Araştırma Makalesi
BibTex RIS Kaynak Göster

LACTIPLANTIBACILLUS PLANTARUM EK148’İN ET PROTEİNLERİ İÇEREN ORTAMDA GAMA AMİNO BÜTİRİK ASİT ÜRETİMİ VE OPTİMİZASYONU

Yıl 2023, Cilt: 48 Sayı: 2, 271 - 284, 15.04.2023
https://doi.org/10.15237/gida.GD22087

Öz

Araştırmada, sucuk kaynaklı Lactiplantibacillus plantarum EK148 suşu gama amino bütirik asit (GABA) üretim düzeyi açısından değerlendirilmiştir. GABA üretimine, monosodyum glutamat (MSG) bulunmayan besi ortamına glutamik asit kaynağı olarak et protein izolatı edilerek, sıcaklık, pH ve fermantasyon süresi faktörlerinin etkisi değerlendirilmiştir. Deneysel tasarımda elde edilen yanıtlarla L. plantarum EK148 suşu için optimum koşullar % 10 protein ekstraktı konsantrasyonu, 33.3 ºC sıcaklık, pH 5.05 ve 96 saat fermantasyon süresi olarak belirlenmiştir. Model ile L. plantarum EK148 suşu kullanılarak elde edilen veriler arasındaki uyum eksikliğinin önemsiz olduğu, protein ekstraktı konsantrasyonu ve sıcaklığın GABA üretimi üzerine önemli düzeyde etkili olduğu tespit edilmiştir. Yapılan bu çalışma ile et proteinlerinin glutamik asit kaynağı olarak kullanımı sağlanmış ve MSG içermeyen ortamda L. plantarum EK148 suşu kullanılarak GABA üretimi gerçekleştirilmiştir.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

120O877

Teşekkür

Bu çalışmayı TOVAG 120O877 proje numarası ile maddi olarak destekleyen Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)’a teşekkür ederiz

Kaynakça

  • Abdou, A. M., Higashiguchi, S., Horie, K., Kim, M., Hatta, H., Yokogoshi, H. (2006). Relaxation and immunity enhancement effects of γ-aminobutyric acid (GABA) administration in humans, Biofactors, 26(3), 201-208.
  • Adeghate, E., Ponery, A.S. (2002). GABA in the endocrine pancreas: cellular localization and function in normal and diabetic rats, Tissue Cell 34, 1-6.
  • Boonstra, E., de Kleijn, R., Colzato, L. S., Alkemade, A., Forstmann, B. U., Nieuwenhuis, S. (2015). Neurotransmitters as food supplements: the effects of GABA on brain and behavior. Frontiers in psychology, 6, 1520.
  • Box, G. E., Draper, N. R. (2007). Response surfaces, mixtures, and ridge analyses, John Wiley & Sons.
  • Cataldo, P. G., Villegas, J. M., Savoy de Giori, G., Saavedra, L., Hebert, E. M. (2020). Enhancement of γ-aminobutyric acid (GABA) production by Lactobacillus brevis CRL 2013 based on carbohydrate fermentation, International journal of food microbiology, 333, 108792. doi: https://doi.org/10.1016/j.ijfoodmicro.(2020).108792
  • Coda, R., Rizzello, C. G., Gobbetti, M. (2010). Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of γ-aminobutyric acid (GABA), International journal of food microbiology, 137(2), 236-245.
  • Cui, Y., Miao, K., Niyaphorn, S., Qu, X. (2020). Production of Gamma-Aminobutyric Acid from Lactic Acid Bacteria: A Systematic Review, International Journal of Molecular Sciences, 21(3), 995. Retrieved from https://www.mdpi.com/1422-0067/21/3/995
  • De Biase, D., Tramonti, A., Bossa, F., Visca, P. (1999). The response to stationary‐phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system, Molecular microbiology, 32(6), 1198-1211.
  • Dhakal, R., Bajpai, V. K., Baek, K. H. (2012). Production of GABA (γ-aminobutyric acid) by microorganisms: a review, Brazilian Journal of Microbiology,43(4), 1230-1241.
  • Diana, M., Tres, A., Quílez, J., Llombart, M., Rafecas, M. (2014). Spanish cheese screening and selection of lactic acid bacteria with high gamma-aminobutyric acid production, LWT-Food Science and Technology, 56(2), 351-355.
  • Eroğlu, E. İ., Ayaz, A. (2018). Gıda Katkı Maddelerinin Sağlık Üzerine Etkileri: Risk Değerlendirme. Beslenme ve Diyet Dergisi, 46(3), 311-319.
  • Granato, D., Ribeiro, J. C. B., Castro, I. A., Masson, M. L. (2010). Sensory evaluation and physicochemical optimisation of soy-based desserts using response surface methodology, Food Chemistry 121(3):899-906.
  • Higuchi, T., Hayashi, H., Abe, K. (1997). Exchange of glutamate and gamma-aminobutyrate in a Lactobacillus strain, Journal of bacteriology, 179(10), 3362-3364.
  • Kalueff, A. V., Nutt, D. J. (2007). Role of GABA in anxiety and depression. Depression and anxiety, 24(7), 495-517.
  • Komatsuzaki, N., Nakamura, T., Kimura, T., Shima, J. (2008). Characterization of glutamate decarboxylase from a high γ-aminobutyric acid (GABA)-producer, Lactobacillus paracasei, Bioscience, biotechnology, and biochemistry, 72(2), 278-285.
  • Komatsuzaki, N., Shima, J., Kawamoto, S., Momose, H., Kimura, T.(2005). Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods, Food microbiology, 22(6), 497-504. doi:https://doi.org/10.1016/j.fm.2005.01.002
  • Leroy, F., De Vuyst, L. (2001). Growth of the bacteriocin-producingLactobacillus sakei strain CTC 494 in MRS broth is strongly reduced due to nutrient exhaustion: a nutrient depletion model for the growth of lactic acid bacteria. Applied and Environmental Microbiology, 67(10), 4407-4413.
  • Leroy, F., De Vuyst, L. (2004). Lactic acid bacteria as functional starter cultures for the food fermentation industry, Trends in Food Science & Technology, 15(2), 67-78.
  • Li, W., Wei, M., Wu, J., Rui, X., Dong, M. (2016). Novel fermented chickpea milk with enhanced level of γ-aminobutyric acid and neuroprotective effect on PC12 cells, PeerJ, 4, e2292.
  • Oh, S. H., Moon, Y. J., Oh, C. H. (2003). γ-Aminobutyric acid (GABA) content of selected uncooked foods. Journal of Food Science and Nutrition, 8(1), 75-78.
  • Ohmori, T., Tahara, M., Ohshima, T. (2018). Mechanism of gamma-aminobutyric acid (GABA) production by a lactic acid bacterium in yogurt-sake, Process Biochemistry, 74, 21-27. doi:https://doi.org/10.1016/j.procbio.(2018).08.030
  • Park, J. Y., Park, Y.-L., Choi, T.-R., Kim, H. J., Song, H.-S., Han, Y.-H., . . . Bhatia, S. K. (2020). Production of γ-aminobutyric acid from monosodium glutamate using Escherichia coli whole-cell biocatalysis with glutamate decarboxylase from Lactobacillus brevis KCTC 3498, Korean Journal of Chemical Engineering, 37(12), 2225-2231.
  • Park, K. B., Oh, S. H. (2007). Production of yogurt with enhanced levels of gamma-aminobutyric acid and valuable nutrients using lactic acid bacteria and germinated soybean extract, Bioresource Technology, 98(8), 1675-1679.
  • Park, S. J., Kim, D. H., Kang, H. J., Shin, M., Yang, S.-Y., Yang, J., Jung, Y. H. (2021). Enhanced production of γ-aminobutyric acid (GABA) using Lactobacillus plantarum EJ(2014) with simple medium composition, LWT, 137, 110443. doi:https://doi.org/10.1016/j.lwt.(2020).110443
  • Park, S.-Y., Lee, J.-W., Lim, S.-D. (2014). The probiotic characteristics and GABA production of Lactobacillus plantarum K154 isolated from kimchi, Food science and biotechnology, 23(6), 1951-1957.
  • Ratanaburee, A., Kantachote, D., Charernjiratrakul, W., Sukhoom, A. (2013). Enhancement of γ-aminobutyric acid (GABA) in Nham (Thai fermented pork sausage) using starter cultures of Lactobacillus namurensis NH2 and Pediococcus pentosaceus HN8, International journal of food microbiology, 167(2), 170-176.
  • Sanchart, C., Rattanaporn, O., Haltrich, D., Phukpattaranont, P., Maneerat, S. (2017). Enhancement of gamma-aminobutyric acid (GABA) levels using an autochthonous Lactobacillus futsaii CS3 as starter culture in Thai fermented shrimp (Kung-Som), World Journal of Microbiology and Biotechnology, 33(8), 152. doi: 10.1007/s11274-017-2317-3
  • Satokari R.M., Vaughan E.E., Smidt H., Saarela M., Matto J., de Vos W.M. (2013). Molecular approaches for the detection and identification of bifidobacteria and lactobacilli in the human gastrointestinal tract, SystApplMicrobiol 26:572–584.
  • Shelp, B. J., Bown, A. W., McLean, M. D. (1999). Metabolism and functions of gamma-aminobutyric acid, Trends in plant science, 4(11), 446-452.
  • Shimada, M., Hasegawa, T., Nishimura, C., Kan, H., Kanno, T., Nakamura, T., Matsubayashi, T. (2009). Anti-hypertensive effect of γ-aminobutyric acid (GABA)-rich Chlorella on high-normal blood pressure and borderline hypertension in placebo-controlled double blind study,Clinical and Experimental Hypertension, 31(4), 342-354.
  • Shin, S.-M., Kim, H., Joo, Y., Lee, S.-J., Lee, Y.-J., Lee, S. J., Lee, D.-W. (2014). Characterization of glutamate decarboxylase from Lactobacillus plantarum and its C-terminal function for the pH dependence of activity, Journal of agricultural and food chemistry, 62(50), 12186-12193.
  • Siragusa, S., De Angelis, M., Di Cagno, R., Rizzello, C. G., Coda, R., Gobbetti, M. (2007). Synthesis of γ-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses, Applied and environmental microbiology, 73(22), 7283-7290.
  • Sorrequieta, A.,Ferraro, G., Boggio, S. B., Valle, E. M. (2010). Free amino acid production during tomato fruit ripening: a focus on L-glutamate, Amino acids, 38(5), 1523-1532.
  • Tajabadi, N., Ebrahimpour, A., Baradaran, A., Rahim, R. A., Mahyudin, N. A., Manap, M. Y. A., vd. (2015), Optimization of γ-aminobutyric acid production by Lactobacillus plantarum Taj-Apis362 from honeybees, Molecules, 20(4), 6654-6669.
  • Thwe, S. M., Kobayashi, T., Luan, T., Shirai, T., Onodera, M., Hamada-Sato, N., Imada, C. (2011). Isolation, characterization, and utilization of γ-aminobutyric acid (GABA)-producing lactic acid bacteria from Myanmar fishery products fermented with boiled rice. Fisheries Science, 77(2), 279-288.
  • Toldrá, F., Aristoy, M. C., Part, C., Cerveró, C., Rico, E., Motilva, M. J., Flores, J. 1992. Muscle and adipose tissue aminopeptidase activities in raw and dry‐cured ham. Journal of Food Science, 57(4), 816-818.
  • Tuberoso, C. I. G., Congiu, F., Serreli, G., Mameli, S. (2015). Determination of dansylated amino acids and biogenic amines in Cannonau and Vermentino wines by HPLC-FLD. Food chemistry, 175, 29-35.
  • Ueno, Y., Hayakawa, K., Takahashi, S., Oda, K. 1997. Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO 12005. Bioscience, biotechnology, and biochemistry, 61(7), 1168-1171.
  • Villegas, J. M., Brown, L., Savoy de Giori, G., Hebert, E. M. (2016). Optimization of batch culture conditions for GABA production by Lactobacillus brevis CRL 1942, isolated from quinoa sourdough, LWT - Food Science and Technology, 67, 22-26. doi: https://doi.org/10.1016/j.lwt.(2015).11.027
  • Yogeswara, I. B. A., Kittibunchakul, S., Rahayu, E. S., Domig, K. J., Haltrich, D., Nguyen, T. H. (2021). Microbial Production and Enzymatic Biosynthesis of γ-Aminobutyric Acid (GABA) Using Lactobacillus plantarum FNCC 260 Isolated from Indonesian Fermented Foods, Processes, 9(1), 22. Retrieved from https://www.mdpi.com/2227-9717/9/1/22
  • Zareian, M., Ebrahimpour, A., Mohamed, A. K. S., Saari, N. (2013). Modeling of glutamic acid production by Lactobacillus plantarum MNZ , Electronic Journal of Biotechnology, 16(4), 12-12.
  • Zhong, Y., Wu, S., Chen, F., He, M., Lin, J. (2019). Isolation of high γ‑aminobutyric acid‑producing lactic acid bacteria and fermentation in mulberry leaf powders, Experimental and Therapeutic Medicine, 18(1), 147-153.

GAMMA AMINOBUTYRIC ACID PRODUCTION AND OPTIMIZATION BY LACTIPLANTIBACILLUS PLANTARUM EK148 IN MEDIA CONTAINING MEAT PROTEINS

Yıl 2023, Cilt: 48 Sayı: 2, 271 - 284, 15.04.2023
https://doi.org/10.15237/gida.GD22087

Öz

In the study, Lactiplantibacillus plantarum EK148 strain originating from sucuk was evaluated in terms of gamma amino butyric acid (GABA) production level. The effect of temperature, pH and fermentation time factors on GABA production was evaluated by adding meat protein isolate as a source of glutamic acid to a medium without monosodium glutamate (MSG). With the responses obtained in the experimental design, optimum conditions for L. plantarum EK148 strain were determined as 10% protein extract concentration, 33.93 ºC temperature, pH 5.05 and 96 hours of fermentation time. It was determined that the lack of fit value between the model and the data obtained using the L. plantarum EK148 strain was insignificant, and that protein extract concentration and temperature had a significant effect on GABA production. With this study, meat proteins were used as a source of glutamic acid, and GABA production was carried out using L. plantarum EK148 strain in MSG-free medium.

Proje Numarası

120O877

Kaynakça

  • Abdou, A. M., Higashiguchi, S., Horie, K., Kim, M., Hatta, H., Yokogoshi, H. (2006). Relaxation and immunity enhancement effects of γ-aminobutyric acid (GABA) administration in humans, Biofactors, 26(3), 201-208.
  • Adeghate, E., Ponery, A.S. (2002). GABA in the endocrine pancreas: cellular localization and function in normal and diabetic rats, Tissue Cell 34, 1-6.
  • Boonstra, E., de Kleijn, R., Colzato, L. S., Alkemade, A., Forstmann, B. U., Nieuwenhuis, S. (2015). Neurotransmitters as food supplements: the effects of GABA on brain and behavior. Frontiers in psychology, 6, 1520.
  • Box, G. E., Draper, N. R. (2007). Response surfaces, mixtures, and ridge analyses, John Wiley & Sons.
  • Cataldo, P. G., Villegas, J. M., Savoy de Giori, G., Saavedra, L., Hebert, E. M. (2020). Enhancement of γ-aminobutyric acid (GABA) production by Lactobacillus brevis CRL 2013 based on carbohydrate fermentation, International journal of food microbiology, 333, 108792. doi: https://doi.org/10.1016/j.ijfoodmicro.(2020).108792
  • Coda, R., Rizzello, C. G., Gobbetti, M. (2010). Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of γ-aminobutyric acid (GABA), International journal of food microbiology, 137(2), 236-245.
  • Cui, Y., Miao, K., Niyaphorn, S., Qu, X. (2020). Production of Gamma-Aminobutyric Acid from Lactic Acid Bacteria: A Systematic Review, International Journal of Molecular Sciences, 21(3), 995. Retrieved from https://www.mdpi.com/1422-0067/21/3/995
  • De Biase, D., Tramonti, A., Bossa, F., Visca, P. (1999). The response to stationary‐phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system, Molecular microbiology, 32(6), 1198-1211.
  • Dhakal, R., Bajpai, V. K., Baek, K. H. (2012). Production of GABA (γ-aminobutyric acid) by microorganisms: a review, Brazilian Journal of Microbiology,43(4), 1230-1241.
  • Diana, M., Tres, A., Quílez, J., Llombart, M., Rafecas, M. (2014). Spanish cheese screening and selection of lactic acid bacteria with high gamma-aminobutyric acid production, LWT-Food Science and Technology, 56(2), 351-355.
  • Eroğlu, E. İ., Ayaz, A. (2018). Gıda Katkı Maddelerinin Sağlık Üzerine Etkileri: Risk Değerlendirme. Beslenme ve Diyet Dergisi, 46(3), 311-319.
  • Granato, D., Ribeiro, J. C. B., Castro, I. A., Masson, M. L. (2010). Sensory evaluation and physicochemical optimisation of soy-based desserts using response surface methodology, Food Chemistry 121(3):899-906.
  • Higuchi, T., Hayashi, H., Abe, K. (1997). Exchange of glutamate and gamma-aminobutyrate in a Lactobacillus strain, Journal of bacteriology, 179(10), 3362-3364.
  • Kalueff, A. V., Nutt, D. J. (2007). Role of GABA in anxiety and depression. Depression and anxiety, 24(7), 495-517.
  • Komatsuzaki, N., Nakamura, T., Kimura, T., Shima, J. (2008). Characterization of glutamate decarboxylase from a high γ-aminobutyric acid (GABA)-producer, Lactobacillus paracasei, Bioscience, biotechnology, and biochemistry, 72(2), 278-285.
  • Komatsuzaki, N., Shima, J., Kawamoto, S., Momose, H., Kimura, T.(2005). Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods, Food microbiology, 22(6), 497-504. doi:https://doi.org/10.1016/j.fm.2005.01.002
  • Leroy, F., De Vuyst, L. (2001). Growth of the bacteriocin-producingLactobacillus sakei strain CTC 494 in MRS broth is strongly reduced due to nutrient exhaustion: a nutrient depletion model for the growth of lactic acid bacteria. Applied and Environmental Microbiology, 67(10), 4407-4413.
  • Leroy, F., De Vuyst, L. (2004). Lactic acid bacteria as functional starter cultures for the food fermentation industry, Trends in Food Science & Technology, 15(2), 67-78.
  • Li, W., Wei, M., Wu, J., Rui, X., Dong, M. (2016). Novel fermented chickpea milk with enhanced level of γ-aminobutyric acid and neuroprotective effect on PC12 cells, PeerJ, 4, e2292.
  • Oh, S. H., Moon, Y. J., Oh, C. H. (2003). γ-Aminobutyric acid (GABA) content of selected uncooked foods. Journal of Food Science and Nutrition, 8(1), 75-78.
  • Ohmori, T., Tahara, M., Ohshima, T. (2018). Mechanism of gamma-aminobutyric acid (GABA) production by a lactic acid bacterium in yogurt-sake, Process Biochemistry, 74, 21-27. doi:https://doi.org/10.1016/j.procbio.(2018).08.030
  • Park, J. Y., Park, Y.-L., Choi, T.-R., Kim, H. J., Song, H.-S., Han, Y.-H., . . . Bhatia, S. K. (2020). Production of γ-aminobutyric acid from monosodium glutamate using Escherichia coli whole-cell biocatalysis with glutamate decarboxylase from Lactobacillus brevis KCTC 3498, Korean Journal of Chemical Engineering, 37(12), 2225-2231.
  • Park, K. B., Oh, S. H. (2007). Production of yogurt with enhanced levels of gamma-aminobutyric acid and valuable nutrients using lactic acid bacteria and germinated soybean extract, Bioresource Technology, 98(8), 1675-1679.
  • Park, S. J., Kim, D. H., Kang, H. J., Shin, M., Yang, S.-Y., Yang, J., Jung, Y. H. (2021). Enhanced production of γ-aminobutyric acid (GABA) using Lactobacillus plantarum EJ(2014) with simple medium composition, LWT, 137, 110443. doi:https://doi.org/10.1016/j.lwt.(2020).110443
  • Park, S.-Y., Lee, J.-W., Lim, S.-D. (2014). The probiotic characteristics and GABA production of Lactobacillus plantarum K154 isolated from kimchi, Food science and biotechnology, 23(6), 1951-1957.
  • Ratanaburee, A., Kantachote, D., Charernjiratrakul, W., Sukhoom, A. (2013). Enhancement of γ-aminobutyric acid (GABA) in Nham (Thai fermented pork sausage) using starter cultures of Lactobacillus namurensis NH2 and Pediococcus pentosaceus HN8, International journal of food microbiology, 167(2), 170-176.
  • Sanchart, C., Rattanaporn, O., Haltrich, D., Phukpattaranont, P., Maneerat, S. (2017). Enhancement of gamma-aminobutyric acid (GABA) levels using an autochthonous Lactobacillus futsaii CS3 as starter culture in Thai fermented shrimp (Kung-Som), World Journal of Microbiology and Biotechnology, 33(8), 152. doi: 10.1007/s11274-017-2317-3
  • Satokari R.M., Vaughan E.E., Smidt H., Saarela M., Matto J., de Vos W.M. (2013). Molecular approaches for the detection and identification of bifidobacteria and lactobacilli in the human gastrointestinal tract, SystApplMicrobiol 26:572–584.
  • Shelp, B. J., Bown, A. W., McLean, M. D. (1999). Metabolism and functions of gamma-aminobutyric acid, Trends in plant science, 4(11), 446-452.
  • Shimada, M., Hasegawa, T., Nishimura, C., Kan, H., Kanno, T., Nakamura, T., Matsubayashi, T. (2009). Anti-hypertensive effect of γ-aminobutyric acid (GABA)-rich Chlorella on high-normal blood pressure and borderline hypertension in placebo-controlled double blind study,Clinical and Experimental Hypertension, 31(4), 342-354.
  • Shin, S.-M., Kim, H., Joo, Y., Lee, S.-J., Lee, Y.-J., Lee, S. J., Lee, D.-W. (2014). Characterization of glutamate decarboxylase from Lactobacillus plantarum and its C-terminal function for the pH dependence of activity, Journal of agricultural and food chemistry, 62(50), 12186-12193.
  • Siragusa, S., De Angelis, M., Di Cagno, R., Rizzello, C. G., Coda, R., Gobbetti, M. (2007). Synthesis of γ-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses, Applied and environmental microbiology, 73(22), 7283-7290.
  • Sorrequieta, A.,Ferraro, G., Boggio, S. B., Valle, E. M. (2010). Free amino acid production during tomato fruit ripening: a focus on L-glutamate, Amino acids, 38(5), 1523-1532.
  • Tajabadi, N., Ebrahimpour, A., Baradaran, A., Rahim, R. A., Mahyudin, N. A., Manap, M. Y. A., vd. (2015), Optimization of γ-aminobutyric acid production by Lactobacillus plantarum Taj-Apis362 from honeybees, Molecules, 20(4), 6654-6669.
  • Thwe, S. M., Kobayashi, T., Luan, T., Shirai, T., Onodera, M., Hamada-Sato, N., Imada, C. (2011). Isolation, characterization, and utilization of γ-aminobutyric acid (GABA)-producing lactic acid bacteria from Myanmar fishery products fermented with boiled rice. Fisheries Science, 77(2), 279-288.
  • Toldrá, F., Aristoy, M. C., Part, C., Cerveró, C., Rico, E., Motilva, M. J., Flores, J. 1992. Muscle and adipose tissue aminopeptidase activities in raw and dry‐cured ham. Journal of Food Science, 57(4), 816-818.
  • Tuberoso, C. I. G., Congiu, F., Serreli, G., Mameli, S. (2015). Determination of dansylated amino acids and biogenic amines in Cannonau and Vermentino wines by HPLC-FLD. Food chemistry, 175, 29-35.
  • Ueno, Y., Hayakawa, K., Takahashi, S., Oda, K. 1997. Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO 12005. Bioscience, biotechnology, and biochemistry, 61(7), 1168-1171.
  • Villegas, J. M., Brown, L., Savoy de Giori, G., Hebert, E. M. (2016). Optimization of batch culture conditions for GABA production by Lactobacillus brevis CRL 1942, isolated from quinoa sourdough, LWT - Food Science and Technology, 67, 22-26. doi: https://doi.org/10.1016/j.lwt.(2015).11.027
  • Yogeswara, I. B. A., Kittibunchakul, S., Rahayu, E. S., Domig, K. J., Haltrich, D., Nguyen, T. H. (2021). Microbial Production and Enzymatic Biosynthesis of γ-Aminobutyric Acid (GABA) Using Lactobacillus plantarum FNCC 260 Isolated from Indonesian Fermented Foods, Processes, 9(1), 22. Retrieved from https://www.mdpi.com/2227-9717/9/1/22
  • Zareian, M., Ebrahimpour, A., Mohamed, A. K. S., Saari, N. (2013). Modeling of glutamic acid production by Lactobacillus plantarum MNZ , Electronic Journal of Biotechnology, 16(4), 12-12.
  • Zhong, Y., Wu, S., Chen, F., He, M., Lin, J. (2019). Isolation of high γ‑aminobutyric acid‑producing lactic acid bacteria and fermentation in mulberry leaf powders, Experimental and Therapeutic Medicine, 18(1), 147-153.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Makaleler
Yazarlar

Aybike Kamiloğlu 0000-0002-6756-0331

Habibe Memiş 0000-0002-2696-7493

Proje Numarası 120O877
Yayımlanma Tarihi 15 Nisan 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 48 Sayı: 2

Kaynak Göster

APA Kamiloğlu, A., & Memiş, H. (2023). LACTIPLANTIBACILLUS PLANTARUM EK148’İN ET PROTEİNLERİ İÇEREN ORTAMDA GAMA AMİNO BÜTİRİK ASİT ÜRETİMİ VE OPTİMİZASYONU. Gıda, 48(2), 271-284. https://doi.org/10.15237/gida.GD22087
AMA Kamiloğlu A, Memiş H. LACTIPLANTIBACILLUS PLANTARUM EK148’İN ET PROTEİNLERİ İÇEREN ORTAMDA GAMA AMİNO BÜTİRİK ASİT ÜRETİMİ VE OPTİMİZASYONU. GIDA. Nisan 2023;48(2):271-284. doi:10.15237/gida.GD22087
Chicago Kamiloğlu, Aybike, ve Habibe Memiş. “LACTIPLANTIBACILLUS PLANTARUM EK148’İN ET PROTEİNLERİ İÇEREN ORTAMDA GAMA AMİNO BÜTİRİK ASİT ÜRETİMİ VE OPTİMİZASYONU”. Gıda 48, sy. 2 (Nisan 2023): 271-84. https://doi.org/10.15237/gida.GD22087.
EndNote Kamiloğlu A, Memiş H (01 Nisan 2023) LACTIPLANTIBACILLUS PLANTARUM EK148’İN ET PROTEİNLERİ İÇEREN ORTAMDA GAMA AMİNO BÜTİRİK ASİT ÜRETİMİ VE OPTİMİZASYONU. Gıda 48 2 271–284.
IEEE A. Kamiloğlu ve H. Memiş, “LACTIPLANTIBACILLUS PLANTARUM EK148’İN ET PROTEİNLERİ İÇEREN ORTAMDA GAMA AMİNO BÜTİRİK ASİT ÜRETİMİ VE OPTİMİZASYONU”, GIDA, c. 48, sy. 2, ss. 271–284, 2023, doi: 10.15237/gida.GD22087.
ISNAD Kamiloğlu, Aybike - Memiş, Habibe. “LACTIPLANTIBACILLUS PLANTARUM EK148’İN ET PROTEİNLERİ İÇEREN ORTAMDA GAMA AMİNO BÜTİRİK ASİT ÜRETİMİ VE OPTİMİZASYONU”. Gıda 48/2 (Nisan 2023), 271-284. https://doi.org/10.15237/gida.GD22087.
JAMA Kamiloğlu A, Memiş H. LACTIPLANTIBACILLUS PLANTARUM EK148’İN ET PROTEİNLERİ İÇEREN ORTAMDA GAMA AMİNO BÜTİRİK ASİT ÜRETİMİ VE OPTİMİZASYONU. GIDA. 2023;48:271–284.
MLA Kamiloğlu, Aybike ve Habibe Memiş. “LACTIPLANTIBACILLUS PLANTARUM EK148’İN ET PROTEİNLERİ İÇEREN ORTAMDA GAMA AMİNO BÜTİRİK ASİT ÜRETİMİ VE OPTİMİZASYONU”. Gıda, c. 48, sy. 2, 2023, ss. 271-84, doi:10.15237/gida.GD22087.
Vancouver Kamiloğlu A, Memiş H. LACTIPLANTIBACILLUS PLANTARUM EK148’İN ET PROTEİNLERİ İÇEREN ORTAMDA GAMA AMİNO BÜTİRİK ASİT ÜRETİMİ VE OPTİMİZASYONU. GIDA. 2023;48(2):271-84.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/