Araştırma Makalesi
BibTex RIS Kaynak Göster

FARKLI TİCARİ MEYVE SİRKELERİNİN TOPLAM FENOLİK BİLEŞİK, ANTİOKSİDAN AKTİVİTE VE BAZI FİZİKOKİMYASAL ÖZELLİKLERİNİN BELİRLENMESİ

Yıl 2025, Cilt: 50 Sayı: 4, 606 - 619, 10.08.2025
https://doi.org/10.15237/gida.GD25063

Öz

Bu çalışma Türkiye’de satışa sunulan ve piyasada yaygın olmayan farklı markalara ait meyve sirkelerinin (ananas, şeftali, muz, çilek, incir, böğürtlen, kayısı, gilaburu, vişne ve kuşburnu) toplam fenolik madde (TFM), toplam flavonoid (TFL), antioksidan aktivite (ABTS, DPPH, FRAP) ve bazı fizikokimyasal özelliklerini belirlemeyi amaçlamıştır. Bir markaya ait böğürtlen sirkesi hariç tüm örneklerin kabul edilebilir sınırın altında titrasyon asitliği değerlerine sahip olduğu belirlenmiştir. Sirkelerin pH, kuru madde ve renk değerleri açısından da dikkate değer farklılıklara sahip olduğu saptanmıştır. Ticari meyve sirkelerinin TFM ve TFL değerlerinin sırasıyla 63.08-4441.25 mg GAE/L ve 4.62-3023.08 KE/L aralığında; ABTS, DPPH ve FRAP değerlerinin ise sırasıyla 21.45-7710.91 mg TE/L, 3.40-2079.00 mg TE/L ve 10.27-5332.20 mg TE/L aralığında değiştiği belirlenmiştir. En yüksek TFM, TFL ve antioksidan aktivite değerleri kuşburnu sirkesi örneklerinde tespit edilmiştir. Hem farklı meyve sirkeleri hem de aynı meyve sirkesinin farklı markaları arasında TFM, TFL değerleri, antioksidan aktivite ve fizikokimyasal özellikler açısından önemli farklılıklar olduğu tespit edilmiştir.

Kaynakça

  • Adefegha, S.A., Oboh, G., Oluokun, O.O. (2022). Food bioactives: The food image behind the curtain of health promotion and prevention against several degenerative diseases. Studies in Natural Products Chemistry, 72: 391-421.
  • Akbaş, M., Cabaroğlu, T. (2010). Ülkemizde üretilen bazı üzüm sirkelerinin bileşimleri ve gıda mevzuatına uygunlukları üzerine bir araştırma. Gıda: The Journal of Food, 35(3): 183-188.
  • Alejandra, C.H.L., Diego, I.C., Diego, L.V., José, L.G.J., Lorena, L.G.M. (2023). Functional properties of bioactive compounds contained in vegetables commonly consumed in Mexico. Studies in Natural Products Chemistry, 79: 241-288.
  • Anonymous (2003). TSE-Sirke-tarım kökenli sıvılardan elde edilen ürün-tarifler, özellikler ve işaretleme, TS 1880 EN 13188, Türk Standartları Enstitüsü, Ankara.
  • AWRI (2024). Australian Wine Research Institute. Retrieved from: https://awri.com.au (Accessed: 02 May 2025).
  • Bakir, S., Devecioglu, D., Kayacan, S., Toydemir, G., Karbancioglu-Guler, F., Capanoglu, E. (2017). Investigating the antioxidant and antimicrobial activities of different vinegars. European Food Research and Technology, 243: 2083-2094.
  • Benzie, I.F.F., Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239: 70-76.
  • Bhat, S.V., Akhtar, R., Amin, T. (2014). An overview on the biological production of vinegar. International Journal of Fermented Foods, 3(2): 139-155.
  • Blasi, F., Urbani, E., Simonetti, M.S., Chiesi, C., Cossignani, L. (2016). Seasonal variations in antioxidant compounds of Olea europaea leaves collected from different Italian cultivars. Journal of Applied Botany and Food Quality, 89: 202-207.
  • Boondaeng, A., Kasemsumran, S., Ngowsuwan, K., Vaithanomsat, P., Apiwatanapiwat, W., Trakunjae, C., Janchai, P., Jungtheerapanich, S., Niyomvong, N. (2022). Comparison of the chemical properties of pineapple vinegar and mixed pineapple and dragon fruit vinegar. Fermentation, 8(11): 597.
  • Boonsupa, W. (2019). Chemical properties, antioxidant activities and sensory evaluation of berry vinegar. Walailak Journal of Science and Technology (WJST), 16(11): 887-896.
  • Budak, H.N. (2010). Elma ve üzümden üretilen sirkelerin bileşenleri ve fonksiyonel özellikleri üzerine araştirma. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Doktora Tezi, Isparta, Türkiye, 185 s.
  • Budak, N.H., Aykin, E., Seydim, A.C., Greene, A.K., Guzel‐Seydim, Z.B. (2014). Functional properties of vinegar. Journal of Food Science, 79(5): R757-R764.
  • Budak, N.H., Özdemir, N., Gökırmaklı, Ç. (2022a). The changes of physicochemical properties, antioxidants, organic, and key volatile compounds associated with the flavor of peach (Prunus cerasus L. Batsch) vinegar during the fermentation process. Journal of Food Biochemistry, 46(6): e13978.
  • Budak, H.N., Filiz, B.E., Çetin, E.S., Gökirmakli, Ç. (2022b). Antimicrobial activity of different kinds of traditional vinegar and its relationship with antioxidant properties. The Annals of the University Dunarea De Jos of Galati. Fascicle VI-Food Technology, 46(1): 140-154.
  • CAC (2000). Codex Alimentarius Comission, Food and Agriculture Organization of the United Nations, Rome, Italy.
  • Cemeroğlu, B.S. (2013). Gıda Analizleri. Bizim Grup Basımevi, Ankara, Türkiye, 480 s. ISBN: 978-605-63419-3-9.
  • Chen, G.L., Zheng, F.J., Lin, B., Yang, Y.X., Fang, X.C., Verma, K.K., Yang, L.F. (2023). Vinegar: A potential source of healthy and functional food with special reference to sugarcane vinegar. Frontiers in Nutrition, 10: 1145862.
  • Cosmulescu, S., Stoenescu, A.M., Trandafir, I., Tuțulescu, F. (2022). Comparison of chemical properties between traditional and commercial vinegar. Horticulturae, 8(3): 225.
  • Dash, U.C., Bhol, N.K., Swain, S.K., Samal, R.R., Nayak, P.K., Raina, V., Panda, S.K., Kerry, R.G., Duttaroy, A.K., Jena, A.B. (2024). Oxidative stress and inflammation in the pathogenesis of neurological disorders: Mechanisms and implications. Acta Pharmaceutica Sinica B, 15(1): 15-34.
  • De Leonardis, A., Macciola, V., Iftikhar, A., Lopez, F. (2022). Antioxidant effect of traditional and new vinegars on functional oil/vinegar dressing-based formulations. European Food Research and Technology, 248(6): 1573-1582.
  • Duman, A.D., Türkmen, A. (2024). The determination of chemical composition in some vinegars and compliance with food legislation. African Journal of Biotechnology, 23(12): 354-360.
  • Erdal, B., Yıkmış, S., Demirok, N.T., Bozgeyik, E., Levent, O. (2022). Effects of non-thermal treatment on gilaburu vinegar (Viburnum opulus L.): Polyphenols, amino acid, antimicrobial, and anticancer properties. Biology, 11(6): 926.
  • Finley, J.W., Kong, A.N., Hintze, K.J., Jeffery, E.H., Ji, L.L., Lei, X.G. (2011). Antioxidants in foods: state of the science important to the food industry. Journal of Agricultural and Food Chemistry, 59(13): 6837-6846.
  • Gaafar, A.A., Salama, Z.A. (2013). Phenolic compounds from artichoke (Cynara scolymus L.) by-products and their antimicrobial activities. Journal of Biology, Agriculture and Healthcare, 3(1): e6.
  • Gokirmakli, Ç., Budak, N.H., Guzel-Seydim, Z.B., Seydim, A.C., Filiz, B.E., Karakulak, I.D. (2019). Antioxidant properties of strawberry vinegar. International Journal of Food Engineering, 5(3): 171-174.
  • Gullo, M., Giudici, P. (2008). Acetic acid bacteria in traditional balsamic vinegar: phenotypic traits relevant for starter cultures selection. International Journal of Food Microbiology, 125(1): 46-53.
  • Güzel, M. (2024). Determination of total phenolic, flavonoid and monomeric anthocyanin contents and antioxidant properties of 15 different fruit vinegars produced by traditional method. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(3): 844-851.
  • Ho, C.W., Lazim, A.M., Fazry, S., Zaki, U.K.H.H., Lim, S.J. (2017). Varieties, production, composition and health benefits of vinegars: A review. Food Chemistry, 221: 1621-1630.
  • Jang, Y.K., Lee, M.Y., Kim, H.Y., Lee, S., Yeo, S.H., Baek, S.Y., Lee, C.H. (2015). Comparison of traditional and commercial vinegars based on metabolite profiling and antioxidant activity. Journal of Microbiology and Biotechnology, 25(2): 217-226.
  • Jeong, C.H., Choi, G.N., Kim, J.H., Kwak, J.H., Kang, S.T., Choi, S.G., Heo, H.J. (2009). In vitro antioxidant properties and phenolic composition of Korean commercial vinegars. Food Science and Biotechnology, 18(5): 1258-1262.
  • Kang, M., Ha, J.H., Lee, Y. (2020). Physicochemical properties, antioxidant activities and sensory characteristics of commercial gape vinegars during long-term storage. Food Science and Technology, 40(4): 909-916.
  • Karadag, A., Bozkurt, F., Bekiroglu, H., Sagdic, O. (2020). Use of principal component analysis and cluster analysis for differentiation of traditionally-manufactured vinegars based on phenolic and volatile profiles, and antioxidant activity. Polish Journal of Food and Nutrition Sciences, 70(4): 347-360.
  • Kılıç, G., Şengün, İ.Y. (2021). Fig vinegar as an antioxidant and antimicrobial agent. Turkish Journal of Agriculture-Food Science and Technology, 9(4): 822-828.
  • Liu, S., Chang, X., Liu, X., Shen, Z. (2016). Effects of pretreatments on anthocyanin composition, phenolics contents and antioxidant capacities during fermentation of hawthorn (Crataegus pinnatifida) drink. Food Chemistry, 212: 87-95.
  • Melkis, K., Jakubczyk, K. (2024). The chemical profiles and antioxidant properties of live fruit or vegetable vinegars available on the Polish food market. Foods, 13(10): 1488.
  • Mokhtar, S.I., Pahirulzaman, K.A.K., Xuan, F.Y. (2020). Antibacterial properties of natural tropical fruit vinegars against Propionibacterium acnes, Staphylococcus epidermidis and Staphylococcus aureus bacteria. In IOP Conference Series: Earth and Environmental Science, 596(1): 012090, IOP Publishing.
  • Özdemir, N., Pashazadeh, H., Zannou, O., Koca, I. (2022a). Phytochemical content, and antioxidant activity, and volatile compounds associated with the aromatic property, of the vinegar produced from rosehip fruit (Rosa canina L.). LWT, 154: 112716.
  • Özdemir, G.B., Özdemir, N., Ertekin‐Filiz, B., Gökırmaklı, Ç., Kök‐Taş, T., Budak, N.H. (2022b). Volatile aroma compounds and bioactive compounds of hawthorn vinegar produced from hawthorn fruit (Crataegus tanacetifolia (lam.) pers.). Journal of Food Biochemistry, 46(3): e13676.
  • Özen, M., Özdemir, N., Filiz, B.E., Budak, N.H., Kök-Taş, T. (2020). Sour cherry (Prunus cerasus L.) vinegars produced from fresh fruit or juice concentrate: Bioactive compounds, volatile aroma compounds and antioxidant capacities. Food Chemistry, 309: 125664.
  • Pathak, A., Mishra, S., Shankar, P., (2022). Chemical characterization and antioxidant property of fermented banana vinegar. International Journal of Modern Pharmaceutical Research, 6(5): 89-91.
  • Pavlidis, M., Papandroulakis, N., Divanach, P. (2006). A method for the comparison of chromaticity parameters in fish skin: preliminary results for coloration pattern of red skin Sparidae. Aquaculture, 258(1-4): 211-219.
  • Rahman, M., Uddin, M.B., Aziz, M.G., Haque, M.R., Siddiki, M.S.R. (2024). Quality assessment of vinegar produced from pineapple wastes utilizing both laboratory-isolated Acetobacter spp. and reference strain Acetobacter pasteurianus DSM-2324. Journal of Agriculture, Food and Environment (JAFE), 5(2): 1-6.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26: 1231–1237.
  • Sengun, I.Y. (2013). Microbiological and chemical properties of fig vinegar produced in Turkey. African Journal of Microbiology Research, 7(20): 2332-2338.
  • Şengün, İ.Y., Kılıç, G. (2019). Farklı sirke çeşitlerinin mikroflorası, biyoaktif bileşenleri ve sağlık üzerine etkileri. Akademik Gıda, 17(1): 89-101.
  • Sengun, I.Y., Kilic, G., Ozturk, B. (2020). Screening physicochemical, microbiological and bioactive properties of fruit vinegars produced from various raw materials. Food Science and Biotechnology, 29: 401-408.
  • Silva, V., Mehrpour, G., Soares, V., Santo, D., Nunes, P., Quintas, C. (2024). Quality and biological properties of vinegar processed from non-valorized fruits in Southern Portugal. Future Foods, 9: 100337.
  • Sossou, S.K., Ameyapoh, Y., Karou, S.D., De Souza, C. (2009). Study of pineapple peelings processing into vinegar by biotechnology. Pakistan Journal of Biological Sciences: PJBS, 12(11): 859-865.
  • Tekin, S. (2014). Elma ve üzüm sirkelerinin ağır metal içeriklerinin ICP-MS (İndüktif eşleşmiş plazma-kütle spektrometresi) ile belirlenmesi. Ankara Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Yüksek Lisans Tezi, Ankara, Türkiye, 74 s.
  • Tesfaye, W., Morales, M.L., Garcia-Parrilla, M.C., Troncoso, A.M. (2002). Wine vinegar: technology, authenticity and quality evaluation. Trends in Food Science & Technology, 13(1): 12-21.
  • Tomar, O., Çağlar, A., Akarca, G., Vatansever, H. (2020). Physicochemical and sensory quality properties of yellow hawthorn fruit (Crataegus tanacetifolia) vinegar produced by traditional fermentation method. Avrupa Bilim ve Teknoloji Dergisi, 19: 176-181.
  • Topuz, S., Bayram, M. (2022). Oleuropein extraction from leaves of three olive varieties (Olea europaea L.): Antioxidant and antimicrobial properties of purified oleuropein and oleuropein extracts. Journal of Food Processing and Preservation, 46(6): e15697.
  • Turhan, E.Ü., Canbaş, A. (2016). Chemical and sensory properties of vinegar from Dimrit grape by submerged and surface method. Gıda/The Journal of Food, 41(1): 1-7.
  • Xia, T., Zhang, B., Duan, W., Zhang, J., Wang, M. (2020). Nutrients and bioactive components from vinegar: A fermented and functional food. Journal of Functional Foods, 64: 103681.

DETERMINATION OF TOTAL PHENOLIC COMPOUND, ANTIOXIDANT ACTIVITY, AND SOME PHYSICOCHEMICAL PROPERTIES OF DIFFERENT COMMERCIAL FRUIT VINEGARS

Yıl 2025, Cilt: 50 Sayı: 4, 606 - 619, 10.08.2025
https://doi.org/10.15237/gida.GD25063

Öz

This study aimed to determine the total phenolic content (TPC), total flavonoid content (TFC), antioxidant activity (ABTS, DPPH, FRAP), and some physicochemical properties of different uncommon fruit vinegars (pineapple, peach, banana, strawberry, fig, blackberry, apricot, gilaburu, sour cherry, and rosehip) of different brands sold in Türkiye. Except for one brand of blackberry vinegar, all samples exhibited titration acidity values below the acceptable limit. The vinegars showed notable differences in pH, dry matter, and color values. TPC and TFC values ranged between 63.08-4441.25 mg GAE/L and 4.62-3023.08 QE/L, respectively. ABTS, DPPH and FRAP values varied between 21.45-7710.91 mg TE/L, 3.40-2079.00 mg TE/L and 10.27-5332.20 mg TE/L, respectively. Rosehip vinegar samples exhibited the highest TPC, TFC, and antioxidant activity. Significant variations were determined not only among different types of fruit vinegars but also among different brands of the same fruit vinegar in terms of TPC, TFC, antioxidant activity, and physicochemical properties.

Kaynakça

  • Adefegha, S.A., Oboh, G., Oluokun, O.O. (2022). Food bioactives: The food image behind the curtain of health promotion and prevention against several degenerative diseases. Studies in Natural Products Chemistry, 72: 391-421.
  • Akbaş, M., Cabaroğlu, T. (2010). Ülkemizde üretilen bazı üzüm sirkelerinin bileşimleri ve gıda mevzuatına uygunlukları üzerine bir araştırma. Gıda: The Journal of Food, 35(3): 183-188.
  • Alejandra, C.H.L., Diego, I.C., Diego, L.V., José, L.G.J., Lorena, L.G.M. (2023). Functional properties of bioactive compounds contained in vegetables commonly consumed in Mexico. Studies in Natural Products Chemistry, 79: 241-288.
  • Anonymous (2003). TSE-Sirke-tarım kökenli sıvılardan elde edilen ürün-tarifler, özellikler ve işaretleme, TS 1880 EN 13188, Türk Standartları Enstitüsü, Ankara.
  • AWRI (2024). Australian Wine Research Institute. Retrieved from: https://awri.com.au (Accessed: 02 May 2025).
  • Bakir, S., Devecioglu, D., Kayacan, S., Toydemir, G., Karbancioglu-Guler, F., Capanoglu, E. (2017). Investigating the antioxidant and antimicrobial activities of different vinegars. European Food Research and Technology, 243: 2083-2094.
  • Benzie, I.F.F., Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239: 70-76.
  • Bhat, S.V., Akhtar, R., Amin, T. (2014). An overview on the biological production of vinegar. International Journal of Fermented Foods, 3(2): 139-155.
  • Blasi, F., Urbani, E., Simonetti, M.S., Chiesi, C., Cossignani, L. (2016). Seasonal variations in antioxidant compounds of Olea europaea leaves collected from different Italian cultivars. Journal of Applied Botany and Food Quality, 89: 202-207.
  • Boondaeng, A., Kasemsumran, S., Ngowsuwan, K., Vaithanomsat, P., Apiwatanapiwat, W., Trakunjae, C., Janchai, P., Jungtheerapanich, S., Niyomvong, N. (2022). Comparison of the chemical properties of pineapple vinegar and mixed pineapple and dragon fruit vinegar. Fermentation, 8(11): 597.
  • Boonsupa, W. (2019). Chemical properties, antioxidant activities and sensory evaluation of berry vinegar. Walailak Journal of Science and Technology (WJST), 16(11): 887-896.
  • Budak, H.N. (2010). Elma ve üzümden üretilen sirkelerin bileşenleri ve fonksiyonel özellikleri üzerine araştirma. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Doktora Tezi, Isparta, Türkiye, 185 s.
  • Budak, N.H., Aykin, E., Seydim, A.C., Greene, A.K., Guzel‐Seydim, Z.B. (2014). Functional properties of vinegar. Journal of Food Science, 79(5): R757-R764.
  • Budak, N.H., Özdemir, N., Gökırmaklı, Ç. (2022a). The changes of physicochemical properties, antioxidants, organic, and key volatile compounds associated with the flavor of peach (Prunus cerasus L. Batsch) vinegar during the fermentation process. Journal of Food Biochemistry, 46(6): e13978.
  • Budak, H.N., Filiz, B.E., Çetin, E.S., Gökirmakli, Ç. (2022b). Antimicrobial activity of different kinds of traditional vinegar and its relationship with antioxidant properties. The Annals of the University Dunarea De Jos of Galati. Fascicle VI-Food Technology, 46(1): 140-154.
  • CAC (2000). Codex Alimentarius Comission, Food and Agriculture Organization of the United Nations, Rome, Italy.
  • Cemeroğlu, B.S. (2013). Gıda Analizleri. Bizim Grup Basımevi, Ankara, Türkiye, 480 s. ISBN: 978-605-63419-3-9.
  • Chen, G.L., Zheng, F.J., Lin, B., Yang, Y.X., Fang, X.C., Verma, K.K., Yang, L.F. (2023). Vinegar: A potential source of healthy and functional food with special reference to sugarcane vinegar. Frontiers in Nutrition, 10: 1145862.
  • Cosmulescu, S., Stoenescu, A.M., Trandafir, I., Tuțulescu, F. (2022). Comparison of chemical properties between traditional and commercial vinegar. Horticulturae, 8(3): 225.
  • Dash, U.C., Bhol, N.K., Swain, S.K., Samal, R.R., Nayak, P.K., Raina, V., Panda, S.K., Kerry, R.G., Duttaroy, A.K., Jena, A.B. (2024). Oxidative stress and inflammation in the pathogenesis of neurological disorders: Mechanisms and implications. Acta Pharmaceutica Sinica B, 15(1): 15-34.
  • De Leonardis, A., Macciola, V., Iftikhar, A., Lopez, F. (2022). Antioxidant effect of traditional and new vinegars on functional oil/vinegar dressing-based formulations. European Food Research and Technology, 248(6): 1573-1582.
  • Duman, A.D., Türkmen, A. (2024). The determination of chemical composition in some vinegars and compliance with food legislation. African Journal of Biotechnology, 23(12): 354-360.
  • Erdal, B., Yıkmış, S., Demirok, N.T., Bozgeyik, E., Levent, O. (2022). Effects of non-thermal treatment on gilaburu vinegar (Viburnum opulus L.): Polyphenols, amino acid, antimicrobial, and anticancer properties. Biology, 11(6): 926.
  • Finley, J.W., Kong, A.N., Hintze, K.J., Jeffery, E.H., Ji, L.L., Lei, X.G. (2011). Antioxidants in foods: state of the science important to the food industry. Journal of Agricultural and Food Chemistry, 59(13): 6837-6846.
  • Gaafar, A.A., Salama, Z.A. (2013). Phenolic compounds from artichoke (Cynara scolymus L.) by-products and their antimicrobial activities. Journal of Biology, Agriculture and Healthcare, 3(1): e6.
  • Gokirmakli, Ç., Budak, N.H., Guzel-Seydim, Z.B., Seydim, A.C., Filiz, B.E., Karakulak, I.D. (2019). Antioxidant properties of strawberry vinegar. International Journal of Food Engineering, 5(3): 171-174.
  • Gullo, M., Giudici, P. (2008). Acetic acid bacteria in traditional balsamic vinegar: phenotypic traits relevant for starter cultures selection. International Journal of Food Microbiology, 125(1): 46-53.
  • Güzel, M. (2024). Determination of total phenolic, flavonoid and monomeric anthocyanin contents and antioxidant properties of 15 different fruit vinegars produced by traditional method. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(3): 844-851.
  • Ho, C.W., Lazim, A.M., Fazry, S., Zaki, U.K.H.H., Lim, S.J. (2017). Varieties, production, composition and health benefits of vinegars: A review. Food Chemistry, 221: 1621-1630.
  • Jang, Y.K., Lee, M.Y., Kim, H.Y., Lee, S., Yeo, S.H., Baek, S.Y., Lee, C.H. (2015). Comparison of traditional and commercial vinegars based on metabolite profiling and antioxidant activity. Journal of Microbiology and Biotechnology, 25(2): 217-226.
  • Jeong, C.H., Choi, G.N., Kim, J.H., Kwak, J.H., Kang, S.T., Choi, S.G., Heo, H.J. (2009). In vitro antioxidant properties and phenolic composition of Korean commercial vinegars. Food Science and Biotechnology, 18(5): 1258-1262.
  • Kang, M., Ha, J.H., Lee, Y. (2020). Physicochemical properties, antioxidant activities and sensory characteristics of commercial gape vinegars during long-term storage. Food Science and Technology, 40(4): 909-916.
  • Karadag, A., Bozkurt, F., Bekiroglu, H., Sagdic, O. (2020). Use of principal component analysis and cluster analysis for differentiation of traditionally-manufactured vinegars based on phenolic and volatile profiles, and antioxidant activity. Polish Journal of Food and Nutrition Sciences, 70(4): 347-360.
  • Kılıç, G., Şengün, İ.Y. (2021). Fig vinegar as an antioxidant and antimicrobial agent. Turkish Journal of Agriculture-Food Science and Technology, 9(4): 822-828.
  • Liu, S., Chang, X., Liu, X., Shen, Z. (2016). Effects of pretreatments on anthocyanin composition, phenolics contents and antioxidant capacities during fermentation of hawthorn (Crataegus pinnatifida) drink. Food Chemistry, 212: 87-95.
  • Melkis, K., Jakubczyk, K. (2024). The chemical profiles and antioxidant properties of live fruit or vegetable vinegars available on the Polish food market. Foods, 13(10): 1488.
  • Mokhtar, S.I., Pahirulzaman, K.A.K., Xuan, F.Y. (2020). Antibacterial properties of natural tropical fruit vinegars against Propionibacterium acnes, Staphylococcus epidermidis and Staphylococcus aureus bacteria. In IOP Conference Series: Earth and Environmental Science, 596(1): 012090, IOP Publishing.
  • Özdemir, N., Pashazadeh, H., Zannou, O., Koca, I. (2022a). Phytochemical content, and antioxidant activity, and volatile compounds associated with the aromatic property, of the vinegar produced from rosehip fruit (Rosa canina L.). LWT, 154: 112716.
  • Özdemir, G.B., Özdemir, N., Ertekin‐Filiz, B., Gökırmaklı, Ç., Kök‐Taş, T., Budak, N.H. (2022b). Volatile aroma compounds and bioactive compounds of hawthorn vinegar produced from hawthorn fruit (Crataegus tanacetifolia (lam.) pers.). Journal of Food Biochemistry, 46(3): e13676.
  • Özen, M., Özdemir, N., Filiz, B.E., Budak, N.H., Kök-Taş, T. (2020). Sour cherry (Prunus cerasus L.) vinegars produced from fresh fruit or juice concentrate: Bioactive compounds, volatile aroma compounds and antioxidant capacities. Food Chemistry, 309: 125664.
  • Pathak, A., Mishra, S., Shankar, P., (2022). Chemical characterization and antioxidant property of fermented banana vinegar. International Journal of Modern Pharmaceutical Research, 6(5): 89-91.
  • Pavlidis, M., Papandroulakis, N., Divanach, P. (2006). A method for the comparison of chromaticity parameters in fish skin: preliminary results for coloration pattern of red skin Sparidae. Aquaculture, 258(1-4): 211-219.
  • Rahman, M., Uddin, M.B., Aziz, M.G., Haque, M.R., Siddiki, M.S.R. (2024). Quality assessment of vinegar produced from pineapple wastes utilizing both laboratory-isolated Acetobacter spp. and reference strain Acetobacter pasteurianus DSM-2324. Journal of Agriculture, Food and Environment (JAFE), 5(2): 1-6.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26: 1231–1237.
  • Sengun, I.Y. (2013). Microbiological and chemical properties of fig vinegar produced in Turkey. African Journal of Microbiology Research, 7(20): 2332-2338.
  • Şengün, İ.Y., Kılıç, G. (2019). Farklı sirke çeşitlerinin mikroflorası, biyoaktif bileşenleri ve sağlık üzerine etkileri. Akademik Gıda, 17(1): 89-101.
  • Sengun, I.Y., Kilic, G., Ozturk, B. (2020). Screening physicochemical, microbiological and bioactive properties of fruit vinegars produced from various raw materials. Food Science and Biotechnology, 29: 401-408.
  • Silva, V., Mehrpour, G., Soares, V., Santo, D., Nunes, P., Quintas, C. (2024). Quality and biological properties of vinegar processed from non-valorized fruits in Southern Portugal. Future Foods, 9: 100337.
  • Sossou, S.K., Ameyapoh, Y., Karou, S.D., De Souza, C. (2009). Study of pineapple peelings processing into vinegar by biotechnology. Pakistan Journal of Biological Sciences: PJBS, 12(11): 859-865.
  • Tekin, S. (2014). Elma ve üzüm sirkelerinin ağır metal içeriklerinin ICP-MS (İndüktif eşleşmiş plazma-kütle spektrometresi) ile belirlenmesi. Ankara Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Yüksek Lisans Tezi, Ankara, Türkiye, 74 s.
  • Tesfaye, W., Morales, M.L., Garcia-Parrilla, M.C., Troncoso, A.M. (2002). Wine vinegar: technology, authenticity and quality evaluation. Trends in Food Science & Technology, 13(1): 12-21.
  • Tomar, O., Çağlar, A., Akarca, G., Vatansever, H. (2020). Physicochemical and sensory quality properties of yellow hawthorn fruit (Crataegus tanacetifolia) vinegar produced by traditional fermentation method. Avrupa Bilim ve Teknoloji Dergisi, 19: 176-181.
  • Topuz, S., Bayram, M. (2022). Oleuropein extraction from leaves of three olive varieties (Olea europaea L.): Antioxidant and antimicrobial properties of purified oleuropein and oleuropein extracts. Journal of Food Processing and Preservation, 46(6): e15697.
  • Turhan, E.Ü., Canbaş, A. (2016). Chemical and sensory properties of vinegar from Dimrit grape by submerged and surface method. Gıda/The Journal of Food, 41(1): 1-7.
  • Xia, T., Zhang, B., Duan, W., Zhang, J., Wang, M. (2020). Nutrients and bioactive components from vinegar: A fermented and functional food. Journal of Functional Foods, 64: 103681.
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fermantasyon Teknolojisi
Bölüm Makaleler
Yazarlar

Semra Topuz Türker 0000-0002-9122-0839

Mustafa Bayram 0000-0002-8232-226X

Yayımlanma Tarihi 10 Ağustos 2025
Gönderilme Tarihi 16 Mayıs 2025
Kabul Tarihi 16 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 50 Sayı: 4

Kaynak Göster

APA Topuz Türker, S., & Bayram, M. (2025). DETERMINATION OF TOTAL PHENOLIC COMPOUND, ANTIOXIDANT ACTIVITY, AND SOME PHYSICOCHEMICAL PROPERTIES OF DIFFERENT COMMERCIAL FRUIT VINEGARS. Gıda, 50(4), 606-619. https://doi.org/10.15237/gida.GD25063
AMA Topuz Türker S, Bayram M. DETERMINATION OF TOTAL PHENOLIC COMPOUND, ANTIOXIDANT ACTIVITY, AND SOME PHYSICOCHEMICAL PROPERTIES OF DIFFERENT COMMERCIAL FRUIT VINEGARS. GIDA. Ağustos 2025;50(4):606-619. doi:10.15237/gida.GD25063
Chicago Topuz Türker, Semra, ve Mustafa Bayram. “DETERMINATION OF TOTAL PHENOLIC COMPOUND, ANTIOXIDANT ACTIVITY, AND SOME PHYSICOCHEMICAL PROPERTIES OF DIFFERENT COMMERCIAL FRUIT VINEGARS”. Gıda 50, sy. 4 (Ağustos 2025): 606-19. https://doi.org/10.15237/gida.GD25063.
EndNote Topuz Türker S, Bayram M (01 Ağustos 2025) DETERMINATION OF TOTAL PHENOLIC COMPOUND, ANTIOXIDANT ACTIVITY, AND SOME PHYSICOCHEMICAL PROPERTIES OF DIFFERENT COMMERCIAL FRUIT VINEGARS. Gıda 50 4 606–619.
IEEE S. Topuz Türker ve M. Bayram, “DETERMINATION OF TOTAL PHENOLIC COMPOUND, ANTIOXIDANT ACTIVITY, AND SOME PHYSICOCHEMICAL PROPERTIES OF DIFFERENT COMMERCIAL FRUIT VINEGARS”, GIDA, c. 50, sy. 4, ss. 606–619, 2025, doi: 10.15237/gida.GD25063.
ISNAD Topuz Türker, Semra - Bayram, Mustafa. “DETERMINATION OF TOTAL PHENOLIC COMPOUND, ANTIOXIDANT ACTIVITY, AND SOME PHYSICOCHEMICAL PROPERTIES OF DIFFERENT COMMERCIAL FRUIT VINEGARS”. Gıda 50/4 (Ağustos2025), 606-619. https://doi.org/10.15237/gida.GD25063.
JAMA Topuz Türker S, Bayram M. DETERMINATION OF TOTAL PHENOLIC COMPOUND, ANTIOXIDANT ACTIVITY, AND SOME PHYSICOCHEMICAL PROPERTIES OF DIFFERENT COMMERCIAL FRUIT VINEGARS. GIDA. 2025;50:606–619.
MLA Topuz Türker, Semra ve Mustafa Bayram. “DETERMINATION OF TOTAL PHENOLIC COMPOUND, ANTIOXIDANT ACTIVITY, AND SOME PHYSICOCHEMICAL PROPERTIES OF DIFFERENT COMMERCIAL FRUIT VINEGARS”. Gıda, c. 50, sy. 4, 2025, ss. 606-19, doi:10.15237/gida.GD25063.
Vancouver Topuz Türker S, Bayram M. DETERMINATION OF TOTAL PHENOLIC COMPOUND, ANTIOXIDANT ACTIVITY, AND SOME PHYSICOCHEMICAL PROPERTIES OF DIFFERENT COMMERCIAL FRUIT VINEGARS. GIDA. 2025;50(4):606-19.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/