1750-3841.2008.00811.x.
  • Ballesteros, L. F., Ramirez, M. J., Orrego, C. E., Teixeira, J. A., Mussatto, S. I. (2017). Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chem, 237: 623-631, https://doi.org/10.1016/j.foodchem.(2017).05.142.
  • Barbosa-Cánovas, G. V., Juliano, P. (2005). Physical and chemical properties of food powders. Encapsulated and Powdered Foods, 39 – 71.
  • Barbosa-Canovas, G. V., Vega-Mercado, H. (1996). Dehydration of foods. New York: Chapman ve Hall.
  • Bataglion, G. A., Da Silva, F. M. A., Eberlin, M. N., Koolen H. H. F. (2015). Determination of the phenolic composition from Brazilian tropical fruits by UHPLC-MS/MS. Food Chem, 180: 280-287, https://doi.org/10.1016/j.foodchem.2015.02.059.
  • Bhandari, B. (2013). Introduction to food powders, Handbook of food powders ( Bhandari, B., chief ed..), Woodhead Publishing, Sawston, p 688.
  • Bhandari, B. R., Datta, N., ve Howes, T. (1997). Problems associated with spray drying of sugar-rich foods. Dry Technol, 15: 671e684, https://doi.org/10.1080/07373939708917253.
  • Botrel, D. A., Barros Fernandes, R. V. D., Borges, S. V., Yoshida, M. I. (2014). Influence of wall matrix systems on the properties of spray-dried microparticles containing fish oil. Food Res Int, 62: 344-352, https://doi.org/10.1016/j.foodres.(2014).02.003.
  • Burgain, J., Petit, J., Scher, J., Rasch, R., Bhandari, B., Gaiani, C. (2017). Surface chemistry and microscopy of food powders, Prog Surf Sci, 92(4): 409-429, https://doi.org/10.1016/j.progsurf.(2017).07.002.
  • Cai, Y., ve Corke, H. (2000). Production and properties of spray-dried amaranthus betacyanin pigments. J Food Sci, 65: 1248e1252, https://doi.org/10.1111/j.1365-2621.2000.tb10273.x.
  • Cal, K., ve Sollohub, K. (2010). Spray drying technique. I: Hardware and process parameters. J Pharm Sci, 99: 575e586, https://doi.org/10.1002/jps.21886.
  • Calderón-Oliver, M., Pedroza-Islas, R., Escalona-Buendía, H. B., Pedraza-Chaverri, J., Ponce-Alquicira, E. (2017). Comparative study of the microencapsulation by complex coacervation of nisin in combination with an avocado antioxidant extract. Food Hydrocoll, 62: 49-57, https://doi.org/10.1016/j.foodhyd.(2016).07.028.
  • Can Karaca, A., Guzel, O., Ak, M. M. (2016). Effects of processing conditions and formulation on spray drying of sour cherry juice concentrate. J Sci Food Agric, 96: 449e455, https://doi.org/10.1002/jsfa.7110.
  • Caparino, O. A., Tang, J., Nindo, C. I., Sablani, S. S., Powers, J. R., ve Fellman, J. K. (2012). Effect of drying methods on the physical properties and microstructures of mango (Philippine “Carabao” var.) powder. J Food Eng, 111: 135e148, https://doi.org/10.1016/j.jfoodeng.2012.01.010.
  • Champagne, C. P., Fustier, P. (2007). Microencapsulation for the improved delivery of bioactive compounds into foods. Curr Opin Biotechnol 18: 184–190, https://doi.org/10.1016/j.copbio.2007.03.001.
  • Chan, S. Y., Choo, W. S. (2013). Effect of extraction conditions on the yield and chemical properties of pectin from cocoa husks. Food Chem, 141(4): 3752–3758, https://doi.org/10.1016/j.foodchem.2013.06.097.
  • Chavez, B. E., Ledeboer, A. M. (2007). Drying of probiotics: optimization of formulation and process to enhance storage survival. Dry Technol, 25 (7-8): 1193–1201, https://doi.org/10.1080/07373930701438576.
  • Chegini, G. R., Ghobadian, B. (2005). Effect of Spray-Drying Conditions on Physical Properties of Orange Juice Powder. Dry Technol, 23: 657–668, https://doi.org/10.1081/DRT-200054161.
  • Chen, M. L., Ning, P., Jiao, Y., Xu, Z., & Cheng, Y. H. (2021). Extraction of antioxidant peptides from rice dreg protein hydrolysate via an angling method. Food Chemistry, 337: 128069, https://doi.org/10.1016/j.foodchem.2020.128069.
  • Chronakis, I. S., Triantafyllou, A. Ö., Öste, R. (2004). Solid-state characteristics and redispersible properties of powders formed by spray-drying and freeze-drying cereal dispersions of varying (1 → 3, 1 → 4)- β-glucan content. J Cereal Sci, 40: 183-193, https://doi.org/10.1016/j.jcs.2004.03.004.
  • Chuah, L., Rashih, (2012). Optimization of spray drying process parameters of Piper betle L. (Sirih) leaves extract coated with maltodextrin. J Chem Pharm, 4(3): 1833-1841. 4, ID: 8315610.
  • Correia, R., Grace, M. H., Esposito, D., Lila, M. A. (2017). Wild blueberry polyphenol-protein food ingredients produced by three drying methods: Comparative physico-chemical properties, phytochemical content, and stability during storage. Food Chem, 340: 553-562, https://doi.org/10.1016/j.powtec.(2018).09.063.
  • Corrigan, O. I. (1995). Thermal analysis of spray dried products. Thermochim Acta, 248: 245-258, https://doi.org/10.1016/0040-6031(94)01891-J.
  • Cuq, B., Rondet, E., Abecassis, J. (2011). Food powders engineering, between knowhow and science: Constraints, stakes and opportunities, Powder Technol, 208(2): 244-251, https://doi.org/10.1016/j.powtec.(2010).08.012.
  • Dalmoro, A., Barba, A. A., Lamberti, G., d’Amore, M. (2012). Intensifying the microencapsulation process: Ultrasonic atomization as an innovative approach. Eur J Pharm Biopharm, 80: 471e477, https://doi.org/10.1016/j.ejpb.2012.01.006.
  • De Leonardis, A., Macciola, V., Iorizzo, M., Lombardi, S. J., Lopez, F., & Marconi, E. (2018). Effective assay for olive vinegar production from olive oil mill wastewaters. Food chemistry, 240, 437-440, https://doi.org/10.1016/j.foodchem.2017.07.159.
  • Delgado, A. E., Rubiolo, A. C. (2005). Microstructural changes in strawberry after freezing and thawing processes. Lebensmittel-Wiss. U.-Technol, 38(2): 135–142, https://doi.org/10.1016/j.lwt.2004.04.015.
  • Dhanalakshmi, K. Ghosal, S., Bhattacharya, S. (2011). Agglomeration of Food Powder and Applications. Crit Rev Food Sci Nutr, 51(5) : 432-441; DOI: 10.1080/10408391003646270.
  • Donsì, G., Ferrari, G., Matteo, D. I. (2001). Utilization of combined processes in freeze-drying of shrimps. Food Bioprod Process, 79(3): 152–159, DOI: 10.1205/096030801750425244.
  • Đorđević, V., Balanč, B., Belščak-Cvitanović, A., Lević,S., Trifković, K., Kalušević, A., Kostić, I., Komes, D., Bugarski, B., Nedović, V. (2015). Trends in Encapsulation Technologies for Delivery of Food Bioactive Compounds. Food Eng Rev, 7: 452–490, https://doi.org/10.1007/s12393-014-9106-7.
  • Ermiş, E., Karasu, E. N. (2020). Spray dryıng of de-oıled sunflower proteın extracts: functıonal propertıes and characterızatıon of the powder. Gıda: J Food, 45 (1): 39-49, DOI: 10.15237/gida.GD19096.
  • Fang, Z. X., Bhandari, B. (2011). Effect of spray drying and storage on the stability of bayberry polyhenols. Food Chem, 129: 1139-1147, DOI: 10.1016/j.foodchem.2011.05.093.
  • Fazaeli, M., Emam-Djomeh, Z., Kalbasi Ashtari, A., Omid, M. (2012). Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food Bioprod Process, 90: 667e675, https://doi.org/10.1016/j.fbp.2012.04.006.
  • Filkova, I., Huang, L. X., Mujumdar, A. S. (2006). Industrial Spray Drying Systems, Handbook of Industrial Drying, Boca Raton, (Mujumdar, A. S chief ed.), p 215-256.
  • Gabriel Quintana, G., Gerbino, E., Gómez-Zavaglia, A. (2017). Okara: A Nutritionally Valuable By-product Able to Stabilize Lactobacillus plantarum during Freeze-drying, Spray-drying, and Storage. Front Microbiol, 8: 641, https://doi.org/10.3389/fmicb.(2017).00641.
  • Galanakis, C. M., Tornberg, E., Gekas, V. (2010). Clarification of high-added value products from olive mill wastewater. J Food Eng, 99: 190-197, https://doi.org/10.1016/j.jfoodeng.2010.02.018.
  • Georgetti, S. R., Casagrande, R., Souza, C. R. F., Oliveira, W. P., ve Fonseca, M. J. V. (2008). Spray drying of the soybean extract: effects on chemical properties and antioxidant activity. LWT-Food Sci Technol, 41(8): 1521e1527, https://doi.org/10.1016/j.lwt.2007.09.001.
  • Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A. and Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients. Food Res Int, 40(9): 1107-1121, https://doi.org/10.1016/j.foodres.2007.07.004.
  • Gibbs, B. F., Kermasha, S., Alli, I., Mulligan, C. N. (1999). Encapsulation in the food industry: A review. Int J Food Sci Nutr, 50: 213-224, https://doi.org/10.1080/096374899101256.
  • Gibert, H., Boeh-Ocansey, O. (1985). A study of the primary phase of food freeze-drying in vacuo. Dry Technol, 3(3): 349–372, https://doi.org/10.1080/07373938508916276.
  • Gong, Z., Zhang, M., Sun, J. (2007). Physico-chemical properties of cabbage powder as affected by drying methods. Dry Technol, 25(5): 913-916, https://doi.org/10.1080/07373930701372239.
  • Goula, A. M., Adamopoulos, K. G. (2010). A new technique for spray drying orange juice concentrate. Innov Food Sci Emerg Technol, 11(2): 342-351, https://doi.org/10.1016/j.ifset.2009.12.001,
  • Goula, A. M., Adamopoulos, K. G. (2003). Spray Drying Performance of a Laboratory Spray Dryer for Tomato Powder Preparation. Dry Technol, 21(7):1273-1289, DOI: 10.1081/DRT-120023180.
  • Goula, A. M., Adamopoulos, K. G., Kazakis, N. A. (2004). Influence of Spray Drying Conditions on Tomato Powder Properties. Dry Technol, 22(5): 1129-1151, DOI: 10.1081/DRT-120038584.
  • Goula, A. M., Adamopoulos, K. G., Kazakis, N. A. (2007). Influence of spray drying conditions on tomato powder properties. Dry Technol, 22(5): 1129e1151, https://doi.org/10.1081/DRT-120038584.
  • Grabowski, S., Marcotte, M., Poirier, M., Kudra, T. (2002). Drying characteristics of osmotically pretreated cranberries energy and quality aspects. Dry Technol, 20(10): 1989 – 2004, https://doi.org/10.1081/DRT-120015580.
  • Gu, M., Fang, H., Gao, Y., Su,T., Niu, Y., Yu, L. (2020). Characterization of enzymatic modified soluble dietary fiber from tomato peels with high release of lycopene. Food Hydrocoll, 99: 105321, https://doi.org/10.1016/j.foodhyd.2019.105321.
  • Gupta, P., Nayak, K. K. (2015). Characteristics of protein-based biopolymer and its application. Polym Eng Sci, 55: 485-498, https://doi.org/10.1002/pen.23928.
  • Haque, M. A., Timilsena, Y. P., Adhikari, B. (2015). Spray drying. Drying Technologies for Foods: Fundamentals ve Applications New India Publishing Agency, India, (Nema, P. K., chief ed..), pp.79-106.
  • Hashtjin, A. M., Abbasi, S. (2015). Nano-emulsification of orange peel essential oil using sonication and native gums. Food Hydrocoll, 44: 40-48, https://doi.org/10.1016/j.foodhyd.2014.08.017.
  • Herrero M., Sánchez-Camargo, A. P., Cifuentes, A., Ibáñez, E. (2015). Plants, seaweeds, microalgae and food by-products as natural sources of functional ingredients obtained using pressurized liquid extraction and supercritical fluid extraction. Trends Analyt Chem, 71: 26-38, https://doi.org/10.1016/j.trac.2015.01.018.
  • Hua, M., Lu, J., Qu, D., Liu, C., Zhang, L., Li, S., Chen, J., Sun, Y. (2019). Structure, physicochemical properties and adsorption function of insoluble dietary fiber from ginseng residue: A potential functional ingredient. Food Chem, 286: 522-529, https://doi.org/10.1016/j.foodchem.2019.01.114.
  • Intipunya, P., Bhandari, B. R. (2010). Chemical deterioration and physical instability of food and beverages. Handbook on Spray Drying Applications for Food Industries, Woodhead Publishing, , Sawston, (Skibsted, L., chief ed.), pp.663-700.
  • Jafari, S. M., Ghalenoei, M. G., Dehnad, D. (2017). Influence of spray drying on water solubility index, apparent density, and anthocyanin content of pomegranate juice powder. Powder Technol, 311: 59-65, https://doi.org/10.1016/j.powtec.2017.01.070.
  • Liu, J., Li, P., Jiang, Z., Yang, R., Zhang, W. (2019). Characterisation of peanut protein concentrates from industrial aqueous extraction processing prepared by spray and freze drying methods. Int J Food Sci Technol, 54, 1597–1608. doi:10.1111/ijfs.14028.
  • Kalogeropoulos, N., Chiou, A., Pyriochou, V., Peristeraki, A., Karathanos, V. T. (2012). Bioactive phytochemicals in industrial tomatoes and their processing byproducts. LWT - Food Sci Technol, 49(2): 213-216, https://doi.org/10.1016/j.lwt.2011.12.036.
  • Keshani, S., Daud, W. R. W., Nourouzi, M. M., Namvar, F., Ghasemi, M. (2015). Spray drying: An overview on wall deposition, process and modeling. J Food Eng, 146: 152–162, https://doi.org/10.1016/j.jfoodeng.2014.09.004.
  • Kuck, L. S., Noreña, C. P. Z. (2016). Microencapsulation of grape (Vitis labrusca var. Bordo) skin phenolic extract using gum Arabic, polydextrose, and partially hydrolyzed guar gum as encapsulating agents. Food Chem, 194: 569-576. https://doi.org/10.1016/j.foodchem.(2015).08.066.
  • Kumar, P., ve Mishra, H. N. (2004). Yoghurt powder-A review of process technology, storage and utilization. Food and Bioprod Process, 82: 133e142, https://doi.org/10.1205/0960308041614918.
  • Laokuldilok, T., Kanha, N. (2015). Effects of processing conditions on powder properties of black glutinous rice (Oryza sativa L.) bran anthocyanins produced by spray drying and freeze drying. LWT - Food Sci Technol, 64(1): 405-411. https://doi.org/10.1016/j.lwt.(2015).05.015.
  • León-Martínez, F. M., Méndez-Lagunas, L. L., Rodríguez-Ramírez, J. (2010). Spray drying of nopal mucilage (Opuntia ficus-indica): Effects on powder properties and characterization. Carbohydr Polym, 81(4): 864-870, https://doi.org/10.1016/j.carbpol.2010.03.061.
  • Lin, C. S. K., Pfaltzgraff, L. A., Herrero-Davila, L., Mubofu, E. B., Abderrahim, S., Clark, J. H., Koutinas, A. A., Kopsahelis, N., Stamatelatou, K., Dickson, F., et al. (2013). Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ Sci, 6, 426–464, https://doi.org/10.1039/C2EE23440H.
  • Luque, R., Clark, H. J. (2013). Valorisation of food residues: Waste to wealth using green chemical Technologies. Sustain Chem Process, 1, 10-12, https://doi.org/10.1186/2043-7129-1-10.
  • Maa, Y. F., Costantino, H., Nguyen, P. A., ve Hsu, C. (1997). The effect of operating and formulation variables on the morphology of spray dried protein particles. Pharm Dev Technol, 2: 213e223, https://doi.org/10.3109/10837459709031441.
  • Maa, Y. F., Nguyen, P., Sit, K. and Hsu, C.C. (1998). Spray-drying performance of a bench-top spray dryer for protein aerosol powder preparation. Biotechnol Bioeng, 60(3): 301–309, https://doi.org/10.1002/(SICI)1097-0290(19981105)60:3<301::AID-BIT5>3.0.CO;2-L.
  • Machado, A. P. D., Rezende, C. A., Rodrigues, R. A., Barbero, G. F., Rosa, P. D. V. E., Martinez, J. (2018). Encapsulation of anthocyanin-rich extract from blackberry residues by spray-drying, freeze-drying and supercritical antisolvent. Powder Technol, 340: 553-562. DOI10.1016/j.powtec.(2018).09.063.
  • Makris, D. P., Boskou, G., Andrikopoulos, N. K. (2007). Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. J Food Compos Anal, 20(2): 125-132, https://doi.org/10.1016/j.jfca.2006.04.010.
  • Marques L. G., Freire, J. T. (2005). Analysis of freeze-drying of tropical fruits. Drying Technol, 23(9-11): 2169-2184, https://doi.org/10.1080/07373930500212438.
  • Marques, G. R., Borges, S. V., Mendonça, K. S. D., Fernandes, R. V. B., Menezesab, E. G. T. (2014). Application of maltodextrin in green corn extract powder production. Powder Technol, 263: 89-95, https://doi.org/10.1016/j.powtec.2014.05.001.
  • Masters, K. (1991). Spray Drying Handbook, , 5th ed; Longman Scientific and Technical, London.
  • Maury, M., Murphy, K., Kumar, S., Shi, L., ve Lee, G. (2005). Effects of process variables on the powder yield of spray-dried trehalose on a laboratory spray-dryer. Eur J Pharm Biopharm, 59: 565e573, https://doi.org/10.1016/j.ejpb.2004.10.002.
  • Mirabella N., Castellani V., Sala, S. (2014). Current options for the valorization of food manufacturing waste: a review. J Clean Prod, 65: 28–41, https://doi.org/10.1016/j.jclepro.2013.10.051.
  • Morgan CA, Herman N, White PA, Vesey G. (2006). Preservation of micro-organisms by drying; a review. J Microbiol Methods, 66(2): 183-19, https://doi.org/10.1016/j.mimet.2006.02.017.
  • Munekata, P. E. S., Franco, D., Trindade, M. A., Lorenzo, J. M. (2016). Characterization of phenolic composition in chestnut leaves and beer residue by LC-DAD-ESI-MS. LWT - Food SciTechnol, 68: 52-58, https://doi.org/10.1016/j.lwt.2015.11.017.
  • Murador, D. C., Braga, A. R. C., Martins, P. L., Mercadante, A. Z., & de Rosso, V. V. (2019). Ionic liquid associated with ultrasonic-assisted extraction: A new approach to obtain carotenoids from orange peel. Food research international, 126: 108653, https://doi.org/10.1016/j.foodres.2019.108653.
  • Murali, S., Kar, A., Mohapatra, D., Kalia, P. (2014). Encapsulation of black carrot juice using spray and freeze drying. Food Sci Technol Int, 21(8); https://doi.org/10.1177/1082013214557843.
  • Muzaffer, K., Kumar, P. (2015). Parameter optimization for spray drying of tamarind pulp using responsesurface methodology. Powder Technol, 279: 179-184, https://doi.org/10.1016/j.powtec.2015.04.010.
  • Neacsua, l. M., Vaughana, N., Raikosa, V., Multaria, S., Duncanb, G. J., Duthiea, G. G., Russella, G. W. (2015). Phytochemical profile of commercially available food plant powders: their potential role in healthier food reformulations. Food Chem, 179: 159-169, https://doi.org/10.1016/j.foodchem.2015.01.128.
  • Nindo, C. I., Tang, J., (2007). Refractance Window dehydration technology: a novel contact drying method. Dry Technol, 25: 37–48, https://doi.org/10.1080/07373930601152673.
  • Oetjen, G.W., Haseley, P. (2004). Freeze-drying second ed. Wiley-VCH, Germany, (Haseley, P. chirf ed.).
  • Oliveira, T. I. S., Rosa, M. F., Cavalcante, F. L., Pereira, P. H. F., Moates, G. K., Wellner, N., Azeredo, H. M. C. (2016). Optimization of pectin extraction from banana peels with citric acid by using response surface methodology. Food Chem, 198: 113–118, https://doi.org/10.1016/j.foodchem.2015.08.080.
  • Oreopoulou, V., Tzia, C. (2007). Utilization of plant by-products for the recovery of proteins, dietary fibers, antioxidants, and colorants, Utilization of by-products and treatment of waste in the food industry. Science and Business Media, (Oreopoulou, V. chief ed.), 209-232.
  • Papadakis, S. E., Gardeli, C. Tzia, C. (2006). Spray drying of raisin juice concentrat. Dry Technol, 24: 173-180, https://doi.org/10.1080/07373930600559019.
  • Papoutsis, K., Golding, C. B., Vuong, Q., Pristijono, P., Stathopoulos, C. E., Scarlett, C. J., Bowyer, M. (2018). Encapsulation of Citrus By-Product Extracts by Spray-Drying and Freeze-Drying Using Combinations of Maltodextrin with Soybean Protein and ι-Carrageenan. Foods, 7(7): 115; https://doi.org/10.3390/foods7070115.
  • Pereira, P. H. F., Oliveira, T. I. S., Rosa, M. F., Cavalcante, F. L., Moates, G. K., Wellner, N., Azeredo, H. M. C. (2016). Pectin extraction from pomegranate peels with citric acid. Int J Biol Macromol, 88: 373–379, https://doi.org/10.1016/j.ijbiomac.2016.03.074.
  • Pereira, R. M., López, B. G. C., Diniz, S. N., Antunes, A. A., Garcia, D. M., Oliveira, C. R., & Marcucci, M. C. (2017). Quantification of flavonoids in Brazilian orange peels and industrial orange juice processing wastes. Agricultural Sciences, 8(07): 631, Doi: 10.4236/as.2017.87048.
  • Phisut, N. (2012). Spray drying technique of fruit juice powder: Some factors influencing the properties of product. Int Food Res J, 19: 1297-1306.
  • Pikal, M. J., Shah, S., Roy, M. L., Putman, R. (1990). The secondary drying stage of freeze-drying: drying kinetics as a function of temperature and chamber pressure. Int J Pharm, 60: 203-217, https://doi.org/10.1016/0378-5173(90)90074-E.
  • Pisano, R., Barresi A. A., Fissore, D. 2011 Innovation in monitoring food freeze drying. Dry Technol, 29 (16): 1920-1931, https://doi.org/10.1080/07373937.2011.596299.
  • Prinn, K. B., Costantino, H. R., Tracy, M. (2002). Statistical Modeling of protein spray drying at the lab scale. AAPS PharmSciTech, 3: 32–39, https://doi.org/10.1208/pt030104.
  • Putnik, P., Bursać Kovacević, D., Režek Jambrak, A., Barba, F. J., Cravotto, G., Binello, A., Shpigelman, A. (2017). Innovative “green” and novel strategies for the extraction of bioactive added value compounds from citruswastes. Molecules, 22(5), https://doi.org/10.3390/molecules22050680.
  • Rambhatla, S., Tchessalov, S., Pıkal, M. J. (2006). Heat and mass transfer scale-up issues during freeze-drying, III: Control and characterization of dryer differences via operational qualifi cation tests. AAPS PharmSciTech, 7(2): E1–E10, doi: 10.1208/pt070239.
  • Ratti, C. (2001). Hot air and freeze-drying of high-value foods: A review. J Food Eng, 49 (4): 311-319, https://doi.org/10.1016/S0260-8774(00)00228-4.
  • Ratti, C. (2013). Freeze drying for food powder production. Handbook of Food Powders Woodhead Publishing Series in Food Science, Technology and Nutrition, (Bhandari, B., chief ed.), Sawston, pp. 57-84.
  • Rey, L. 1964. Fundamentals aspects of lyophilization. Aspects Théoriqueset Industriels de la Lyophilization, 23-43.
  • Rezende, Y. R. R. S., Nogueira, J. P., Narain, N. (2018). Microencapsulation of extracts of bioactive compounds obtained from acerola (Malpighia emarginata DC) pulp and residue by spray and freeze drying: Chemical, morphological and chemometric characterization. Food Chem, 254: 281-291, https://doi.org/10.1016/j.foodchem.2018.02.026.
  • Rocha, C. B. D., Noreña, C. P. Z. (2020). Microencapsulation and controlled release of bioactive compounds from grape pomace. Dry Technol, 1-15, DOI: 10.1080/07373937.(2020).1741004.
  • Rodríguez, R., Jiménez, A., Fernández-Bolaños, J., Guillén, R., Heredia. A. (2006). Dietary fibre from vegetable products as source of functional ingredients. Trends Food Sci Technol, 17, 3-15, https://doi.org/10.1016/j.tifs.2005.10.002.
  • Saikia, S., Mahnot, N. K., Mahanta, C. L. (2015). Optimisation of phenolic extraction from Averrhoa carambola pomace by response surface methodology and its microencapsulation by spray and freeze drying. Food Chem, 171: 144-152, https://doi.org/10.1016/j.foodchem.(2014).08.064.
  • Salem, A., Fakhfakh, N., Jridi, M., Abdelhedi, O., Nasri, M., Debeaufort, F., Zouari, N. (2020). Microstructure and characteristic properties of dogfish skin gelatin gels prepared by freeze/spray-drying methods. Int J Biol Macromol, 162: 1-10, https://doi.org/10.1016/j.ijbiomac.(2020).06.033.
  • Schössler, K., Jäger, H., Knorr, D. (2012). Novel contact ultrasound system for the accelerated freeze-drying of vegetables. Innov Food Sci Emerg Technol, 16: 113-120, https://doi.org/10.1016/j.ifset.2012.05.010.
  • Shishir, M. R. I., Chen, W. (2017). Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends Food Sci Technol, 65: 49-67. https://doi.org/10.1016/j.tifs.(2017).05.006.
  • Souza, A. S., Borges, S. V., Magalhães, N. F., Ricardo, H. V., Cereda, M. P., Daiuto, E. R. (2009).. Influence of spray drying conditions on the physical properties of dried pulp tomato. Food Sci Technol, 29(2): 291-294, https://doi.org/10.1590/S0101-20612009000200008.
  • Sun, Q., Zhang, M.,Mujumdar, A. S. (2019). Recent developments of artificial intelligence in drying of fresh food: A review. Food Sci Nutr, 59(14): 2258-2275, https://doi.org/10.1080/10408398.2018.1446900.
  • Sun, X., Cameron, R. G., Bai, J. (2020). Effect of spray-drying temperature on physicochemical, antioxidant and antimicrobial properties of pectin/sodium alginate microencapsulated carvacrol. Food Hydrocoll, 100: 105420, https://doi.org/10.1016/j.foodhyd.2019.105420.
  • Telang, A. M., Thorat, B. N. (2010). Optimization of process parameters for spray drying of fermented soy milk. Dry Technol, 28 (12): 1445-1456, https://doi.org/10.1080/07373937.2010.482694.
  • Toledo, R., (2007). Fundamentals of Food Process Engineering, (Heldman, D. R. Chief ed.), 3rd ed. Aspen Publishers, Inc., Athens, GA, ISBN: 978-3-319-90097-1.
  • Tontul, İ., Topuz, A. (2017). Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends Food Sci Technol, 63: 91-102, https://doi.org/10.1016/j.tifs.2017.03.009.
  • Tóth, J., Pallai-Varsányi, E. (2006). Drying of bovine serum albumin on ınert particle surface in msb dryer. 15th International Drying Symposium, (IDS 2006), Budapest, Hungary, 20–23 p.
  • Tsouko, E., Alexandri, M., Fernandes, K. V., Guimarães Freire, D. M., Mallouchos, A., Koutinas, A. A. (2019). Extraction of Phenolic Compounds from Palm Oil Processing Residues and Their Application as Antioxidants. Food Technol Biotechnol, 57(1): 29–38, https://doi.org/10.17113/ftb.57.01.19.5784.
  • Venturi, F., Sanmartin, C., Taglieri, I., Nari, A., Andrich, G., Terzuoli, E., ... & Zinnai, A. (2017). Development of phenol-enriched olive oil with phenolic compounds extracted from wastewater produced by physical refining. Nutrients, 9(8): 916, https://doi.org/10.3390/nu9080916.
  • Vidović, S. S., Vladić, J. Z., Vaštag, Z. G., Zeković, Z. P., Popović, L. M. (2014). Maltodextrin as a carrier of health benefit compounds in Satureja montana dry powder extract obtained by spray drying technique. Powder Technol, 258: 209-215, https://doi.org/10.1016/j.powtec.2014.03.038.
  • Voda, A., Homan, N., Witek, M., Duijster, A., Van Dalen, G., Van der Sman, R., et al. (2012). The impact of freeze-drying on microstructure and rehydration properties of carrot. Food Res Int, 49(2): 687-693, https://doi.org/10.1016/j.foodres.2012.08.019.
  • Wang , H., Tong, X., Yuan, Y., Peng, X., Zhang, Q., Zhang, S., Xie, C., Zhang, X., Yan, S., Xu, J., Jiang , L., Qi, B. et al. (2020). Effect of Spray-Drying and Freeze-Drying on the Properties of Soybean Hydrolysates. J Chem, 2020; https://doi.org/10.1155/2020/9201457.
  • Wijngaard, H., Hossain, M.B., Rai, D. K., Brunton, N. (2012). Techniques to extract bioactive compounds from food by-products of plant origin. Food Res Int, 46(2): 505-513, https://doi.org/10.1016/j.foodres.2011.09.027.
  • Williams, N. A., Polli, G. P. (1984). The lyophilization of pharmaceuticals: a literature review. Sci Technol, 38: 48-59.
  • Woo M. W., Bhandari, B. (2013). Spray drying for food powder production. Handbook of Food Powders Processes and Properties. Woodhead Publishing Series in Food Science, Technology and Nutrition, Bhandari, B (chief edt.), Cambridge UK, pp. 29-56.
  • Yan, J. K., Wu, L. X., Cai, W. D., Xiao, G. S., Duan, Y., & Zhang, H. (2019). Subcritical water extraction-based methods affect the physicochemical and functional properties of soluble dietary fibers from wheat bran. Food chemistry, 298, 124987, https://doi.org/10.1016/j.foodchem.2019.124987.
  • Yerlikaya, S., Şen Arslan, H. (2019). Dondurularak ve püskürterek kurutulmuş süt tozlarının bazı mikrobiyolojik ve fizikokimyasal özelliklerinin karşılaştırılması. Bitlis Eren Univ J Sci & Technol, 8(2): 677 – 687, https://doi.org/10.17798/bitlisfen.511313.
  • Yu, Y., Lv, Y. (2019). Degradation kinetic of anthocyanins from rose (Rosa rugosa) as prepared by microencapsulation in freeze-drying and spray-drying. International Int. J. Food Prop 22(1): 2009 – 2021; https://doi.org/10.1080/10942912.(2019).1701011.
  • Zaky, A. A., Abd El-Aty, A. M., Ma, A., & Jia, Y. (2020). An overview on antioxidant peptides from rice bran proteins: extraction, identification, and applications. Critical Reviews in Food Science and Nutrition, 1-13, https://doi.org/10.1080/10408398.2020.1842324.
  • Zhang, R., Zhou, L., Li, J., Oliveira, H., Yang, N., Jin, W., Zhu, Z., Li, S., He, J. (2020). Microencapsulation of anthocyanins extracted from grape skin by emulsification/internal gelation followed by spray/freeze-drying techniques: Characterization, stability and bioaccessibility. LWT - Food Sci Tech, 123: 109097, https://doi.org/10.1016/j.lwt.(2020).109097.
  • Zhao, Q., Xiong, H., Selomulya, C., Chen, X. D., Huang, S., Ruan, X., Zhou, Q., Sun, W. (2013). Effects of Spray Drying and Freeze Drying on the Properties of Protein Isolate from Rice Dreg Protein. Food Bıoprocess Tech, 6: 1759–1769, https://doi.org/10.1007/s11947-012-0844-3.
  • Zhu, Z. J. He, J., Liu, G., Barba, F. J., Koubaa, M., Ding, L. et al.. (2016). Recent insights for the green recovery of inulin from plant food materials using non-conventional extraction technologies: A review. Innov Food Sci Emerg Tech, 3: 1-9, DOI: 10.1016/j.ifset.2015.12.023.

PRINCIPLES OF SPRAY DRYING AND FREEZE DRYING TECHNIQUES AND THEIR USE IN POWDER PRODUCTION FROM FOOD WASTES

Yıl 2021, Cilt: 46 Sayı: 3, 583 - 607, 15.05.2021
https://doi.org/10.15237/gida.GD21009

Öz

In this review article, literature studies on the production of powder products by spray and freeze drying methods after the extraction of food components from food waste and/or by-products are discussed. The extracts are dried and converted into powder form in order to increase the stability of compounds extracted from food wastes, such as phenolic compounds, vitamins, coloring and flavoring agents, proteins, fibers, and to ease their use in food formulations. In this article, spray and freeze dryer system components, working principles and effective factors in processes are evaluated, and especially recent studies evaluating both methods are discussed. It is clear that the spray drying and freeze drying processes and drying auxiliaries are effective on powder properties such as the yield, hygroscopicity, moisture content, adhesiveness, color, solubility, glass transition temperature, bulk density, microstructure, appearance under electron microscope, antioxidant capacity, anthocyanin and total carotenoid contents.

Proje Numarası

217O066

Kaynakça

  • Abdelwahed, W., Degobert, G., Stainmesse, S., Fessi, H. (2006). Freeze-drying of nanoparticles: Formulation, process and storage considerations. Adv Drug Deliv Rev, 58(15): 1688-171, https://doi.org/10.1016/j.addr.2006.09.017.
  • Adhikari, B. Howes, T., Bhandari, B. R., Troung, V. (2003). Surface stickiness of drops of carbohydrate and organic acid solutions during convective drying: Experiments and modelling. Dry Technol, 21(5): 839-873, https://doi.org/10.1081/DRT-120021689.
  • Arsa, S., Theerakulkait, C. (2018). Preparation, aroma characteristics and volatile compounds of flavorings from enzymatic hydrolyzed rice bran protein concentrate. J Food Sci Agric, 98(12): 4479-4487; https://doi.org/10.1002/jsfa.8972.
  • Arshadi, M., Attard, T. M., Lukasik, R. M., Brnčić, M., Da Costa Lopes, A. M., Finell, m. et al. (2016). Pre-treatment and extraction techniques for recovery of added value compounds from wastes throughout the agri-food chain. Green Chem, 18(23): 6160-6204, https://doi.org/10.1039/C6GC01389A.
  • Ayadi, M. A., Khemakhem, M., Belgith, H., Attia, H. (2008). Effect of moderate spray drying conditions on functionality of dried egg white and whole egg. J Food Sci, 73: E281–E287, https://doi.org/10.1111/j.1750-3841.2008.00811.x.
  • Ballesteros, L. F., Ramirez, M. J., Orrego, C. E., Teixeira, J. A., Mussatto, S. I. (2017). Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chem, 237: 623-631, https://doi.org/10.1016/j.foodchem.(2017).05.142.
  • Barbosa-Cánovas, G. V., Juliano, P. (2005). Physical and chemical properties of food powders. Encapsulated and Powdered Foods, 39 – 71.
  • Barbosa-Canovas, G. V., Vega-Mercado, H. (1996). Dehydration of foods. New York: Chapman ve Hall.
  • Bataglion, G. A., Da Silva, F. M. A., Eberlin, M. N., Koolen H. H. F. (2015). Determination of the phenolic composition from Brazilian tropical fruits by UHPLC-MS/MS. Food Chem, 180: 280-287, https://doi.org/10.1016/j.foodchem.2015.02.059.
  • Bhandari, B. (2013). Introduction to food powders, Handbook of food powders ( Bhandari, B., chief ed..), Woodhead Publishing, Sawston, p 688.
  • Bhandari, B. R., Datta, N., ve Howes, T. (1997). Problems associated with spray drying of sugar-rich foods. Dry Technol, 15: 671e684, https://doi.org/10.1080/07373939708917253.
  • Botrel, D. A., Barros Fernandes, R. V. D., Borges, S. V., Yoshida, M. I. (2014). Influence of wall matrix systems on the properties of spray-dried microparticles containing fish oil. Food Res Int, 62: 344-352, https://doi.org/10.1016/j.foodres.(2014).02.003.
  • Burgain, J., Petit, J., Scher, J., Rasch, R., Bhandari, B., Gaiani, C. (2017). Surface chemistry and microscopy of food powders, Prog Surf Sci, 92(4): 409-429, https://doi.org/10.1016/j.progsurf.(2017).07.002.
  • Cai, Y., ve Corke, H. (2000). Production and properties of spray-dried amaranthus betacyanin pigments. J Food Sci, 65: 1248e1252, https://doi.org/10.1111/j.1365-2621.2000.tb10273.x.
  • Cal, K., ve Sollohub, K. (2010). Spray drying technique. I: Hardware and process parameters. J Pharm Sci, 99: 575e586, https://doi.org/10.1002/jps.21886.
  • Calderón-Oliver, M., Pedroza-Islas, R., Escalona-Buendía, H. B., Pedraza-Chaverri, J., Ponce-Alquicira, E. (2017). Comparative study of the microencapsulation by complex coacervation of nisin in combination with an avocado antioxidant extract. Food Hydrocoll, 62: 49-57, https://doi.org/10.1016/j.foodhyd.(2016).07.028.
  • Can Karaca, A., Guzel, O., Ak, M. M. (2016). Effects of processing conditions and formulation on spray drying of sour cherry juice concentrate. J Sci Food Agric, 96: 449e455, https://doi.org/10.1002/jsfa.7110.
  • Caparino, O. A., Tang, J., Nindo, C. I., Sablani, S. S., Powers, J. R., ve Fellman, J. K. (2012). Effect of drying methods on the physical properties and microstructures of mango (Philippine “Carabao” var.) powder. J Food Eng, 111: 135e148, https://doi.org/10.1016/j.jfoodeng.2012.01.010.
  • Champagne, C. P., Fustier, P. (2007). Microencapsulation for the improved delivery of bioactive compounds into foods. Curr Opin Biotechnol 18: 184–190, https://doi.org/10.1016/j.copbio.2007.03.001.
  • Chan, S. Y., Choo, W. S. (2013). Effect of extraction conditions on the yield and chemical properties of pectin from cocoa husks. Food Chem, 141(4): 3752–3758, https://doi.org/10.1016/j.foodchem.2013.06.097.
  • Chavez, B. E., Ledeboer, A. M. (2007). Drying of probiotics: optimization of formulation and process to enhance storage survival. Dry Technol, 25 (7-8): 1193–1201, https://doi.org/10.1080/07373930701438576.
  • Chegini, G. R., Ghobadian, B. (2005). Effect of Spray-Drying Conditions on Physical Properties of Orange Juice Powder. Dry Technol, 23: 657–668, https://doi.org/10.1081/DRT-200054161.
  • Chen, M. L., Ning, P., Jiao, Y., Xu, Z., & Cheng, Y. H. (2021). Extraction of antioxidant peptides from rice dreg protein hydrolysate via an angling method. Food Chemistry, 337: 128069, https://doi.org/10.1016/j.foodchem.2020.128069.
  • Chronakis, I. S., Triantafyllou, A. Ö., Öste, R. (2004). Solid-state characteristics and redispersible properties of powders formed by spray-drying and freeze-drying cereal dispersions of varying (1 → 3, 1 → 4)- β-glucan content. J Cereal Sci, 40: 183-193, https://doi.org/10.1016/j.jcs.2004.03.004.
  • Chuah, L., Rashih, (2012). Optimization of spray drying process parameters of Piper betle L. (Sirih) leaves extract coated with maltodextrin. J Chem Pharm, 4(3): 1833-1841. 4, ID: 8315610.
  • Correia, R., Grace, M. H., Esposito, D., Lila, M. A. (2017). Wild blueberry polyphenol-protein food ingredients produced by three drying methods: Comparative physico-chemical properties, phytochemical content, and stability during storage. Food Chem, 340: 553-562, https://doi.org/10.1016/j.powtec.(2018).09.063.
  • Corrigan, O. I. (1995). Thermal analysis of spray dried products. Thermochim Acta, 248: 245-258, https://doi.org/10.1016/0040-6031(94)01891-J.
  • Cuq, B., Rondet, E., Abecassis, J. (2011). Food powders engineering, between knowhow and science: Constraints, stakes and opportunities, Powder Technol, 208(2): 244-251, https://doi.org/10.1016/j.powtec.(2010).08.012.
  • Dalmoro, A., Barba, A. A., Lamberti, G., d’Amore, M. (2012). Intensifying the microencapsulation process: Ultrasonic atomization as an innovative approach. Eur J Pharm Biopharm, 80: 471e477, https://doi.org/10.1016/j.ejpb.2012.01.006.
  • De Leonardis, A., Macciola, V., Iorizzo, M., Lombardi, S. J., Lopez, F., & Marconi, E. (2018). Effective assay for olive vinegar production from olive oil mill wastewaters. Food chemistry, 240, 437-440, https://doi.org/10.1016/j.foodchem.2017.07.159.
  • Delgado, A. E., Rubiolo, A. C. (2005). Microstructural changes in strawberry after freezing and thawing processes. Lebensmittel-Wiss. U.-Technol, 38(2): 135–142, https://doi.org/10.1016/j.lwt.2004.04.015.
  • Dhanalakshmi, K. Ghosal, S., Bhattacharya, S. (2011). Agglomeration of Food Powder and Applications. Crit Rev Food Sci Nutr, 51(5) : 432-441; DOI: 10.1080/10408391003646270.
  • Donsì, G., Ferrari, G., Matteo, D. I. (2001). Utilization of combined processes in freeze-drying of shrimps. Food Bioprod Process, 79(3): 152–159, DOI: 10.1205/096030801750425244.
  • Đorđević, V., Balanč, B., Belščak-Cvitanović, A., Lević,S., Trifković, K., Kalušević, A., Kostić, I., Komes, D., Bugarski, B., Nedović, V. (2015). Trends in Encapsulation Technologies for Delivery of Food Bioactive Compounds. Food Eng Rev, 7: 452–490, https://doi.org/10.1007/s12393-014-9106-7.
  • Ermiş, E., Karasu, E. N. (2020). Spray dryıng of de-oıled sunflower proteın extracts: functıonal propertıes and characterızatıon of the powder. Gıda: J Food, 45 (1): 39-49, DOI: 10.15237/gida.GD19096.
  • Fang, Z. X., Bhandari, B. (2011). Effect of spray drying and storage on the stability of bayberry polyhenols. Food Chem, 129: 1139-1147, DOI: 10.1016/j.foodchem.2011.05.093.
  • Fazaeli, M., Emam-Djomeh, Z., Kalbasi Ashtari, A., Omid, M. (2012). Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food Bioprod Process, 90: 667e675, https://doi.org/10.1016/j.fbp.2012.04.006.
  • Filkova, I., Huang, L. X., Mujumdar, A. S. (2006). Industrial Spray Drying Systems, Handbook of Industrial Drying, Boca Raton, (Mujumdar, A. S chief ed.), p 215-256.
  • Gabriel Quintana, G., Gerbino, E., Gómez-Zavaglia, A. (2017). Okara: A Nutritionally Valuable By-product Able to Stabilize Lactobacillus plantarum during Freeze-drying, Spray-drying, and Storage. Front Microbiol, 8: 641, https://doi.org/10.3389/fmicb.(2017).00641.
  • Galanakis, C. M., Tornberg, E., Gekas, V. (2010). Clarification of high-added value products from olive mill wastewater. J Food Eng, 99: 190-197, https://doi.org/10.1016/j.jfoodeng.2010.02.018.
  • Georgetti, S. R., Casagrande, R., Souza, C. R. F., Oliveira, W. P., ve Fonseca, M. J. V. (2008). Spray drying of the soybean extract: effects on chemical properties and antioxidant activity. LWT-Food Sci Technol, 41(8): 1521e1527, https://doi.org/10.1016/j.lwt.2007.09.001.
  • Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A. and Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients. Food Res Int, 40(9): 1107-1121, https://doi.org/10.1016/j.foodres.2007.07.004.
  • Gibbs, B. F., Kermasha, S., Alli, I., Mulligan, C. N. (1999). Encapsulation in the food industry: A review. Int J Food Sci Nutr, 50: 213-224, https://doi.org/10.1080/096374899101256.
  • Gibert, H., Boeh-Ocansey, O. (1985). A study of the primary phase of food freeze-drying in vacuo. Dry Technol, 3(3): 349–372, https://doi.org/10.1080/07373938508916276.
  • Gong, Z., Zhang, M., Sun, J. (2007). Physico-chemical properties of cabbage powder as affected by drying methods. Dry Technol, 25(5): 913-916, https://doi.org/10.1080/07373930701372239.
  • Goula, A. M., Adamopoulos, K. G. (2010). A new technique for spray drying orange juice concentrate. Innov Food Sci Emerg Technol, 11(2): 342-351, https://doi.org/10.1016/j.ifset.2009.12.001,
  • Goula, A. M., Adamopoulos, K. G. (2003). Spray Drying Performance of a Laboratory Spray Dryer for Tomato Powder Preparation. Dry Technol, 21(7):1273-1289, DOI: 10.1081/DRT-120023180.
  • Goula, A. M., Adamopoulos, K. G., Kazakis, N. A. (2004). Influence of Spray Drying Conditions on Tomato Powder Properties. Dry Technol, 22(5): 1129-1151, DOI: 10.1081/DRT-120038584.
  • Goula, A. M., Adamopoulos, K. G., Kazakis, N. A. (2007). Influence of spray drying conditions on tomato powder properties. Dry Technol, 22(5): 1129e1151, https://doi.org/10.1081/DRT-120038584.
  • Grabowski, S., Marcotte, M., Poirier, M., Kudra, T. (2002). Drying characteristics of osmotically pretreated cranberries energy and quality aspects. Dry Technol, 20(10): 1989 – 2004, https://doi.org/10.1081/DRT-120015580.
  • Gu, M., Fang, H., Gao, Y., Su,T., Niu, Y., Yu, L. (2020). Characterization of enzymatic modified soluble dietary fiber from tomato peels with high release of lycopene. Food Hydrocoll, 99: 105321, https://doi.org/10.1016/j.foodhyd.2019.105321.
  • Gupta, P., Nayak, K. K. (2015). Characteristics of protein-based biopolymer and its application. Polym Eng Sci, 55: 485-498, https://doi.org/10.1002/pen.23928.
  • Haque, M. A., Timilsena, Y. P., Adhikari, B. (2015). Spray drying. Drying Technologies for Foods: Fundamentals ve Applications New India Publishing Agency, India, (Nema, P. K., chief ed..), pp.79-106.
  • Hashtjin, A. M., Abbasi, S. (2015). Nano-emulsification of orange peel essential oil using sonication and native gums. Food Hydrocoll, 44: 40-48, https://doi.org/10.1016/j.foodhyd.2014.08.017.
  • Herrero M., Sánchez-Camargo, A. P., Cifuentes, A., Ibáñez, E. (2015). Plants, seaweeds, microalgae and food by-products as natural sources of functional ingredients obtained using pressurized liquid extraction and supercritical fluid extraction. Trends Analyt Chem, 71: 26-38, https://doi.org/10.1016/j.trac.2015.01.018.
  • Hua, M., Lu, J., Qu, D., Liu, C., Zhang, L., Li, S., Chen, J., Sun, Y. (2019). Structure, physicochemical properties and adsorption function of insoluble dietary fiber from ginseng residue: A potential functional ingredient. Food Chem, 286: 522-529, https://doi.org/10.1016/j.foodchem.2019.01.114.
  • Intipunya, P., Bhandari, B. R. (2010). Chemical deterioration and physical instability of food and beverages. Handbook on Spray Drying Applications for Food Industries, Woodhead Publishing, , Sawston, (Skibsted, L., chief ed.), pp.663-700.
  • Jafari, S. M., Ghalenoei, M. G., Dehnad, D. (2017). Influence of spray drying on water solubility index, apparent density, and anthocyanin content of pomegranate juice powder. Powder Technol, 311: 59-65, https://doi.org/10.1016/j.powtec.2017.01.070.
  • Liu, J., Li, P., Jiang, Z., Yang, R., Zhang, W. (2019). Characterisation of peanut protein concentrates from industrial aqueous extraction processing prepared by spray and freze drying methods. Int J Food Sci Technol, 54, 1597–1608. doi:10.1111/ijfs.14028.
  • Kalogeropoulos, N., Chiou, A., Pyriochou, V., Peristeraki, A., Karathanos, V. T. (2012). Bioactive phytochemicals in industrial tomatoes and their processing byproducts. LWT - Food Sci Technol, 49(2): 213-216, https://doi.org/10.1016/j.lwt.2011.12.036.
  • Keshani, S., Daud, W. R. W., Nourouzi, M. M., Namvar, F., Ghasemi, M. (2015). Spray drying: An overview on wall deposition, process and modeling. J Food Eng, 146: 152–162, https://doi.org/10.1016/j.jfoodeng.2014.09.004.
  • Kuck, L. S., Noreña, C. P. Z. (2016). Microencapsulation of grape (Vitis labrusca var. Bordo) skin phenolic extract using gum Arabic, polydextrose, and partially hydrolyzed guar gum as encapsulating agents. Food Chem, 194: 569-576. https://doi.org/10.1016/j.foodchem.(2015).08.066.
  • Kumar, P., ve Mishra, H. N. (2004). Yoghurt powder-A review of process technology, storage and utilization. Food and Bioprod Process, 82: 133e142, https://doi.org/10.1205/0960308041614918.
  • Laokuldilok, T., Kanha, N. (2015). Effects of processing conditions on powder properties of black glutinous rice (Oryza sativa L.) bran anthocyanins produced by spray drying and freeze drying. LWT - Food Sci Technol, 64(1): 405-411. https://doi.org/10.1016/j.lwt.(2015).05.015.
  • León-Martínez, F. M., Méndez-Lagunas, L. L., Rodríguez-Ramírez, J. (2010). Spray drying of nopal mucilage (Opuntia ficus-indica): Effects on powder properties and characterization. Carbohydr Polym, 81(4): 864-870, https://doi.org/10.1016/j.carbpol.2010.03.061.
  • Lin, C. S. K., Pfaltzgraff, L. A., Herrero-Davila, L., Mubofu, E. B., Abderrahim, S., Clark, J. H., Koutinas, A. A., Kopsahelis, N., Stamatelatou, K., Dickson, F., et al. (2013). Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ Sci, 6, 426–464, https://doi.org/10.1039/C2EE23440H.
  • Luque, R., Clark, H. J. (2013). Valorisation of food residues: Waste to wealth using green chemical Technologies. Sustain Chem Process, 1, 10-12, https://doi.org/10.1186/2043-7129-1-10.
  • Maa, Y. F., Costantino, H., Nguyen, P. A., ve Hsu, C. (1997). The effect of operating and formulation variables on the morphology of spray dried protein particles. Pharm Dev Technol, 2: 213e223, https://doi.org/10.3109/10837459709031441.
  • Maa, Y. F., Nguyen, P., Sit, K. and Hsu, C.C. (1998). Spray-drying performance of a bench-top spray dryer for protein aerosol powder preparation. Biotechnol Bioeng, 60(3): 301–309, https://doi.org/10.1002/(SICI)1097-0290(19981105)60:3<301::AID-BIT5>3.0.CO;2-L.
  • Machado, A. P. D., Rezende, C. A., Rodrigues, R. A., Barbero, G. F., Rosa, P. D. V. E., Martinez, J. (2018). Encapsulation of anthocyanin-rich extract from blackberry residues by spray-drying, freeze-drying and supercritical antisolvent. Powder Technol, 340: 553-562. DOI10.1016/j.powtec.(2018).09.063.
  • Makris, D. P., Boskou, G., Andrikopoulos, N. K. (2007). Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. J Food Compos Anal, 20(2): 125-132, https://doi.org/10.1016/j.jfca.2006.04.010.
  • Marques L. G., Freire, J. T. (2005). Analysis of freeze-drying of tropical fruits. Drying Technol, 23(9-11): 2169-2184, https://doi.org/10.1080/07373930500212438.
  • Marques, G. R., Borges, S. V., Mendonça, K. S. D., Fernandes, R. V. B., Menezesab, E. G. T. (2014). Application of maltodextrin in green corn extract powder production. Powder Technol, 263: 89-95, https://doi.org/10.1016/j.powtec.2014.05.001.
  • Masters, K. (1991). Spray Drying Handbook, , 5th ed; Longman Scientific and Technical, London.
  • Maury, M., Murphy, K., Kumar, S., Shi, L., ve Lee, G. (2005). Effects of process variables on the powder yield of spray-dried trehalose on a laboratory spray-dryer. Eur J Pharm Biopharm, 59: 565e573, https://doi.org/10.1016/j.ejpb.2004.10.002.
  • Mirabella N., Castellani V., Sala, S. (2014). Current options for the valorization of food manufacturing waste: a review. J Clean Prod, 65: 28–41, https://doi.org/10.1016/j.jclepro.2013.10.051.
  • Morgan CA, Herman N, White PA, Vesey G. (2006). Preservation of micro-organisms by drying; a review. J Microbiol Methods, 66(2): 183-19, https://doi.org/10.1016/j.mimet.2006.02.017.
  • Munekata, P. E. S., Franco, D., Trindade, M. A., Lorenzo, J. M. (2016). Characterization of phenolic composition in chestnut leaves and beer residue by LC-DAD-ESI-MS. LWT - Food SciTechnol, 68: 52-58, https://doi.org/10.1016/j.lwt.2015.11.017.
  • Murador, D. C., Braga, A. R. C., Martins, P. L., Mercadante, A. Z., & de Rosso, V. V. (2019). Ionic liquid associated with ultrasonic-assisted extraction: A new approach to obtain carotenoids from orange peel. Food research international, 126: 108653, https://doi.org/10.1016/j.foodres.2019.108653.
  • Murali, S., Kar, A., Mohapatra, D., Kalia, P. (2014). Encapsulation of black carrot juice using spray and freeze drying. Food Sci Technol Int, 21(8); https://doi.org/10.1177/1082013214557843.
  • Muzaffer, K., Kumar, P. (2015). Parameter optimization for spray drying of tamarind pulp using responsesurface methodology. Powder Technol, 279: 179-184, https://doi.org/10.1016/j.powtec.2015.04.010.
  • Neacsua, l. M., Vaughana, N., Raikosa, V., Multaria, S., Duncanb, G. J., Duthiea, G. G., Russella, G. W. (2015). Phytochemical profile of commercially available food plant powders: their potential role in healthier food reformulations. Food Chem, 179: 159-169, https://doi.org/10.1016/j.foodchem.2015.01.128.
  • Nindo, C. I., Tang, J., (2007). Refractance Window dehydration technology: a novel contact drying method. Dry Technol, 25: 37–48, https://doi.org/10.1080/07373930601152673.
  • Oetjen, G.W., Haseley, P. (2004). Freeze-drying second ed. Wiley-VCH, Germany, (Haseley, P. chirf ed.).
  • Oliveira, T. I. S., Rosa, M. F., Cavalcante, F. L., Pereira, P. H. F., Moates, G. K., Wellner, N., Azeredo, H. M. C. (2016). Optimization of pectin extraction from banana peels with citric acid by using response surface methodology. Food Chem, 198: 113–118, https://doi.org/10.1016/j.foodchem.2015.08.080.
  • Oreopoulou, V., Tzia, C. (2007). Utilization of plant by-products for the recovery of proteins, dietary fibers, antioxidants, and colorants, Utilization of by-products and treatment of waste in the food industry. Science and Business Media, (Oreopoulou, V. chief ed.), 209-232.
  • Papadakis, S. E., Gardeli, C. Tzia, C. (2006). Spray drying of raisin juice concentrat. Dry Technol, 24: 173-180, https://doi.org/10.1080/07373930600559019.
  • Papoutsis, K., Golding, C. B., Vuong, Q., Pristijono, P., Stathopoulos, C. E., Scarlett, C. J., Bowyer, M. (2018). Encapsulation of Citrus By-Product Extracts by Spray-Drying and Freeze-Drying Using Combinations of Maltodextrin with Soybean Protein and ι-Carrageenan. Foods, 7(7): 115; https://doi.org/10.3390/foods7070115.
  • Pereira, P. H. F., Oliveira, T. I. S., Rosa, M. F., Cavalcante, F. L., Moates, G. K., Wellner, N., Azeredo, H. M. C. (2016). Pectin extraction from pomegranate peels with citric acid. Int J Biol Macromol, 88: 373–379, https://doi.org/10.1016/j.ijbiomac.2016.03.074.
  • Pereira, R. M., López, B. G. C., Diniz, S. N., Antunes, A. A., Garcia, D. M., Oliveira, C. R., & Marcucci, M. C. (2017). Quantification of flavonoids in Brazilian orange peels and industrial orange juice processing wastes. Agricultural Sciences, 8(07): 631, Doi: 10.4236/as.2017.87048.
  • Phisut, N. (2012). Spray drying technique of fruit juice powder: Some factors influencing the properties of product. Int Food Res J, 19: 1297-1306.
  • Pikal, M. J., Shah, S., Roy, M. L., Putman, R. (1990). The secondary drying stage of freeze-drying: drying kinetics as a function of temperature and chamber pressure. Int J Pharm, 60: 203-217, https://doi.org/10.1016/0378-5173(90)90074-E.
  • Pisano, R., Barresi A. A., Fissore, D. 2011 Innovation in monitoring food freeze drying. Dry Technol, 29 (16): 1920-1931, https://doi.org/10.1080/07373937.2011.596299.
  • Prinn, K. B., Costantino, H. R., Tracy, M. (2002). Statistical Modeling of protein spray drying at the lab scale. AAPS PharmSciTech, 3: 32–39, https://doi.org/10.1208/pt030104.
  • Putnik, P., Bursać Kovacević, D., Režek Jambrak, A., Barba, F. J., Cravotto, G., Binello, A., Shpigelman, A. (2017). Innovative “green” and novel strategies for the extraction of bioactive added value compounds from citruswastes. Molecules, 22(5), https://doi.org/10.3390/molecules22050680.
  • Rambhatla, S., Tchessalov, S., Pıkal, M. J. (2006). Heat and mass transfer scale-up issues during freeze-drying, III: Control and characterization of dryer differences via operational qualifi cation tests. AAPS PharmSciTech, 7(2): E1–E10, doi: 10.1208/pt070239.
  • Ratti, C. (2001). Hot air and freeze-drying of high-value foods: A review. J Food Eng, 49 (4): 311-319, https://doi.org/10.1016/S0260-8774(00)00228-4.
  • Ratti, C. (2013). Freeze drying for food powder production. Handbook of Food Powders Woodhead Publishing Series in Food Science, Technology and Nutrition, (Bhandari, B., chief ed.), Sawston, pp. 57-84.
  • Rey, L. 1964. Fundamentals aspects of lyophilization. Aspects Théoriqueset Industriels de la Lyophilization, 23-43.
  • Rezende, Y. R. R. S., Nogueira, J. P., Narain, N. (2018). Microencapsulation of extracts of bioactive compounds obtained from acerola (Malpighia emarginata DC) pulp and residue by spray and freeze drying: Chemical, morphological and chemometric characterization. Food Chem, 254: 281-291, https://doi.org/10.1016/j.foodchem.2018.02.026.
  • Rocha, C. B. D., Noreña, C. P. Z. (2020). Microencapsulation and controlled release of bioactive compounds from grape pomace. Dry Technol, 1-15, DOI: 10.1080/07373937.(2020).1741004.
  • Rodríguez, R., Jiménez, A., Fernández-Bolaños, J., Guillén, R., Heredia. A. (2006). Dietary fibre from vegetable products as source of functional ingredients. Trends Food Sci Technol, 17, 3-15, https://doi.org/10.1016/j.tifs.2005.10.002.
  • Saikia, S., Mahnot, N. K., Mahanta, C. L. (2015). Optimisation of phenolic extraction from Averrhoa carambola pomace by response surface methodology and its microencapsulation by spray and freeze drying. Food Chem, 171: 144-152, https://doi.org/10.1016/j.foodchem.(2014).08.064.
  • Salem, A., Fakhfakh, N., Jridi, M., Abdelhedi, O., Nasri, M., Debeaufort, F., Zouari, N. (2020). Microstructure and characteristic properties of dogfish skin gelatin gels prepared by freeze/spray-drying methods. Int J Biol Macromol, 162: 1-10, https://doi.org/10.1016/j.ijbiomac.(2020).06.033.
  • Schössler, K., Jäger, H., Knorr, D. (2012). Novel contact ultrasound system for the accelerated freeze-drying of vegetables. Innov Food Sci Emerg Technol, 16: 113-120, https://doi.org/10.1016/j.ifset.2012.05.010.
  • Shishir, M. R. I., Chen, W. (2017). Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends Food Sci Technol, 65: 49-67. https://doi.org/10.1016/j.tifs.(2017).05.006.
  • Souza, A. S., Borges, S. V., Magalhães, N. F., Ricardo, H. V., Cereda, M. P., Daiuto, E. R. (2009).. Influence of spray drying conditions on the physical properties of dried pulp tomato. Food Sci Technol, 29(2): 291-294, https://doi.org/10.1590/S0101-20612009000200008.
  • Sun, Q., Zhang, M.,Mujumdar, A. S. (2019). Recent developments of artificial intelligence in drying of fresh food: A review. Food Sci Nutr, 59(14): 2258-2275, https://doi.org/10.1080/10408398.2018.1446900.
  • Sun, X., Cameron, R. G., Bai, J. (2020). Effect of spray-drying temperature on physicochemical, antioxidant and antimicrobial properties of pectin/sodium alginate microencapsulated carvacrol. Food Hydrocoll, 100: 105420, https://doi.org/10.1016/j.foodhyd.2019.105420.
  • Telang, A. M., Thorat, B. N. (2010). Optimization of process parameters for spray drying of fermented soy milk. Dry Technol, 28 (12): 1445-1456, https://doi.org/10.1080/07373937.2010.482694.
  • Toledo, R., (2007). Fundamentals of Food Process Engineering, (Heldman, D. R. Chief ed.), 3rd ed. Aspen Publishers, Inc., Athens, GA, ISBN: 978-3-319-90097-1.
  • Tontul, İ., Topuz, A. (2017). Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends Food Sci Technol, 63: 91-102, https://doi.org/10.1016/j.tifs.2017.03.009.
  • Tóth, J., Pallai-Varsányi, E. (2006). Drying of bovine serum albumin on ınert particle surface in msb dryer. 15th International Drying Symposium, (IDS 2006), Budapest, Hungary, 20–23 p.
  • Tsouko, E., Alexandri, M., Fernandes, K. V., Guimarães Freire, D. M., Mallouchos, A., Koutinas, A. A. (2019). Extraction of Phenolic Compounds from Palm Oil Processing Residues and Their Application as Antioxidants. Food Technol Biotechnol, 57(1): 29–38, https://doi.org/10.17113/ftb.57.01.19.5784.
  • Venturi, F., Sanmartin, C., Taglieri, I., Nari, A., Andrich, G., Terzuoli, E., ... & Zinnai, A. (2017). Development of phenol-enriched olive oil with phenolic compounds extracted from wastewater produced by physical refining. Nutrients, 9(8): 916, https://doi.org/10.3390/nu9080916.
  • Vidović, S. S., Vladić, J. Z., Vaštag, Z. G., Zeković, Z. P., Popović, L. M. (2014). Maltodextrin as a carrier of health benefit compounds in Satureja montana dry powder extract obtained by spray drying technique. Powder Technol, 258: 209-215, https://doi.org/10.1016/j.powtec.2014.03.038.
  • Voda, A., Homan, N., Witek, M., Duijster, A., Van Dalen, G., Van der Sman, R., et al. (2012). The impact of freeze-drying on microstructure and rehydration properties of carrot. Food Res Int, 49(2): 687-693, https://doi.org/10.1016/j.foodres.2012.08.019.
  • Wang , H., Tong, X., Yuan, Y., Peng, X., Zhang, Q., Zhang, S., Xie, C., Zhang, X., Yan, S., Xu, J., Jiang , L., Qi, B. et al. (2020). Effect of Spray-Drying and Freeze-Drying on the Properties of Soybean Hydrolysates. J Chem, 2020; https://doi.org/10.1155/2020/9201457.
  • Wijngaard, H., Hossain, M.B., Rai, D. K., Brunton, N. (2012). Techniques to extract bioactive compounds from food by-products of plant origin. Food Res Int, 46(2): 505-513, https://doi.org/10.1016/j.foodres.2011.09.027.
  • Williams, N. A., Polli, G. P. (1984). The lyophilization of pharmaceuticals: a literature review. Sci Technol, 38: 48-59.
  • Woo M. W., Bhandari, B. (2013). Spray drying for food powder production. Handbook of Food Powders Processes and Properties. Woodhead Publishing Series in Food Science, Technology and Nutrition, Bhandari, B (chief edt.), Cambridge UK, pp. 29-56.
  • Yan, J. K., Wu, L. X., Cai, W. D., Xiao, G. S., Duan, Y., & Zhang, H. (2019). Subcritical water extraction-based methods affect the physicochemical and functional properties of soluble dietary fibers from wheat bran. Food chemistry, 298, 124987, https://doi.org/10.1016/j.foodchem.2019.124987.
  • Yerlikaya, S., Şen Arslan, H. (2019). Dondurularak ve püskürterek kurutulmuş süt tozlarının bazı mikrobiyolojik ve fizikokimyasal özelliklerinin karşılaştırılması. Bitlis Eren Univ J Sci & Technol, 8(2): 677 – 687, https://doi.org/10.17798/bitlisfen.511313.
  • Yu, Y., Lv, Y. (2019). Degradation kinetic of anthocyanins from rose (Rosa rugosa) as prepared by microencapsulation in freeze-drying and spray-drying. International Int. J. Food Prop 22(1): 2009 – 2021; https://doi.org/10.1080/10942912.(2019).1701011.
  • Zaky, A. A., Abd El-Aty, A. M., Ma, A., & Jia, Y. (2020). An overview on antioxidant peptides from rice bran proteins: extraction, identification, and applications. Critical Reviews in Food Science and Nutrition, 1-13, https://doi.org/10.1080/10408398.2020.1842324.
  • Zhang, R., Zhou, L., Li, J., Oliveira, H., Yang, N., Jin, W., Zhu, Z., Li, S., He, J. (2020). Microencapsulation of anthocyanins extracted from grape skin by emulsification/internal gelation followed by spray/freeze-drying techniques: Characterization, stability and bioaccessibility. LWT - Food Sci Tech, 123: 109097, https://doi.org/10.1016/j.lwt.(2020).109097.
  • Zhao, Q., Xiong, H., Selomulya, C., Chen, X. D., Huang, S., Ruan, X., Zhou, Q., Sun, W. (2013). Effects of Spray Drying and Freeze Drying on the Properties of Protein Isolate from Rice Dreg Protein. Food Bıoprocess Tech, 6: 1759–1769, https://doi.org/10.1007/s11947-012-0844-3.
  • Zhu, Z. J. He, J., Liu, G., Barba, F. J., Koubaa, M., Ding, L. et al.. (2016). Recent insights for the green recovery of inulin from plant food materials using non-conventional extraction technologies: A review. Innov Food Sci Emerg Tech, 3: 1-9, DOI: 10.1016/j.ifset.2015.12.023.
Toplam 128 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Makaleler
Yazarlar

Elif Ezgi Özdemir Bu kişi benim 0000-0003-2800-9376

Ahmet Görgüç 0000-0003-3018-4595

Esra Gençdağ Bu kişi benim 0000-0002-4510-0940

Fatih Mehmet Yılmaz 0000-0002-1370-1231

Proje Numarası 217O066
Yayımlanma Tarihi 15 Mayıs 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 46 Sayı: 3

Kaynak Göster

APA Özdemir, E. E., Görgüç, A., Gençdağ, E., Yılmaz, F. M. (2021). PÜSKÜRTMELİ KURUTMA VE DONDURARAK KURUTMA YÖNTEMLERİNİN TEMELLERİ VE BU YÖNTEMLER İLE GIDA ATIKLARINDAN TOZ ÜRÜNLERİN ÜRETİMİ. Gıda, 46(3), 583-607. https://doi.org/10.15237/gida.GD21009
AMA Özdemir EE, Görgüç A, Gençdağ E, Yılmaz FM. PÜSKÜRTMELİ KURUTMA VE DONDURARAK KURUTMA YÖNTEMLERİNİN TEMELLERİ VE BU YÖNTEMLER İLE GIDA ATIKLARINDAN TOZ ÜRÜNLERİN ÜRETİMİ. GIDA. Mayıs 2021;46(3):583-607. doi:10.15237/gida.GD21009
Chicago Özdemir, Elif Ezgi, Ahmet Görgüç, Esra Gençdağ, ve Fatih Mehmet Yılmaz. “PÜSKÜRTMELİ KURUTMA VE DONDURARAK KURUTMA YÖNTEMLERİNİN TEMELLERİ VE BU YÖNTEMLER İLE GIDA ATIKLARINDAN TOZ ÜRÜNLERİN ÜRETİMİ”. Gıda 46, sy. 3 (Mayıs 2021): 583-607. https://doi.org/10.15237/gida.GD21009.
EndNote Özdemir EE, Görgüç A, Gençdağ E, Yılmaz FM (01 Mayıs 2021) PÜSKÜRTMELİ KURUTMA VE DONDURARAK KURUTMA YÖNTEMLERİNİN TEMELLERİ VE BU YÖNTEMLER İLE GIDA ATIKLARINDAN TOZ ÜRÜNLERİN ÜRETİMİ. Gıda 46 3 583–607.
IEEE E. E. Özdemir, A. Görgüç, E. Gençdağ, ve F. M. Yılmaz, “PÜSKÜRTMELİ KURUTMA VE DONDURARAK KURUTMA YÖNTEMLERİNİN TEMELLERİ VE BU YÖNTEMLER İLE GIDA ATIKLARINDAN TOZ ÜRÜNLERİN ÜRETİMİ”, GIDA, c. 46, sy. 3, ss. 583–607, 2021, doi: 10.15237/gida.GD21009.
ISNAD Özdemir, Elif Ezgi vd. “PÜSKÜRTMELİ KURUTMA VE DONDURARAK KURUTMA YÖNTEMLERİNİN TEMELLERİ VE BU YÖNTEMLER İLE GIDA ATIKLARINDAN TOZ ÜRÜNLERİN ÜRETİMİ”. Gıda 46/3 (Mayıs 2021), 583-607. https://doi.org/10.15237/gida.GD21009.
JAMA Özdemir EE, Görgüç A, Gençdağ E, Yılmaz FM. PÜSKÜRTMELİ KURUTMA VE DONDURARAK KURUTMA YÖNTEMLERİNİN TEMELLERİ VE BU YÖNTEMLER İLE GIDA ATIKLARINDAN TOZ ÜRÜNLERİN ÜRETİMİ. GIDA. 2021;46:583–607.
MLA Özdemir, Elif Ezgi vd. “PÜSKÜRTMELİ KURUTMA VE DONDURARAK KURUTMA YÖNTEMLERİNİN TEMELLERİ VE BU YÖNTEMLER İLE GIDA ATIKLARINDAN TOZ ÜRÜNLERİN ÜRETİMİ”. Gıda, c. 46, sy. 3, 2021, ss. 583-07, doi:10.15237/gida.GD21009.
Vancouver Özdemir EE, Görgüç A, Gençdağ E, Yılmaz FM. PÜSKÜRTMELİ KURUTMA VE DONDURARAK KURUTMA YÖNTEMLERİNİN TEMELLERİ VE BU YÖNTEMLER İLE GIDA ATIKLARINDAN TOZ ÜRÜNLERİN ÜRETİMİ. GIDA. 2021;46(3):583-607.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/