Derleme
BibTex RIS Kaynak Göster

MACROALGAE AS ALTERNATIVE PROTEIN SOURCES AND EXTRACTION OF MACROALGAL PROTEIN: A REVIEW STUDY

Yıl 2024, Cilt: 49 Sayı: 6, 1175 - 1189
https://doi.org/10.15237/gida.GD24093

Öz

ncreased population, decrease in arable land and water supplies, and the detrimental environmental impact of husbandry have prompted research into alternate protein sources. Macroalgae, rich in bioactive chemicals, are gaining popularity due to their potential health advantages. Macroalgae have a significant advantage over terrestrial plants in that they can be cultivated without needing arable land. In addition, macroalgae are significantly rich in protein and amino acid content compared to other plant and animal proteins. However, traditional methods used for protein extraction from macroalgae present disadvantages due to high energy and water consumption and low extraction efficiency, which limits the usability of macroalgal proteins. At this point, protein extraction from macroalgae requires low-cost, innovative, and sustainable technology. This review indicates the properties of macroalgae and their potential for use based on their protein quality, amino acid composition and digestibility. Also, new methods such as enzymatic, pulsed electric field, ultrasound, high pressure, and sub-critic water extraction for extracting proteins from macroalgae were discussed.

Kaynakça

  • Agrawal, S. B., Gupta, N., Bhagyawant, S. S., Gaikwad, S. M. (2020). Anticancer Activity of Lectins from Bauhinia purpurea and Wisteria floribunda on Breast Cancer MCF-7 Cell Lines. Protein and Peptide Letters, 27(9), 870–877. https://doi.org/10.2174/0929866527666200408143614
  • Ahmed, M. N., Jahan, R., Nissapatorn, V., Wilairatana, P., Rahmatullah, M. (2022). Plant lectins as prospective antiviral biomolecules in the search for COVID-19 eradication strategies. Biomedecine & Pharmacotherapie, 146(112507), 112507. https://doi.org/10.1016/ j.biopha.2021.112507
  • Bashir, N., Sood, M., Bandral, J. D. (2020). Enzyme immobilization and its applications in food processing: A review. Int. J. Chem. Stud, 8(2), 254–261. https://www.academia.edu/ download/83065850/8-1-503-295.pdf
  • Bhadange, Y. A., Carpenter, J., Saharan, V. K. (2024). A comprehensive review on advanced extraction techniques for retrieving bioactive components from natural sources. ACS Omega, 9(29), 31274–31297. https://doi.org/10.1021/ acsomega.4c02718
  • Biris-Dorhoi, E.-S., Michiu, D., Pop, C. R., Rotar, A. M., Tofana, M., Pop, O. L., Socaci, S. A., Farcas, A. C. (2020). Macroalgae-A sustainable source of chemical compounds with biological activities. Nutrients, 12(10), 3085. https://doi.org/ 10.3390/nu12103085
  • Bleakley, S., Hayes, M. (2017). Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods (Basel, Switzerland), 6(5). https://doi.org/10.3390/foods6050033
  • Bringloe, T. T., Starko, S., Wade, R. M., Vieira, C., Kawai, H., De Clerck, O., Cock, J. M., Coelho, S. M., Destombe, C., Valero, M., Neiva, J., Pearson, G. A., Faugeron, S., Serrão, E. A., Verbruggen, H. (2020). Phylogeny and evolution of the brown algae. Critical Reviews in Plant Sciences, 39(4), 281–321. https://doi.org/10.1080/ 07352689.2020.1787679
  • Cai, J., Lovatelli, A., Aguilar-Manjarrez, J., Cornish, L., Dabbadie, L., Desrochers, A., Diffey, S., Garrido Gamarro, E., Geehan, J., Hurtado, A., Lucente, D., Mair, G., Miao, W., Potin, P., Przybyla, C., Reantaso, M., Roubach, R., Tauati, M., Yuan, X. (2021). Seaweeds and microalgae: An overview for unlocking their potential in global aquaculture development (Food and Agriculture Organization, Ed.). Food & Agriculture Organization of the UN. https://doi.org/10.4060/cb5670en
  • Cermeño, M., Kleekayai, T., Amigo-Benavent, M., Harnedy-Rothwell, P., FitzGerald, R. J. (2020). Current knowledge on the extraction, purification, identification, and validation of bioactive peptides from seaweed. Electrophoresis, 41(20), 1694–1717. https://doi.org/10.1002/ elps.202000153
  • Cheng, Y., Xue, F., Yu, S., Du, S., Yang, Y. (2021). Subcritical Water Extraction of Natural Products. Molecules, 26(13). https://doi.org/10.3390/ molecules26134004
  • Christou, A., Stavrou, I. J., Kapnissi-Christodoulou, C. P. (2021). Continuous and pulsed ultrasound-assisted extraction of carob’s antioxidants: Processing parameters optimization and identification of polyphenolic composition. Ultrasonics Sonochemistry, 76(105630), 105630. https://doi.org/10.1016/j.ultsonch.2021.105630
  • Circuncisão, A. R., Catarino, M. D., Cardoso, S. M., Silva, A. M. S. (2018). Minerals from Macroalgae Origin: Health Benefits and Risks for Consumers. Marine Drugs, 16(11). https://doi.org/10.3390/md16110400
  • Corino, C., Modina, S. C., Di Giancamillo, A., Chiapparini, S., Rossi, R. (2019). Seaweeds in pig nutrition. Animals: An Open Access Journal from MDPI, 9(12), 1126. https://doi.org/10.3390/ ani9121126
  • Corrales, M., Toepfl, S., Butz, P., Knorr, D., Tauscher, B. (2008). Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: A comparison. Innovative Food Science & Emerging Technologies: IFSET: The Official Scientific Journal of the European Federation of Food Science and Technology, 9(1), 85–91. https://doi.org/10.1016/ j.ifset.2007.06.002
  • Cotas, J., Leandro, A., Pacheco, D., Gonçalves, A. M. M., Pereira, L. (2020). A comprehensive review of the nutraceutical and therapeutic applications of red seaweeds (Rhodophyta). Life (Basel, Switzerland), 10(3), 19. https://doi.org/ 10.3390/life10030019
  • de Souza Celente, G., Sui, Y., Acharya, P. (2023). Seaweed as an alternative protein source: Prospective protein extraction technologies. Innovative Food Science & Emerging Technologies: IFSET: The Official Scientific Journal of the European Federation of Food Science and Technology, 86(103374), 103374. https://doi.org/10.1016/ j.ifset.2023.103374
  • Di Domenico Ziero, H., Buller, L. S., Mudhoo, A., Ampese, L. C., Mussatto, S. I., Carneiro, T. F. (2020). An overview of subcritical and supercritical water treatment of different biomasses for protein and amino acids production and recovery. Journal of Environmental Chemical Engineering, 8(5), 104406. https://doi.org/10.1016/j.jece.2020.104406
  • Domozych, D. (2019). Algal Cell Walls. In eLS (pp. 1–11). John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470015902.a0000315.pub4
  • Dopelt, K., Radon, P., Davidovitch, N. (2019). Environmental Effects of the Livestock Industry: The Relationship between Knowledge, Attitudes, and Behavior among Students in Israel. International Journal of Environmental Research and Public Health, 16(8). https://doi.org/10.3390/ ijerph16081359
  • Echave, J., Fraga-Corral, M., Garcia-Perez, P., Popović-Djordjević, J., H Avdović, E., Radulović, M., Xiao, J., A Prieto, M., Simal-Gandara, J. (2021). Seaweed Protein Hydrolysates and Bioactive Peptides: Extraction, Purification, and Applications. Marine Drugs, 19(9). https://doi.org/10.3390/md19090500
  • Echave, J., Otero, P., Garcia-Oliveira, P., Munekata, P. E. S., Pateiro, M., Lorenzo, J. M., Simal-Gandara, J., Prieto, M. A. (2022). Seaweed-derived proteins and peptides: Promising marine bioactives. Antioxidants (Basel, Switzerland), 11(1), 176. https://doi.org/10.3390/antiox11010176
  • Fao, F. (2018). The State of World Fisheries and Aquaculture 2018-Meeting the sustainable development goals. Food and Agriculture Organization of the United Nations.
  • Fasolin, L. H., Pereira, R. N., Pinheiro, A. C., Martins, J. T., Andrade, C. C. P., Ramos, O. L., Vicente, A. A. (2019). Emergent food proteins - Towards sustainability, health and innovation. Food Research International, 125(108586), 108586. https://doi.org/10.1016/j.foodres.2019.108586
  • Ferdouse, F., Løvstad Holdt, S., Smith, R., Murúa, P., Yang, L. (2018). The global status of seaweed production, trade and utilization. Globefish Research Programme Volume 124. https://policycommons.net/artifacts/2242866/the-global-status-of-seaweed-production-trade-and-utilization/3000967/
  • Garcia-Vaquero, M., Ummat, V., Tiwari, B., Rajauria, G. (2020). Exploring Ultrasound, Microwave and Ultrasound–Microwave Assisted Extraction Technologies to Increase the Extraction of Bioactive Compounds and Antioxidants from Brown Macroalgae. Marine Drugs, 18(3), 172. https://doi.org/10.3390/ md18030172
  • Gaspar, R., Fonseca, R., Pereira, L. (2020). Illustrated Guide to the Macroalgae of Buarcos Bay, Figueira da Foz, Portugal. MARE UC, DCV, FCT.
  • Gomez-Zavaglia, A., Prieto Lage, M. A., Jimenez-Lopez, C., Mejuto, J. C., Simal-Gandara, J. (2019). The Potential of Seaweeds as a Source of Functional Ingredients of Prebiotic and Antioxidant Value. Antioxidants (Basel, Switzerland), 8(9). https://doi.org/10.3390/antiox8090406
  • Gordalina, M., Pinheiro, H. M., Mateus, M., da Fonseca, M. M. R., Cesário, M. T. (2021). Macroalgae as protein sources—A review on protein bioactivity, extraction, purification and characterization. Applied Sciences (Basel, Switzerland), 11(17), 7969. https://doi.org/ 10.3390/app11177969
  • Grosso, C., Valentão, P., Ferreres, F., Andrade, P. B. (2015). Alternative and efficient extraction methods for marine-derived compounds. Marine Drugs, 13(5), 3182–3230. https://doi.org/ 10.3390/md13053182
  • Harnedy, P. A., FitzGerald, R. J. (2011). Bioactive proteins, peptides, and amino acids from macroalgae(1). Journal of Phycology, 47(2), 218–232. https://doi.org/10.1111/j.1529-8817.2011.00969.x
  • Harnedy, P. A., FitzGerald, R. J. (2013). Extraction of protein from the macroalga Palmaria palmata. LWT - Food Science and Technology, 51(1), 375–382. https://doi.org/ 10.1016/j.lwt.2012.09.023
  • Ho, C. H. L., Cacace, J. E., Mazza, G. (2007). Extraction of lignans, proteins and carbohydrates from flaxseed meal with pressurized low polarity water. LWT - Food Science and Technology, 40(9), 1637–1647. https://doi.org/10.1016/ j.lwt.2006.12.003
  • Ji, L., Qiu, S., Wang, Z., Zhao, C., Tang, B., Gao, Z., Fan, J. (2023). Phycobiliproteins from algae: Current updates in sustainable production and applications in food and health. Food Research International, 167, 112737. https://doi.org/ 10.1016/j.foodres.2023.112737
  • Joannes, C., Sipaut, C. S., Dayou, J., Mansa, R. F. (2015). The potential of using pulsed electric field (PEF) technology as the cell disruption method to extract lipid from microalgae for biodiesel production. International Journal of Renewable Energy Research, 5(2), 598–621. https://dergipark.org.tr/ en/pub/ijrer/issue/16071/167979
  • Kadam, S., Álvarez, C., Tiwari, B., O’Donnell, C. (2015). Extraction of biomolecules from seaweeds. Seaweed Sustainability, 243–269. https://doi.org/10.1016/B978-0-12-418697-2.00009-X
  • Kamal, M., Abdel-Raouf, N., Alwutayd, K., AbdElgawad, H., Abdelhameed, M. S., Hammouda, O., Elsayed, K. N. M. (2023). Seasonal changes in the biochemical composition of dominant macroalgal species along the Egyptian Red Sea shore. Biology, 12(3), 411. https://doi.org/10.3390/biology12030411
  • Kazir, M., Abuhassira, Y., Robin, A., Nahor, O., Luo, J., Israel, A., Golberg, A., Livney, Y. D. (2019). Extraction of proteins from two marine macroalgae, Ulva sp. and Gracilaria sp., for food application, and evaluating digestibility, amino acid composition and antioxidant properties of the protein concentrates. Food Hydrocolloids, 87, 194–203.
  • Konstantin, B., Anastasia, P., Nikolay, I., Daria, P. (2023). Seasonal variations in the chemical composition of Arctic brown macroalgae. Algal Research, 72(103112), 103112. https://doi.org/10.1016/j.algal.2023.103112
  • Lakshmi, D. S., Sankaranarayanan, S., Gajaria, T. K., Li, G., Kujawski, W., Kujawa, J., Navia, R. (2020). A Short Review on the Valorization of Green Seaweeds and Ulvan: FEEDSTOCK for Chemicals and Biomaterials. Biomolecules, 10(7). https://doi.org/10.3390/biom10070991
  • Machado, M., Machado, S., Pimentel, F. B., Freitas, V., Alves, R. C., Oliveira, M. B. P. P. (2020). Amino acid profile and protein quality assessment of macroalgae produced in an integrated multi-trophic aquaculture system. Foods (Basel, Switzerland), 9(10), 1382. https://doi.org/10.3390/foods9101382
  • Magpusao, J., Oey, I., Kebede, B. (2021). Opportunities and challenges of algal protein extraction and production.
  • Meng, W., Mu, T., Sun, H., Garcia-Vaquero, M. (2022). Evaluation of the chemical composition and nutritional potential of brown macroalgae commercialised in China. Algal Research, 64, 102683. https://doi.org/10.1016/ j.algal.2022.102683
  • Mittal, R., Tavanandi, H. A., Mantri, V. A., Raghavarao, K. S. M. S. (2017). Ultrasound assisted methods for enhanced extraction of phycobiliproteins from marine macro-algae, Gelidium pusillum (Rhodophyta). Ultrasonics Sonochemistry, 38, 92–103. https://doi.org/ 10.1016/j.ultsonch.2017.02.030
  • Nadathur, S., Wanasundara, J. P. D., Scanlin, L. (2024). Feeding the globe nutritious food in 2050: Obligations and ethical choices. In S. Nadathur, J. P. D. Wanasundara, & L. Scanlin (Eds.), Sustainable Protein Sources (pp. 649–668). Elsevier. https://doi.org/10.1016/b978-0-323-91652-3.00032-0
  • Nan, F., Feng, J., Lv, J., Liu, Q., Fang, K., Gong, C., Xie, S. (2017). Origin and evolutionary history of freshwater Rhodophyta: further insights based on phylogenomic evidence. Scientific Reports, 7(1), 2934. https://doi.org/10.1038/s41598-017-03235-5
  • Naseri, A., Marinho, G. S., Holdt, S. L., Bartela, J. M., Jacobsen, C. (2020). Enzyme-assisted extraction and characterization of protein from red seaweed Palmaria palmata. Algal Research, 47, 101849. https://doi.org/10.1016/ j.algal.2020.101849
  • O’ Brien, R., Hayes, M., Sheldrake, G., Tiwari, B., Walsh, P. (2022). Macroalgal Proteins: A Review. Foods (Basel, Switzerland), 11(4). https://doi.org/ 10.3390/foods11040571
  • O’ Connor, J., Meaney, S., Williams, G. A., Hayes, M. (2020). Extraction of protein from four different seaweeds using three different physical pre-treatment strategies. Molecules (Basel, Switzerland), 25(8), 2005. https://doi.org/ 10.3390/molecules25082005
  • O’Connor, J., Garcia-Vaquero, M., Meaney, S., Tiwari, B. K. (2022). Bioactive Peptides from Algae: Traditional and Novel Generation Strategies, Structure-Function Relationships, and Bioinformatics as Predictive Tools for Bioactivity. Marine Drugs, 20(5). https://doi.org/10.3390/ md20050317
  • Okolie, C. L., Akanbi, T. O., Mason, B., Udenigwe, C. C., Aryee, A. N. A. (2019). Influence of conventional and recent extraction technologies on physicochemical properties of bioactive macromolecules from natural sources: A review. Food Research International (Ottawa, Ont.), 116, 827–839. https://doi.org/10.1016/ j.foodres.2018.09.018
  • Paiva, L., Lima, E., Patarra, R. F., Neto, A. I., Baptista, J. (2014). Edible Azorean macroalgae as source of rich nutrients with impact on human health. Food Chemistry, 164, 128–135. https://doi.org/10.1016/j.foodchem.2014.04.119
  • Pangestuti, R., Getachew, A. T., Siahaan, E. A., Chun, B.-S. (2019). Characterization of functional materials derived from tropical red seaweed Hypnea musciformis produced by subcritical water extraction systems. Journal of Applied Phycology, 31(4), 2517–2528. https://doi.org/ 10.1007/s10811-019-1754-9
  • Pan-Utai, W., Pantoa, T., Roytrakul, S., Praiboon, J., Kosawatpat, P., Tamtin, M., Thongdang, B. (2022). Ultrasonic-assisted extraction and antioxidant potential of valuable protein from Ulva rigida macroalgae. Life (Basel, Switzerland), 13(1), 86. https://doi.org/10.3390/life13010086
  • Peñalver, R., Lorenzo, J. M., Ros, G., Amarowicz, R., Pateiro, M., Nieto, G. (2020). Seaweeds as a functional ingredient for a healthy diet. Marine Drugs, 18(6), 301. https://doi.org/10.3390/ md18060301 Pereira, L. (2021a). Edible seaweeds of the world. CRC Press.
  • Pereira, L. (2021b). Macroalgae. Encyclopedia, 1(1), 177–188. https://doi.org/10.3390/ encyclopedia1010017
  • Pimentel, F. B., Alves, R. C., Harnedy, P. A., FitzGerald, R. J., Oliveira, M. B. P. P. (2019). Macroalgal-derived protein hydrolysates and bioactive peptides: Enzymatic release and potential health enhancing properties. Trends in Food Science & Technology, 93, 106–124. https://doi.org/10.1016/j.tifs.2019.09.006
  • Plaza, M., Amigo-Benavent, M., del Castillo, M. D., Ibáñez, E., Herrero, M. (2010). Facts about the formation of new antioxidants in natural samples after subcritical water extraction. Food Research International , 43(10), 2341–2348. https://doi.org/10.1016/j.foodres.2010.07.036
  • Pliego-Cortés, H., Wijesekara, I., Lang, M., Bourgougnon, N., Bedoux, G. (2020). Chapter Nine - Current knowledge and challenges in extraction, characterization and bioactivity of seaweed protein and seaweed-derived proteins. In N. Bourgougnon (Ed.), Advances in Botanical Research (Vol. 95, pp. 289–326). Academic Press. https://doi.org/10.1016/bs.abr.2019.11.008
  • Polikovsky, M., Fernand, F., Sack, M., Frey, W., Müller, G., Golberg, A. (2019). In silico food allergenic risk evaluation of proteins extracted from macroalgae Ulva sp. with pulsed electric fields. Food Chemistry, 276, 735–744. https://doi.org/10.1016/j.foodchem.2018.09.134
  • Postma, P. R., Cerezo-Chinarro, O., Akkerman, R. J., Olivieri, G., Wijffels, R. H., Brandenburg, W. A., Eppink, M. H. M. (2018). Biorefinery of the macroalgae Ulva lactuca: extraction of proteins and carbohydrates by mild disintegration. Journal of Applied Phycology, 30(2), 1281–1293. https://doi.org/10.1007/s10811-017-1319-8
  • Prabhu, M. S., Levkov, K., Livney, Y. D., Israel, A., Golberg, A. (2019). High-voltage pulsed electric field preprocessing enhances extraction of starch, proteins, and ash from marine macroalgae Ulva ohnoi. ACS Sustainable Chemistry & Engineering, 7(20), 17453–17463. https://doi.org/10.1021/ acssuschemeng.9b04669
  • Praveen, M. A., Parvathy, K. R. K., Balasubramanian, P., Jayabalan, R. (2019). An overview of extraction and purification techniques of seaweed dietary fibers for immunomodulation on gut microbiota. Trends in Food Science & Technology, 92, 46–64. https://doi.org/10.1016/j.tifs.2019.08.011
  • Puzorjov, A., McCormick, A. J. (2020). Phycobiliproteins from extreme environments and their potential applications. Journal of Experimental Botany, 71(13), 3827–3842. https://doi.org/10.1093/jxb/eraa139
  • Qu, W., Ma, H., Wang, T., Zheng, H. (2013). Alternating two-frequency countercurrent ultrasonic-assisted extraction of protein and polysaccharide from Porphyra yezoensis. Transactions of the Chinese Society of Agricultural Engineering/Nongye Gongcheng Xuebao, 29(1), 285–292.
  • Rawiwan, P., Peng, Y., Paramayuda, I. G. P. B., Quek, S. Y. (2022). Red seaweed: A promising alternative protein source for global food sustainability. Trends in Food Science & Technology, 123, 37–56. https://doi.org/10.1016/ j.tifs.2022.03.003
  • Robin, A., Kazir, M., Sack, M., Israel, A., Frey, W., Mueller, G., Livney, Y. D., Golberg, A. (2018). Functional protein concentrates extracted from the Green marine macroalga Ulva sp., by high voltage pulsed electric fields and mechanical press. ACS Sustainable Chemistry & Engineering, 6(11), 13696–13705. https://doi.org/10.1021/ acssuschemeng.8b01089
  • Ruslan, F. S., Susanti, D., Mohammad Noor, N., Aminudin, N. I. (2021). Bioactive Compounds, Cosmeceutical And Nutraceutical Applications of Green Seaweed Species (Chlorophyta). SQUALEN Bulletin of Marine and Fisheries Postharvest and Biotechnology, 16(1), 41–55. https://doi.org/10.15578/squalen.514
  • Salehi, B., Sharifi-Rad, J., Seca, A. M. L., Pinto, D. C. G. A., Michalak, I., Trincone, A., Mishra, A. P., Nigam, M., Zam, W., Martins, N. (2019). Current Trends on Seaweeds: Looking at Chemical Composition, Phytopharmacology, and Cosmetic Applications. Molecules, 24(22). https://doi.org/ 10.3390/molecules24224182
  • Samarathunga, J., Wijesekara, I., Jayasinghe, M. (2022). Seaweed proteins as a novel protein alternative: Types, extractions, and functional food applications. Food Reviews International, 1–26. https://doi.org/10.1080/87559129.2021.2023564
  • Silva, A., Silva, S. A., Lourenço-Lopes, C., Jimenez-Lopez, C., Carpena, M., Gullón, P., Fraga-Corral, M., Domingues, V. F., Barroso, M. F., Simal-Gandara, J., Prieto, M. A. (2020). Antibacterial use of macroalgae compounds against foodborne pathogens. Antibiotics (Basel, Switzerland), 9(10), 712. https://doi.org/10.3390/ antibiotics9100712
  • Suwal, S., Perreault, V., Marciniak, A., Tamigneaux, É., Deslandes, É., Bazinet, L., Jacques, H., Beaulieu, L., Doyen, A. (2019). Effects of high hydrostatic pressure and polysaccharidases on the extraction of antioxidant compounds from red macroalgae, Palmaria palmata and Solieria chordalis. Journal of Food Engineering, 252, 53–59. https://doi.org/ 10.1016/j.jfoodeng.2019.02.014
  • Thiviya, P., Gamage, A., Gama-Arachchige, N. S., Merah, O., Madhujith, T. (2022). Seaweeds as a source of functional proteins. Phycology, 2(2), 216–243. https://doi.org/10.3390/phycology2020012
  • Tibbetts, S. M., Milley, J. E., Lall, S. P. (2016). Nutritional quality of some wild and cultivated seaweeds: Nutrient composition, total phenolic content and in vitro digestibility. Journal of Applied Phycology, 28(6), 3575–3585. https://doi.org/ 10.1007/s10811-016-0863-y
  • Titlyanov, E. A., Titlyanova, T. V. (2010). Seaweed cultivation: Methods and problems. Russian Journal of Marine Biology, 36(4), 227–242. https://doi.org/10.1134/S1063074010040012
  • Vásquez, V., Martínez, R., Bernal, C. (2019). Enzyme-assisted extraction of proteins from the seaweeds Macrocystis pyrifera and Chondracanthus chamissoi: characterization of the extracts and their bioactive potential. Journal of Applied Phycology, 31(3), 1999–2010. https://doi.org/10.1007/s10811-018-1712-y
  • Vázquez-Rodríguez, B., Gutiérrez-Uribe, J. A., Antunes-Ricardo, M., Santos-Zea, L., Cruz-Suárez, L. E. (2020). Ultrasound-assisted extraction of phlorotannins and polysaccharides from Silvetia compressa (Phaeophyceae). Journal of Applied Phycology, 32(2), 1441–1453. https://doi.org/10.1007/s10811-019-02013-2
  • Xi, J. (2017). Ultrahigh pressure extraction of bioactive compounds from plants-A review. Critical Reviews in Food Science and Nutrition, 57(6), 1097–1106. https://doi.org/10.1080/ 10408398.2013.874327
  • Xie, C., Lee, Z. J., Ye, S., Barrow, C. J., Dunshea, F. R., Suleria, H. A. R. (2024). A review on seaweeds and seaweed-derived polysaccharides: Nutrition, chemistry, bioactivities, and applications. Food Reviews International, 40(5), 1312–1347. https://doi.org/10.1080/ 87559129.2023.2212055
  • Yücetepe, A., Aydar, E. F., Dogu-Baykut, E., Dinç, H., Onat, İ. A., Demircan, E., Şensu, E., Okudan, E. Ş., Özçelik, B. (2024). Optimization of protein extraction from Halopteris scoparia macroalgae by ultrasonic-assisted enzymatic extraction (UAEE): Bioactive, chemical, and technological properties. ACS Food Science & Technology, 4(6), 1375–1387. https://doi.org/ 10.1021/acsfoodscitech.4c00032
  • Zainan, N. H., Sapardi, M. A. M., Ho, B. C. H., Siajam, S. I., Kamal, S. M. M., Danquah, M. K., Harun, R. (2022). Kinetic and thermodynamic characterization of amino acids generation via subcritical water reaction of microalgae Nannochloropsis sp. biomass. Biomass Conversion and Biorefinery, 12(6), 2001–2014. https://doi.org/ 10.1007/s13399-019-00538-7

ALTERNATİF PROTEİN KAYNAĞI OLARAK MAKROALGLER VE MAKROALGAL PROTEİNLERİN EKSTRAKSİYONU: BİR DERLEME ÇALIŞMASI

Yıl 2024, Cilt: 49 Sayı: 6, 1175 - 1189
https://doi.org/10.15237/gida.GD24093

Öz

Nüfus artışı, ekilebilir arazi ve su kaynaklarının giderek azalması ve hayvancılığın olumsuz çevresel etkisi alternatif protein kaynaklarını bulma konusunda araştırma yapmayı gerekli kılmaktadır. Biyoaktif bileşenler açısından zengin olan makroalgler potansiyel sağlık yararları nedeni ile ilgi çekmektedir. Makroalgler, ekilebilir araziye ihtiyaç duymadan yetiştirilebilmeleri nedeni ile karasal bitkilere göre önemli bir avantaja sahiptir. Ayrıca, makroalgler diğer bitkisel ve hayvansal kaynaklı proteinlere kıyasla protein ve amino asit içeriği açısından önemli ölçüde zengindir. Ancak, makroalglerden protein ekstraksiyonu için kullanılan geleneksel yöntemler yüksek enerji ve su tüketiminin yanı sıra düşük ekstraksiyon verimi nedeniyle dezavantajlar sunmaktadır ve bu da makroalgal proteinlerin kullanılabilirliğini sınırlamaktadır. Bu noktada, makroalglerden proteinlerin ekstraksiyonu için düşük maliyetli, yeni ve sürdürülebilir teknolojilere ihtiyaç duyulmaktadır. Bu derleme çalışmasında, öncelikle makroalglerin özellikleri, protein kalitesi, amino asit bileşimi ve sindirilebilirliğine dayalı olarak kullanım potansiyelleri açıklanmıştır. Ayrıca, makroalglerden proteinlerin ekstraksiyonu için enzimatik, darbeli elektrik alan, ultrases, mikrodalga, yüksek basınç ve sub-kritik akışkan ekstraksiyon gibi yeni yöntemler tartışılmıştır.

Kaynakça

  • Agrawal, S. B., Gupta, N., Bhagyawant, S. S., Gaikwad, S. M. (2020). Anticancer Activity of Lectins from Bauhinia purpurea and Wisteria floribunda on Breast Cancer MCF-7 Cell Lines. Protein and Peptide Letters, 27(9), 870–877. https://doi.org/10.2174/0929866527666200408143614
  • Ahmed, M. N., Jahan, R., Nissapatorn, V., Wilairatana, P., Rahmatullah, M. (2022). Plant lectins as prospective antiviral biomolecules in the search for COVID-19 eradication strategies. Biomedecine & Pharmacotherapie, 146(112507), 112507. https://doi.org/10.1016/ j.biopha.2021.112507
  • Bashir, N., Sood, M., Bandral, J. D. (2020). Enzyme immobilization and its applications in food processing: A review. Int. J. Chem. Stud, 8(2), 254–261. https://www.academia.edu/ download/83065850/8-1-503-295.pdf
  • Bhadange, Y. A., Carpenter, J., Saharan, V. K. (2024). A comprehensive review on advanced extraction techniques for retrieving bioactive components from natural sources. ACS Omega, 9(29), 31274–31297. https://doi.org/10.1021/ acsomega.4c02718
  • Biris-Dorhoi, E.-S., Michiu, D., Pop, C. R., Rotar, A. M., Tofana, M., Pop, O. L., Socaci, S. A., Farcas, A. C. (2020). Macroalgae-A sustainable source of chemical compounds with biological activities. Nutrients, 12(10), 3085. https://doi.org/ 10.3390/nu12103085
  • Bleakley, S., Hayes, M. (2017). Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods (Basel, Switzerland), 6(5). https://doi.org/10.3390/foods6050033
  • Bringloe, T. T., Starko, S., Wade, R. M., Vieira, C., Kawai, H., De Clerck, O., Cock, J. M., Coelho, S. M., Destombe, C., Valero, M., Neiva, J., Pearson, G. A., Faugeron, S., Serrão, E. A., Verbruggen, H. (2020). Phylogeny and evolution of the brown algae. Critical Reviews in Plant Sciences, 39(4), 281–321. https://doi.org/10.1080/ 07352689.2020.1787679
  • Cai, J., Lovatelli, A., Aguilar-Manjarrez, J., Cornish, L., Dabbadie, L., Desrochers, A., Diffey, S., Garrido Gamarro, E., Geehan, J., Hurtado, A., Lucente, D., Mair, G., Miao, W., Potin, P., Przybyla, C., Reantaso, M., Roubach, R., Tauati, M., Yuan, X. (2021). Seaweeds and microalgae: An overview for unlocking their potential in global aquaculture development (Food and Agriculture Organization, Ed.). Food & Agriculture Organization of the UN. https://doi.org/10.4060/cb5670en
  • Cermeño, M., Kleekayai, T., Amigo-Benavent, M., Harnedy-Rothwell, P., FitzGerald, R. J. (2020). Current knowledge on the extraction, purification, identification, and validation of bioactive peptides from seaweed. Electrophoresis, 41(20), 1694–1717. https://doi.org/10.1002/ elps.202000153
  • Cheng, Y., Xue, F., Yu, S., Du, S., Yang, Y. (2021). Subcritical Water Extraction of Natural Products. Molecules, 26(13). https://doi.org/10.3390/ molecules26134004
  • Christou, A., Stavrou, I. J., Kapnissi-Christodoulou, C. P. (2021). Continuous and pulsed ultrasound-assisted extraction of carob’s antioxidants: Processing parameters optimization and identification of polyphenolic composition. Ultrasonics Sonochemistry, 76(105630), 105630. https://doi.org/10.1016/j.ultsonch.2021.105630
  • Circuncisão, A. R., Catarino, M. D., Cardoso, S. M., Silva, A. M. S. (2018). Minerals from Macroalgae Origin: Health Benefits and Risks for Consumers. Marine Drugs, 16(11). https://doi.org/10.3390/md16110400
  • Corino, C., Modina, S. C., Di Giancamillo, A., Chiapparini, S., Rossi, R. (2019). Seaweeds in pig nutrition. Animals: An Open Access Journal from MDPI, 9(12), 1126. https://doi.org/10.3390/ ani9121126
  • Corrales, M., Toepfl, S., Butz, P., Knorr, D., Tauscher, B. (2008). Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: A comparison. Innovative Food Science & Emerging Technologies: IFSET: The Official Scientific Journal of the European Federation of Food Science and Technology, 9(1), 85–91. https://doi.org/10.1016/ j.ifset.2007.06.002
  • Cotas, J., Leandro, A., Pacheco, D., Gonçalves, A. M. M., Pereira, L. (2020). A comprehensive review of the nutraceutical and therapeutic applications of red seaweeds (Rhodophyta). Life (Basel, Switzerland), 10(3), 19. https://doi.org/ 10.3390/life10030019
  • de Souza Celente, G., Sui, Y., Acharya, P. (2023). Seaweed as an alternative protein source: Prospective protein extraction technologies. Innovative Food Science & Emerging Technologies: IFSET: The Official Scientific Journal of the European Federation of Food Science and Technology, 86(103374), 103374. https://doi.org/10.1016/ j.ifset.2023.103374
  • Di Domenico Ziero, H., Buller, L. S., Mudhoo, A., Ampese, L. C., Mussatto, S. I., Carneiro, T. F. (2020). An overview of subcritical and supercritical water treatment of different biomasses for protein and amino acids production and recovery. Journal of Environmental Chemical Engineering, 8(5), 104406. https://doi.org/10.1016/j.jece.2020.104406
  • Domozych, D. (2019). Algal Cell Walls. In eLS (pp. 1–11). John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470015902.a0000315.pub4
  • Dopelt, K., Radon, P., Davidovitch, N. (2019). Environmental Effects of the Livestock Industry: The Relationship between Knowledge, Attitudes, and Behavior among Students in Israel. International Journal of Environmental Research and Public Health, 16(8). https://doi.org/10.3390/ ijerph16081359
  • Echave, J., Fraga-Corral, M., Garcia-Perez, P., Popović-Djordjević, J., H Avdović, E., Radulović, M., Xiao, J., A Prieto, M., Simal-Gandara, J. (2021). Seaweed Protein Hydrolysates and Bioactive Peptides: Extraction, Purification, and Applications. Marine Drugs, 19(9). https://doi.org/10.3390/md19090500
  • Echave, J., Otero, P., Garcia-Oliveira, P., Munekata, P. E. S., Pateiro, M., Lorenzo, J. M., Simal-Gandara, J., Prieto, M. A. (2022). Seaweed-derived proteins and peptides: Promising marine bioactives. Antioxidants (Basel, Switzerland), 11(1), 176. https://doi.org/10.3390/antiox11010176
  • Fao, F. (2018). The State of World Fisheries and Aquaculture 2018-Meeting the sustainable development goals. Food and Agriculture Organization of the United Nations.
  • Fasolin, L. H., Pereira, R. N., Pinheiro, A. C., Martins, J. T., Andrade, C. C. P., Ramos, O. L., Vicente, A. A. (2019). Emergent food proteins - Towards sustainability, health and innovation. Food Research International, 125(108586), 108586. https://doi.org/10.1016/j.foodres.2019.108586
  • Ferdouse, F., Løvstad Holdt, S., Smith, R., Murúa, P., Yang, L. (2018). The global status of seaweed production, trade and utilization. Globefish Research Programme Volume 124. https://policycommons.net/artifacts/2242866/the-global-status-of-seaweed-production-trade-and-utilization/3000967/
  • Garcia-Vaquero, M., Ummat, V., Tiwari, B., Rajauria, G. (2020). Exploring Ultrasound, Microwave and Ultrasound–Microwave Assisted Extraction Technologies to Increase the Extraction of Bioactive Compounds and Antioxidants from Brown Macroalgae. Marine Drugs, 18(3), 172. https://doi.org/10.3390/ md18030172
  • Gaspar, R., Fonseca, R., Pereira, L. (2020). Illustrated Guide to the Macroalgae of Buarcos Bay, Figueira da Foz, Portugal. MARE UC, DCV, FCT.
  • Gomez-Zavaglia, A., Prieto Lage, M. A., Jimenez-Lopez, C., Mejuto, J. C., Simal-Gandara, J. (2019). The Potential of Seaweeds as a Source of Functional Ingredients of Prebiotic and Antioxidant Value. Antioxidants (Basel, Switzerland), 8(9). https://doi.org/10.3390/antiox8090406
  • Gordalina, M., Pinheiro, H. M., Mateus, M., da Fonseca, M. M. R., Cesário, M. T. (2021). Macroalgae as protein sources—A review on protein bioactivity, extraction, purification and characterization. Applied Sciences (Basel, Switzerland), 11(17), 7969. https://doi.org/ 10.3390/app11177969
  • Grosso, C., Valentão, P., Ferreres, F., Andrade, P. B. (2015). Alternative and efficient extraction methods for marine-derived compounds. Marine Drugs, 13(5), 3182–3230. https://doi.org/ 10.3390/md13053182
  • Harnedy, P. A., FitzGerald, R. J. (2011). Bioactive proteins, peptides, and amino acids from macroalgae(1). Journal of Phycology, 47(2), 218–232. https://doi.org/10.1111/j.1529-8817.2011.00969.x
  • Harnedy, P. A., FitzGerald, R. J. (2013). Extraction of protein from the macroalga Palmaria palmata. LWT - Food Science and Technology, 51(1), 375–382. https://doi.org/ 10.1016/j.lwt.2012.09.023
  • Ho, C. H. L., Cacace, J. E., Mazza, G. (2007). Extraction of lignans, proteins and carbohydrates from flaxseed meal with pressurized low polarity water. LWT - Food Science and Technology, 40(9), 1637–1647. https://doi.org/10.1016/ j.lwt.2006.12.003
  • Ji, L., Qiu, S., Wang, Z., Zhao, C., Tang, B., Gao, Z., Fan, J. (2023). Phycobiliproteins from algae: Current updates in sustainable production and applications in food and health. Food Research International, 167, 112737. https://doi.org/ 10.1016/j.foodres.2023.112737
  • Joannes, C., Sipaut, C. S., Dayou, J., Mansa, R. F. (2015). The potential of using pulsed electric field (PEF) technology as the cell disruption method to extract lipid from microalgae for biodiesel production. International Journal of Renewable Energy Research, 5(2), 598–621. https://dergipark.org.tr/ en/pub/ijrer/issue/16071/167979
  • Kadam, S., Álvarez, C., Tiwari, B., O’Donnell, C. (2015). Extraction of biomolecules from seaweeds. Seaweed Sustainability, 243–269. https://doi.org/10.1016/B978-0-12-418697-2.00009-X
  • Kamal, M., Abdel-Raouf, N., Alwutayd, K., AbdElgawad, H., Abdelhameed, M. S., Hammouda, O., Elsayed, K. N. M. (2023). Seasonal changes in the biochemical composition of dominant macroalgal species along the Egyptian Red Sea shore. Biology, 12(3), 411. https://doi.org/10.3390/biology12030411
  • Kazir, M., Abuhassira, Y., Robin, A., Nahor, O., Luo, J., Israel, A., Golberg, A., Livney, Y. D. (2019). Extraction of proteins from two marine macroalgae, Ulva sp. and Gracilaria sp., for food application, and evaluating digestibility, amino acid composition and antioxidant properties of the protein concentrates. Food Hydrocolloids, 87, 194–203.
  • Konstantin, B., Anastasia, P., Nikolay, I., Daria, P. (2023). Seasonal variations in the chemical composition of Arctic brown macroalgae. Algal Research, 72(103112), 103112. https://doi.org/10.1016/j.algal.2023.103112
  • Lakshmi, D. S., Sankaranarayanan, S., Gajaria, T. K., Li, G., Kujawski, W., Kujawa, J., Navia, R. (2020). A Short Review on the Valorization of Green Seaweeds and Ulvan: FEEDSTOCK for Chemicals and Biomaterials. Biomolecules, 10(7). https://doi.org/10.3390/biom10070991
  • Machado, M., Machado, S., Pimentel, F. B., Freitas, V., Alves, R. C., Oliveira, M. B. P. P. (2020). Amino acid profile and protein quality assessment of macroalgae produced in an integrated multi-trophic aquaculture system. Foods (Basel, Switzerland), 9(10), 1382. https://doi.org/10.3390/foods9101382
  • Magpusao, J., Oey, I., Kebede, B. (2021). Opportunities and challenges of algal protein extraction and production.
  • Meng, W., Mu, T., Sun, H., Garcia-Vaquero, M. (2022). Evaluation of the chemical composition and nutritional potential of brown macroalgae commercialised in China. Algal Research, 64, 102683. https://doi.org/10.1016/ j.algal.2022.102683
  • Mittal, R., Tavanandi, H. A., Mantri, V. A., Raghavarao, K. S. M. S. (2017). Ultrasound assisted methods for enhanced extraction of phycobiliproteins from marine macro-algae, Gelidium pusillum (Rhodophyta). Ultrasonics Sonochemistry, 38, 92–103. https://doi.org/ 10.1016/j.ultsonch.2017.02.030
  • Nadathur, S., Wanasundara, J. P. D., Scanlin, L. (2024). Feeding the globe nutritious food in 2050: Obligations and ethical choices. In S. Nadathur, J. P. D. Wanasundara, & L. Scanlin (Eds.), Sustainable Protein Sources (pp. 649–668). Elsevier. https://doi.org/10.1016/b978-0-323-91652-3.00032-0
  • Nan, F., Feng, J., Lv, J., Liu, Q., Fang, K., Gong, C., Xie, S. (2017). Origin and evolutionary history of freshwater Rhodophyta: further insights based on phylogenomic evidence. Scientific Reports, 7(1), 2934. https://doi.org/10.1038/s41598-017-03235-5
  • Naseri, A., Marinho, G. S., Holdt, S. L., Bartela, J. M., Jacobsen, C. (2020). Enzyme-assisted extraction and characterization of protein from red seaweed Palmaria palmata. Algal Research, 47, 101849. https://doi.org/10.1016/ j.algal.2020.101849
  • O’ Brien, R., Hayes, M., Sheldrake, G., Tiwari, B., Walsh, P. (2022). Macroalgal Proteins: A Review. Foods (Basel, Switzerland), 11(4). https://doi.org/ 10.3390/foods11040571
  • O’ Connor, J., Meaney, S., Williams, G. A., Hayes, M. (2020). Extraction of protein from four different seaweeds using three different physical pre-treatment strategies. Molecules (Basel, Switzerland), 25(8), 2005. https://doi.org/ 10.3390/molecules25082005
  • O’Connor, J., Garcia-Vaquero, M., Meaney, S., Tiwari, B. K. (2022). Bioactive Peptides from Algae: Traditional and Novel Generation Strategies, Structure-Function Relationships, and Bioinformatics as Predictive Tools for Bioactivity. Marine Drugs, 20(5). https://doi.org/10.3390/ md20050317
  • Okolie, C. L., Akanbi, T. O., Mason, B., Udenigwe, C. C., Aryee, A. N. A. (2019). Influence of conventional and recent extraction technologies on physicochemical properties of bioactive macromolecules from natural sources: A review. Food Research International (Ottawa, Ont.), 116, 827–839. https://doi.org/10.1016/ j.foodres.2018.09.018
  • Paiva, L., Lima, E., Patarra, R. F., Neto, A. I., Baptista, J. (2014). Edible Azorean macroalgae as source of rich nutrients with impact on human health. Food Chemistry, 164, 128–135. https://doi.org/10.1016/j.foodchem.2014.04.119
  • Pangestuti, R., Getachew, A. T., Siahaan, E. A., Chun, B.-S. (2019). Characterization of functional materials derived from tropical red seaweed Hypnea musciformis produced by subcritical water extraction systems. Journal of Applied Phycology, 31(4), 2517–2528. https://doi.org/ 10.1007/s10811-019-1754-9
  • Pan-Utai, W., Pantoa, T., Roytrakul, S., Praiboon, J., Kosawatpat, P., Tamtin, M., Thongdang, B. (2022). Ultrasonic-assisted extraction and antioxidant potential of valuable protein from Ulva rigida macroalgae. Life (Basel, Switzerland), 13(1), 86. https://doi.org/10.3390/life13010086
  • Peñalver, R., Lorenzo, J. M., Ros, G., Amarowicz, R., Pateiro, M., Nieto, G. (2020). Seaweeds as a functional ingredient for a healthy diet. Marine Drugs, 18(6), 301. https://doi.org/10.3390/ md18060301 Pereira, L. (2021a). Edible seaweeds of the world. CRC Press.
  • Pereira, L. (2021b). Macroalgae. Encyclopedia, 1(1), 177–188. https://doi.org/10.3390/ encyclopedia1010017
  • Pimentel, F. B., Alves, R. C., Harnedy, P. A., FitzGerald, R. J., Oliveira, M. B. P. P. (2019). Macroalgal-derived protein hydrolysates and bioactive peptides: Enzymatic release and potential health enhancing properties. Trends in Food Science & Technology, 93, 106–124. https://doi.org/10.1016/j.tifs.2019.09.006
  • Plaza, M., Amigo-Benavent, M., del Castillo, M. D., Ibáñez, E., Herrero, M. (2010). Facts about the formation of new antioxidants in natural samples after subcritical water extraction. Food Research International , 43(10), 2341–2348. https://doi.org/10.1016/j.foodres.2010.07.036
  • Pliego-Cortés, H., Wijesekara, I., Lang, M., Bourgougnon, N., Bedoux, G. (2020). Chapter Nine - Current knowledge and challenges in extraction, characterization and bioactivity of seaweed protein and seaweed-derived proteins. In N. Bourgougnon (Ed.), Advances in Botanical Research (Vol. 95, pp. 289–326). Academic Press. https://doi.org/10.1016/bs.abr.2019.11.008
  • Polikovsky, M., Fernand, F., Sack, M., Frey, W., Müller, G., Golberg, A. (2019). In silico food allergenic risk evaluation of proteins extracted from macroalgae Ulva sp. with pulsed electric fields. Food Chemistry, 276, 735–744. https://doi.org/10.1016/j.foodchem.2018.09.134
  • Postma, P. R., Cerezo-Chinarro, O., Akkerman, R. J., Olivieri, G., Wijffels, R. H., Brandenburg, W. A., Eppink, M. H. M. (2018). Biorefinery of the macroalgae Ulva lactuca: extraction of proteins and carbohydrates by mild disintegration. Journal of Applied Phycology, 30(2), 1281–1293. https://doi.org/10.1007/s10811-017-1319-8
  • Prabhu, M. S., Levkov, K., Livney, Y. D., Israel, A., Golberg, A. (2019). High-voltage pulsed electric field preprocessing enhances extraction of starch, proteins, and ash from marine macroalgae Ulva ohnoi. ACS Sustainable Chemistry & Engineering, 7(20), 17453–17463. https://doi.org/10.1021/ acssuschemeng.9b04669
  • Praveen, M. A., Parvathy, K. R. K., Balasubramanian, P., Jayabalan, R. (2019). An overview of extraction and purification techniques of seaweed dietary fibers for immunomodulation on gut microbiota. Trends in Food Science & Technology, 92, 46–64. https://doi.org/10.1016/j.tifs.2019.08.011
  • Puzorjov, A., McCormick, A. J. (2020). Phycobiliproteins from extreme environments and their potential applications. Journal of Experimental Botany, 71(13), 3827–3842. https://doi.org/10.1093/jxb/eraa139
  • Qu, W., Ma, H., Wang, T., Zheng, H. (2013). Alternating two-frequency countercurrent ultrasonic-assisted extraction of protein and polysaccharide from Porphyra yezoensis. Transactions of the Chinese Society of Agricultural Engineering/Nongye Gongcheng Xuebao, 29(1), 285–292.
  • Rawiwan, P., Peng, Y., Paramayuda, I. G. P. B., Quek, S. Y. (2022). Red seaweed: A promising alternative protein source for global food sustainability. Trends in Food Science & Technology, 123, 37–56. https://doi.org/10.1016/ j.tifs.2022.03.003
  • Robin, A., Kazir, M., Sack, M., Israel, A., Frey, W., Mueller, G., Livney, Y. D., Golberg, A. (2018). Functional protein concentrates extracted from the Green marine macroalga Ulva sp., by high voltage pulsed electric fields and mechanical press. ACS Sustainable Chemistry & Engineering, 6(11), 13696–13705. https://doi.org/10.1021/ acssuschemeng.8b01089
  • Ruslan, F. S., Susanti, D., Mohammad Noor, N., Aminudin, N. I. (2021). Bioactive Compounds, Cosmeceutical And Nutraceutical Applications of Green Seaweed Species (Chlorophyta). SQUALEN Bulletin of Marine and Fisheries Postharvest and Biotechnology, 16(1), 41–55. https://doi.org/10.15578/squalen.514
  • Salehi, B., Sharifi-Rad, J., Seca, A. M. L., Pinto, D. C. G. A., Michalak, I., Trincone, A., Mishra, A. P., Nigam, M., Zam, W., Martins, N. (2019). Current Trends on Seaweeds: Looking at Chemical Composition, Phytopharmacology, and Cosmetic Applications. Molecules, 24(22). https://doi.org/ 10.3390/molecules24224182
  • Samarathunga, J., Wijesekara, I., Jayasinghe, M. (2022). Seaweed proteins as a novel protein alternative: Types, extractions, and functional food applications. Food Reviews International, 1–26. https://doi.org/10.1080/87559129.2021.2023564
  • Silva, A., Silva, S. A., Lourenço-Lopes, C., Jimenez-Lopez, C., Carpena, M., Gullón, P., Fraga-Corral, M., Domingues, V. F., Barroso, M. F., Simal-Gandara, J., Prieto, M. A. (2020). Antibacterial use of macroalgae compounds against foodborne pathogens. Antibiotics (Basel, Switzerland), 9(10), 712. https://doi.org/10.3390/ antibiotics9100712
  • Suwal, S., Perreault, V., Marciniak, A., Tamigneaux, É., Deslandes, É., Bazinet, L., Jacques, H., Beaulieu, L., Doyen, A. (2019). Effects of high hydrostatic pressure and polysaccharidases on the extraction of antioxidant compounds from red macroalgae, Palmaria palmata and Solieria chordalis. Journal of Food Engineering, 252, 53–59. https://doi.org/ 10.1016/j.jfoodeng.2019.02.014
  • Thiviya, P., Gamage, A., Gama-Arachchige, N. S., Merah, O., Madhujith, T. (2022). Seaweeds as a source of functional proteins. Phycology, 2(2), 216–243. https://doi.org/10.3390/phycology2020012
  • Tibbetts, S. M., Milley, J. E., Lall, S. P. (2016). Nutritional quality of some wild and cultivated seaweeds: Nutrient composition, total phenolic content and in vitro digestibility. Journal of Applied Phycology, 28(6), 3575–3585. https://doi.org/ 10.1007/s10811-016-0863-y
  • Titlyanov, E. A., Titlyanova, T. V. (2010). Seaweed cultivation: Methods and problems. Russian Journal of Marine Biology, 36(4), 227–242. https://doi.org/10.1134/S1063074010040012
  • Vásquez, V., Martínez, R., Bernal, C. (2019). Enzyme-assisted extraction of proteins from the seaweeds Macrocystis pyrifera and Chondracanthus chamissoi: characterization of the extracts and their bioactive potential. Journal of Applied Phycology, 31(3), 1999–2010. https://doi.org/10.1007/s10811-018-1712-y
  • Vázquez-Rodríguez, B., Gutiérrez-Uribe, J. A., Antunes-Ricardo, M., Santos-Zea, L., Cruz-Suárez, L. E. (2020). Ultrasound-assisted extraction of phlorotannins and polysaccharides from Silvetia compressa (Phaeophyceae). Journal of Applied Phycology, 32(2), 1441–1453. https://doi.org/10.1007/s10811-019-02013-2
  • Xi, J. (2017). Ultrahigh pressure extraction of bioactive compounds from plants-A review. Critical Reviews in Food Science and Nutrition, 57(6), 1097–1106. https://doi.org/10.1080/ 10408398.2013.874327
  • Xie, C., Lee, Z. J., Ye, S., Barrow, C. J., Dunshea, F. R., Suleria, H. A. R. (2024). A review on seaweeds and seaweed-derived polysaccharides: Nutrition, chemistry, bioactivities, and applications. Food Reviews International, 40(5), 1312–1347. https://doi.org/10.1080/ 87559129.2023.2212055
  • Yücetepe, A., Aydar, E. F., Dogu-Baykut, E., Dinç, H., Onat, İ. A., Demircan, E., Şensu, E., Okudan, E. Ş., Özçelik, B. (2024). Optimization of protein extraction from Halopteris scoparia macroalgae by ultrasonic-assisted enzymatic extraction (UAEE): Bioactive, chemical, and technological properties. ACS Food Science & Technology, 4(6), 1375–1387. https://doi.org/ 10.1021/acsfoodscitech.4c00032
  • Zainan, N. H., Sapardi, M. A. M., Ho, B. C. H., Siajam, S. I., Kamal, S. M. M., Danquah, M. K., Harun, R. (2022). Kinetic and thermodynamic characterization of amino acids generation via subcritical water reaction of microalgae Nannochloropsis sp. biomass. Biomass Conversion and Biorefinery, 12(6), 2001–2014. https://doi.org/ 10.1007/s13399-019-00538-7
Toplam 80 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Özellikleri, Gıda Mühendisliği, Gıda Sürdürülebilirliği
Bölüm Makaleler
Yazarlar

Eda Şensu 0000-0002-6240-8381

Aysun Yücetepe 0000-0002-3800-4774

Beraat Özçelik 0000-0002-1810-8154

Yayımlanma Tarihi
Gönderilme Tarihi 9 Eylül 2024
Kabul Tarihi 29 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 49 Sayı: 6

Kaynak Göster

APA Şensu, E., Yücetepe, A., & Özçelik, B. (t.y.). ALTERNATİF PROTEİN KAYNAĞI OLARAK MAKROALGLER VE MAKROALGAL PROTEİNLERİN EKSTRAKSİYONU: BİR DERLEME ÇALIŞMASI. Gıda, 49(6), 1175-1189. https://doi.org/10.15237/gida.GD24093
AMA Şensu E, Yücetepe A, Özçelik B. ALTERNATİF PROTEİN KAYNAĞI OLARAK MAKROALGLER VE MAKROALGAL PROTEİNLERİN EKSTRAKSİYONU: BİR DERLEME ÇALIŞMASI. GIDA. 49(6):1175-1189. doi:10.15237/gida.GD24093
Chicago Şensu, Eda, Aysun Yücetepe, ve Beraat Özçelik. “ALTERNATİF PROTEİN KAYNAĞI OLARAK MAKROALGLER VE MAKROALGAL PROTEİNLERİN EKSTRAKSİYONU: BİR DERLEME ÇALIŞMASI”. Gıda 49, sy. 6 t.y.: 1175-89. https://doi.org/10.15237/gida.GD24093.
EndNote Şensu E, Yücetepe A, Özçelik B ALTERNATİF PROTEİN KAYNAĞI OLARAK MAKROALGLER VE MAKROALGAL PROTEİNLERİN EKSTRAKSİYONU: BİR DERLEME ÇALIŞMASI. Gıda 49 6 1175–1189.
IEEE E. Şensu, A. Yücetepe, ve B. Özçelik, “ALTERNATİF PROTEİN KAYNAĞI OLARAK MAKROALGLER VE MAKROALGAL PROTEİNLERİN EKSTRAKSİYONU: BİR DERLEME ÇALIŞMASI”, GIDA, c. 49, sy. 6, ss. 1175–1189, doi: 10.15237/gida.GD24093.
ISNAD Şensu, Eda vd. “ALTERNATİF PROTEİN KAYNAĞI OLARAK MAKROALGLER VE MAKROALGAL PROTEİNLERİN EKSTRAKSİYONU: BİR DERLEME ÇALIŞMASI”. Gıda 49/6 (t.y.), 1175-1189. https://doi.org/10.15237/gida.GD24093.
JAMA Şensu E, Yücetepe A, Özçelik B. ALTERNATİF PROTEİN KAYNAĞI OLARAK MAKROALGLER VE MAKROALGAL PROTEİNLERİN EKSTRAKSİYONU: BİR DERLEME ÇALIŞMASI. GIDA.;49:1175–1189.
MLA Şensu, Eda vd. “ALTERNATİF PROTEİN KAYNAĞI OLARAK MAKROALGLER VE MAKROALGAL PROTEİNLERİN EKSTRAKSİYONU: BİR DERLEME ÇALIŞMASI”. Gıda, c. 49, sy. 6, ss. 1175-89, doi:10.15237/gida.GD24093.
Vancouver Şensu E, Yücetepe A, Özçelik B. ALTERNATİF PROTEİN KAYNAĞI OLARAK MAKROALGLER VE MAKROALGAL PROTEİNLERİN EKSTRAKSİYONU: BİR DERLEME ÇALIŞMASI. GIDA. 49(6):1175-89.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/