Araştırma Makalesi
BibTex RIS Kaynak Göster

Volterra integral denklemlerinin ve Volterra integro-diferensiyel denklemlerinin G_r-dönüşümü kullanılarak çözümü

Yıl 2025, Cilt: 6 Sayı: 1, 102 - 112, 29.05.2025
https://doi.org/10.63716/guffd.1548492

Öz

Volterra integral denklemleri ve Volterra integro-diferensiyel denklemleri, birçok farklı mühendislik ve bilimsel problemin oldukça genel temsilleri olarak karşımıza çıkmaktadır. Bu makalede yazarlar, lineer Volterra integral denklemlerini ve lineer Volterra integro-diferensiyel denklemlerini çözmek için yeni geliştirilen ve G_r-dönüşümü olarak adlandırılan bir hesaplama algoritmasını tanıtmaktadırlar. Daha sonra birkaç örnekle G_r-dönüşümünün her iki denklem türünü çözmedeki verimliliğini göstermektedirler.

Kaynakça

  • Linz, P. (1974). A simple approximation method for solving Volterra integro-differential equations of the first kind. IMA Journal of Applied Mathematics, 14(2), 211–215.
  • Çimen, E. (2018). A computational method for Volterra integro-diferentialequation. Erzincan Fen Bilimleri Enstitüsü Dergisi, 11(3), 347–352.
  • Ajileye, G., Amoo S.A. (2023). Numerical solution to Volterra integro-differential equations using collocation approximation. Mathematics and Computational Sciences, 4(1), 1–8.
  • Zhou, H., Wang, Q., (2019). The Nystrom method and convergence analysis for system of Fredholm integral equations. Fundamental Journal of Mathematics and Applications, 2(1), 28-32.
  • Zhou, H., Wang, Q., (2019). Two-Grid iterative method for a class of Fredholm functional integral equations based on the radial basis function interpolation. Fundamental Journal of Mathematics and Applications, 2(2), 117-122.
  • Dafemos, C. M. (1970). An abstract Volterra equation with applications to linear viscoelasticity. Journal of Differential Equations, 7(3), 554–569.
  • Levinson, N. (1960). A nonlinear Volterra equation arising in the theory of superfluidity. Journal of Mathematical Analysis and Applications, 1(1), 1–11.
  • Shilepsky, C. C. (1974). The asymptotic behavior of an integral equation with an application to Volterra’s population equation. Journal of Mathematical Analysis and Applications, 48(3), 764–779.
  • Swick, K. E. (1981). A nonlinear model for human population dynamics. SIAM Journal on Applied Mathematics, 40(2), 266–278.
  • Distefano, N. (1968). A Volterra integral equation in the stability of some linear hereditary phenomena. Journal of Mathematical Analysis and Applications, 23(2), 365–383.
  • Philip, J. R. (1966). Some integral equations in geometrical probability. Biometrika, 53(3–4), 365–374.
  • Feller, W. (1941). On the integral equation of renewal theory. The Annals of Mathematical Statics, 12(3), 243–267.
  • Wang, F. J. S. (1978). Asymptotic behavior of some deterministic epidemic models. SIAM Journal on Mathematical Analysis, 9(3), 529–534.
  • Lin, S. P. (1975). Damped vibration of a string. Journal of Fluid Mechanics, 72(4), 787–797.
  • Rogers, T. G., Lee, E. H. (1964). The cylinder problem in viscoelastic stress analysis. Quarterly of Applied Mathematics, 22(2), 117–131.
  • Goldsmith, P. L. (1967). The calculation of true particle size distributions from the sizes observed in a thin slice. British Journal of Applied Physics, 18(6), 813.
  • Raisinghania, M. D. (2007). Integral equations and boundary value problems. New Delhi. S. Chand Publishing.
  • Rahman, M. (2007). Integral Equations and Their Applications. Boston. WIT press.
  • Polyanin, P., Manzhirov, A. V. (2008). Handbook of Integral Equations. London: Chapman and Hall/CRC.
  • Wazwaz, A. M. (2011). Linear and nonlinear integral equations. Berlin. Springer.
  • Pipkin, A. C. (1991). A Course on Integral Equations. New York Berlin Heidelberg. Springer Science & Business Media, 9.
  • Bitsadze, A. V. (1995). Integral Equations of First Kind. Singapore. World Scientific, 7.
  • Hackbusch, W. (1995). Integral Equation Theory and Numerical Treatment. Basel. Birkhauser press.
  • Aggarwal, S., Gupta, A. R., Sharma, S. D. (2019). A new application of Shehu transform for handling Volterra integral equations of first kind. International Journal of Research in Advent Technology, 7(4), 439–445.
  • Aggarwal, S., Sharma, N., Chauhan, R. (2018). Application of Kamal transform for solving linear Volterra integral equations of first kind. International Journal of Research in Advent Technology, 6(8), 2081–2088.
  • Higazy, M., Aggarwal, S., Nofal, T. A. (2020). Sawi decomposition method for Volterra integral equation with application. Journal of Mathematics, 2020, 1–13.
  • Aggarwal, S., Sharma, N., Chauhan, R. (2018). Solution of linear Volterra integral equations of second kind using Mohand transform. International Journal of Research in Advent Technology, 6(11), 3098–3102.
  • Ali, A. I., Kalim, M., Khan, A. (2022). Solutions of Volterra integral equations (VIEs) of the second kind with Bulge function using Aboodh transform. Scientific Inquiry and Review, 6(2), 21–31.
  • Sattaso, S., Nonlaopon, K., Kim, H. (2019). Further properties of Laplace-typed integral transforms. Dynamic Systems and Applications, 28, 195–215.
  • Kim, H. (2017). The solution of Laguerre’s equation by using G-transform. International Journal of Applied Engineering Research, 12(24), 16083–16086.
  • Şener, S. Ş., Çelik, E., Özdemir, E. (2021). The solution of linear Volterra integral equation of the first kind with ZZ-transform. Turkish Journal of Sciences, 6(3), 127–133.
  • Song, Y., Kim, H. (2014). The solution of Volterra integral equation of the second kind by using the Elzaki transform. Applied Mathematical Sciences, 8(11), 525–530.
  • Gnanavel, M. G., Saranya, C., Viswanathan, A. (2019). Applications of linear Volterra integral equations of first kind by using Tarig transform. International Journal of Innovative Technology and Exploring Engineering, 8(10), 2278–3075.
  • Haarsa, P. (2017). On volterra integral equations of the first kind by using Elzaki transform. Far East Journal of Mathematical Sciences,102(9), 1857-1863.
  • Aggarwal, S., Bhatnagar, K., Dua, A. (2019). Dualities between Elzaki transform and some useful integral transforms. International Journal of Innovative Technology and Exploring Engineering, 8(12), 4312–4318.
  • Aggarwal, S., Sharma, N. (2019). Laplace transform for the solution of first kind linear Volterra integral equation. Journal of Advanced Research in Applied Mathematics and Statistics, 4(3&4), 16–23.
  • Mishra, R., Aggarwal, S., Chaudhary, L., Kumar, A. (2020). Relationship between Sumudu and some efficient integral transforms. International Journal of Innovative Technology and Exploring Engineering, 9(3), 153–159.
  • Singh, G. P., Aggarwal, S. (2019). Sawi transform for population growth and decay problems. International Journal of Latest Technology in Engineering, Management & Applied Science, 8(8), 157–162.
  • Tunç, C., Mohammed, S. A. (2017). On the stability and instability of functional Volterra-integro differentaial equation of first order. Bulletin of Mathematical Analysis and Applications, 9(1), 151-160.
  • Tunç, C., Tunç, O (2019). A note on the qualitative analysis of Volterra integro-differential equations. Journal of Taibah University for Science, 13(1), 490–496.
  • Kim, H. (2017). The intrinsic structure and properties of Laplace-typed integral transforms. Mathematical Problems in Engineering, vol. 2017.
  • Aggarwal, S., Gupta, A. R., Singh, D. P., Asthana, N., Kumar, N. (2018). Application of Laplace transform for solving population growth and decay problems. International Journal of Latest Technology in Engineering, Management & Applied Science, 7(9), 141–145.
  • Elzaki, T. M. (2012). On the new integral transform "Elzaki transform" fundamental properties investigations and applications. Global Journal of Mathematical Sciences: Theory and Practical, 4(1), 1–13.
  • Aggarwal, S., Sharma, S. D., Vyas, A. (2020). Sawi transform of Bessel’s functions with application for evaluating definite integrals. International Journal of Latest Technology in Engineering, Management & Applied Science, 9, 12–18.
  • Eltayeb, H., Kılıçman, A. (2010). On some applications of a new integral transform. International Journal of Mathematical Analysis, 4(3), 123–132.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Uygulamalı Matematik (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Adil Mısır 0000-0002-4552-0769

İslam Alsalih 0000-0001-8922-2328

Yayımlanma Tarihi 29 Mayıs 2025
Gönderilme Tarihi 18 Eylül 2024
Kabul Tarihi 7 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 1

Kaynak Göster

APA Mısır, A., & Alsalih, İ. (2025). Volterra integral denklemlerinin ve Volterra integro-diferensiyel denklemlerinin G_r-dönüşümü kullanılarak çözümü. Gazi Üniversitesi Fen Fakültesi Dergisi, 6(1), 102-112. https://doi.org/10.63716/guffd.1548492
AMA Mısır A, Alsalih İ. Volterra integral denklemlerinin ve Volterra integro-diferensiyel denklemlerinin G_r-dönüşümü kullanılarak çözümü. GÜFFD. Mayıs 2025;6(1):102-112. doi:10.63716/guffd.1548492
Chicago Mısır, Adil, ve İslam Alsalih. “Volterra integral denklemlerinin ve Volterra integro-diferensiyel denklemlerinin G_r-dönüşümü kullanılarak çözümü”. Gazi Üniversitesi Fen Fakültesi Dergisi 6, sy. 1 (Mayıs 2025): 102-12. https://doi.org/10.63716/guffd.1548492.
EndNote Mısır A, Alsalih İ (01 Mayıs 2025) Volterra integral denklemlerinin ve Volterra integro-diferensiyel denklemlerinin G_r-dönüşümü kullanılarak çözümü. Gazi Üniversitesi Fen Fakültesi Dergisi 6 1 102–112.
IEEE A. Mısır ve İ. Alsalih, “Volterra integral denklemlerinin ve Volterra integro-diferensiyel denklemlerinin G_r-dönüşümü kullanılarak çözümü”, GÜFFD, c. 6, sy. 1, ss. 102–112, 2025, doi: 10.63716/guffd.1548492.
ISNAD Mısır, Adil - Alsalih, İslam. “Volterra integral denklemlerinin ve Volterra integro-diferensiyel denklemlerinin G_r-dönüşümü kullanılarak çözümü”. Gazi Üniversitesi Fen Fakültesi Dergisi 6/1 (Mayıs2025), 102-112. https://doi.org/10.63716/guffd.1548492.
JAMA Mısır A, Alsalih İ. Volterra integral denklemlerinin ve Volterra integro-diferensiyel denklemlerinin G_r-dönüşümü kullanılarak çözümü. GÜFFD. 2025;6:102–112.
MLA Mısır, Adil ve İslam Alsalih. “Volterra integral denklemlerinin ve Volterra integro-diferensiyel denklemlerinin G_r-dönüşümü kullanılarak çözümü”. Gazi Üniversitesi Fen Fakültesi Dergisi, c. 6, sy. 1, 2025, ss. 102-1, doi:10.63716/guffd.1548492.
Vancouver Mısır A, Alsalih İ. Volterra integral denklemlerinin ve Volterra integro-diferensiyel denklemlerinin G_r-dönüşümü kullanılarak çözümü. GÜFFD. 2025;6(1):102-1.