Tavuk Etinden İzole Edilen Salmonella spp. İzolatlarının Gıda İşletmelerinde Kullanılan Sodyum Hipoklorit ve Benzalkonyum Klorit Biyositlerine Karşı Direncinin Belirlenmesi
Yıl 2025,
Cilt: 6 Sayı: 2, 315 - 329, 29.11.2025
Seza Arslan
,
Uğur Yaman Ateş
,
Fatma Özdemir
,
Gizem Alıcı
,
Eda Doğan
Öz
Enterobacteriaceae ailesine ait Salmonella gıda kaynaklı patojendir. Tavuk eti yüksek besin değeri nedeniyle Salmonella’nın kontaminasyonu için uygundur. Gıda endüstirisinde patojen kontaminasyonunu önlemek için biyositler kullanılmakta olup zamanla biyositlere karşı direnç gelişebilmektedir. Çalışmamızda, perakende tavuk etinden izole edilip adlandırılmış Salmonella izolatlarının, gıda endüstrisinde kullanılan sodyum hipoklorit ve benzalkonyum klorit biyositlerine karşı duyarlılıklarının tespiti amaçlanmıştır. 20 Salmonella izolatı 24 ve 48 saat süreyle sodyum hipoklorit ve benzalkonyum klorite maruz bırakılmış ve minimum inhibitör konsantrasyonu (MİK) ve minimum bakterisidal konsantrasyonu (MBK) belirlenmiştir. İzolatların benzalkonyum klorite karşı 24 ve 48 saatte MİK ve MBK değerleri 16-64 µg/mL bulunmuştur. Sodyum hipoklorit için 24 ve 48 saatte MİK ve MBK değerleri 625-2500 ppm arasındadır. Benzalkonyum klorit için her iki saat uygulamasında benzer değerler bulunurken, sodyum hipokloritin süreye bağlı MİK ve MBK değerleri azalmıştır. İstatistiksel olarak her iki biyosit için uygulamalar arası fark anlamlı bulunmamıştır. Benzalkonyum kloritin MİK50 16 µg/mL ve MİK90 32 µg/mL iken, sodyum hipokloritin MİK50 ve MİK90 1250 ppm bulunmuştur. Salmonella Enteritidis ve Salmonella Typhimurium referans suşları da aynı şartlarda biyositlere karşı test edilmiştir. Bazı izolatların biyositlere karşı MİK ve MBK değerlerinin referans suşlardan daha yüksek olduğu görülmüştür. Sonuç olarak, patojenlerin biyositlere karşı gelişen direncinin takip edilmesi halk sağlığı ve gıda güvenliği açısından önemlidir.
Destekleyen Kurum
Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)
Proje Numarası
1919B012402684 Numaralı Proje
Teşekkür
Bu araştırma, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) 2209-A Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı 2024 yılı 1. döneminde 1919B012402684 numaralı proje ile desteklenmiştir. Projemize desteklerinden dolayı TÜBİTAK’a teşekkür ederiz. Ayrıca, çalışmanın gerçekleşmesine destek veren BAİBÜ Fen-Edebiyat Fakültesi, Uygulamalı Mikrobiyoloji Araştırma Laboratuvarına ve Yüksek Lisans öğrencileri Melek Melisa ÖZGÖK ve Şerife Topçuoğlu’na teşekkür ederiz.
Kaynakça
-
World Health Organization (2018). Salmonella (non-typhoidal). Available at: https://www.who.int/news-room/fact-sheets/detail/salmonella-(non-typhoidal).
-
Huoy, L., Vuth, S., Hoeng, S., Chheang, C., Yi, P., San, C., Chhim, P., Thorn, S., Ouch, B., Put, D., Aong, L., Phan, K., Nasirzadeh, L., Tieng, S., BongcamRudloff, E., SternbergLewerin, S., and Boqvist, S. (2024). Prevalence of Salmonella spp. in meat, seafood, and leafy green vegetables from local markets and vegetable farms in Phnom Penh, Cambodia. Food Microbiology, 124, 104614.
-
Bhunia, A.K. (2008). Salmonella enterica. In: Foodborne Microbial Pathogens: Mechanisms and Pathogenesis. New York: Springer. p. 201-216.
-
Besser, J.M. (2018). Salmonella epidemiology: A whirlwind of change. Food Microbiology, 71, 55-59.
-
Lozano-Villegas, K.J. and Rondón-Barragán, L.S. (2024). Virulence and antimicrobial resistant gene profiles of Salmonella spp. isolates from chicken carcasses markets in Ibague city, Colombia. International Journal of Microbiology, Volume 2024, 4674138.
-
Govoni, C., Chiarelli, D.D., Luciano, A., Ottoboni, M., Perpelek, S.N., Pinotti, L., and Rulli, M.C. (2021). Global assessment of natural resources for chicken production. Advances in Water Resources, 154, 103987.
-
T.C. Tarım ve Orman Bakanlığı, Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü Müdürlüğü (2024). Kümes Hayvancılığı Durum Tahmin Raporu 2024.
-
Scharff, R. (2020). Food attribution and economic cost estimates for meat and poultry related illnesses. Journal of Food Protection, 83(6), 959-967.
-
Ray, B. (2004). Fundamental Food Microbiology. 3rd ed. Florida: CRC Press LLC, p.439-534.
-
ResmiGazete, 2011. Türk Gida Kodeksi mikrobiyolojik kriterler yönetmeligi, Tarih: 29/12/2011 Sayi: 28157.
-
Butucel, E., Balta, I., Ahmadi, M., Dumitrescu, G., Morariu, F., Pet, I., Stef, L., and Corcionivoschi, N. (2022). Biocides as biomedicines against foodborne pathogenic bacteria. Biomedicines, 10(2), 379.
-
Singh, R. and Puniya, A.K. (2024). Role of food safety regulations in protecting public health. Indian Journal of Microbiology, 64(3), 1376-1378.
-
Gadea, R., Fuentes, M.A., Rubén Pérez Pulido, Gálvez, A., and Elena Martín Ortega (2017). Effects of exposure to quaternary-ammonium-based biocides on antimicrobial susceptibility and tolerance to physical stresses in bacteria from organic foods. Food Microbiology, 63, 58-71.
-
Nasr, A.M., Mostafa, M.S., Arnaout, H.H., and Elshimy, A.A.A. (2018). The effect of exposure to sub-inhibitory concentrations of hypochlorite and quaternary ammonium compounds on antimicrobial susceptibility of Pseudomonas aeruginosa. American Journal of Infection Control, 46(7), E57-E63.
-
Wu-Chen, R.A., Feng, J., Elhadidy, M., Nambiar, R.B., Liao, X., Yue, M., and Ding, T. (2023). Long-term exposure to food-grade disinfectants causes cross-resistance to antibiotics in Salmonella enterica serovar Typhimurium strains with different antibiograms and sequence types. Antimicrobial Resistance and Infection Control, 12(1), 145.
-
Maillard, J.-Y. (2022). Impact of benzalkonium chloride, benzethonium chloride and chloroxylenol on bacterial antimicrobial resistance. Journal of Applied Microbiology, 133(6), 3322-3346.
-
SCENIHR (Scientific Committee on Emerging and Newly Identified Health Risks). (2009, January 19). Assessment of The Antibiotic Resistance Effects of Biocides. European Commission.
-
Betim, M.E., Santos, D.L.S.d., Lopes, T.d.S., Crippa, B.L., Bonsaglia, É.R., Dantas, S.T.A., Rall, V.L.M., Buzzola, F., Galvão, J.A., Gebara, C., Neto, A.T., Silva, N.C.C. (2025). Influence of sub-inhibitory concentrations of sanitizers and oxacillin on the resistance of methicillin-resistant Staphylococcus spp. Veterinary Sciences, 12, 979.
-
Efsa, Allende, A., Alvarez‐Ordóñez, A., Bolton, D., Bover‐Cid, S., Chemaly, M., De Cesare, A., Herman, L., Hilbert, F., Lindqvist, R., Nauta, M., Peixe, L., Ru, G., Simmons, M., Skandamis, P., Suffredini, E., Dewulf, J., Hald, T., Michel, V., and Niskanen, T. (2019). Salmonella control in poultry flocks and its public health impact. EFSA Journal, 17(2).
-
Luisa, M., Burgos, Pulido, R.P., Gálvez, A., and López, R.L. (2016). Biocide tolerance and antibiotic resistance in Salmonella isolates from hen eggshells. Foodborne Pathogens and Disease, 14(2), 89-95.
-
Coombs, K., RodriguezQuijada, C., Clevenger, J.O., and SauerBudge, A.F. (2023). Current understanding of potential linkages between biocide tolerance and antibiotic cross-resistance. Microorganisms, 11(8), 2000.
-
World Health Organization (2024). Diarrhoeal Disease. Available at: https://www.who.int/news-room/fact-sheets/detail/diarrhoeal-disease.
-
Ausubel, F.M., Kingston, R.E., Brent, R., Moore, D.D., Seidman, J., Smith, J.A., Struhl, K. (1991). Current protocols in molecular biology. Greene Publishing Associates & Wiley Interscience, New York.
-
Rahn, K., De Grandis, S.A., Clarke, R.C., McEwen, S.A., Galán, J.E., Ginocchio, C., Curtiss, R., and Gyles, C.L. (1992). Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Molecular and Cellular Probes, 6(4), 271-279.
-
Lee, Y., Jo, S., Cho, S., Kim, G., Kim, Y., Lee, D., Park, S., Bae, D., Chung, M., Bahk, G. and Ha, S. (2009). Effects of chlorine concentrations and washing conditions on the reduction of microbiological contamination in lettuce. Journal of the Korean Society for Applied Biological Chemistry, 52(3), 270-274.
-
Pereira, B.M.P. and Tagkopoulos, I. (2019). Benzalkonium chlorides: Uses, regulatory status, and microbial resistance. Applied and Environmental Microbiology, 85(13), e00377-19.
-
Andrews, J.M. (2001). Determination of minimum inhibitory concentrations. Journal of Antimicrobial Chemotherapy, 48(1), 5-16.
-
Clinical and Laboratory Standards Institute (CLSI). (2012). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Ninth edition, M7-A9, Wayne, PA, USA.
-
Clinical and Laboratory Standards Institute (CLSI). (2022). Performance standards for antimicrobial susceptibility testing; 32nd edition, Malvern, PA, USA.
-
Balouiri, M., Sadiki, M., and Ibnsouda, S.K. (2016). Methods for in vitro evaluating antimicrobial activity: a review. Journal of Pharmaceutical Analysis, 6(2), 71-79.
-
Furi, L., Ciusa, M.L., Knight, D., Di Lorenzo, V., Tocci, N., Cirasola, D., Aragones, L., Coelho, J.R., Freitas, A.T., Marchi, E., Moce, L., Visa, P., Northwood, J.B., Viti, C., Borghi, E., Orefici, G., the BIOHYPO Consortium, and Morrissey, I. (2013). Evaluation of reduced susceptibility to quaternary ammonium compounds and bisbiguanides in clinical isolates and laboratory-generated mutants of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 57 (8), 3488-3497.
-
Aryal, M. and Muriana, P.M. (2019). Efficacy of commercial sanitizers used in food processing facilities for Inactivation of Listeria monocytogenes, E. Coli O157:H7, and Salmonella Biofilms. Foods, 8, 639.
-
Maillard, J.-Y. (2005). Antimicrobial biocides in the healthcare environment: efficacy, usage, policies, and perceived problems. Therapeutics and Clinical Risk Management, 1(4), 307-320.
-
Fernández-Fuentes, M.A., Morente, E.O., Abriouel, H., Pulido, R.P., and Gálvez, A. (2012). Isolation and identification of bacteria from organic foods: Sensitivity to biocides and antibiotics. Food Control, 26, 73-78.
-
Beier, R.C., Callaway, T.R., Andrews, K., Poole, T.L., Crippen, T.L., Anderson, R.C., and Nisbet, D.J. (2017). Disinfectant and antimicrobial susceptibility profiles of Salmonella strains from feedlot water-sprinkled cattle: Hides and feces. Journal of Food Chemistry & Nanotechnology, 3(2), 50-59.
-
Humayoun, S.B., Hiott, L.M., Gupta, S.K., Barrett, J.B., Woodley, T.A., Johnston, J.J., Jackson, C.R., and Frye, J.G. (2018). An assay for determining the susceptibility of Salmonella isolates to commercial and household biocides. PLoS ONE, 13(12), e0209072.
-
Condell, O., Iversen, C., Cooney, S., Power, K.A., Walsh, C., Burgess, C., and Fanning, S. (2012). Efficacy of biocides used in the modern food industry to control Salmonella enterica, and links between biocide tolerance and resistance to clinically relevant antimicrobial compounds. Applied and Environmental Microbiology, 3087-3097.
-
Nunes, N.B., Oliveira, J., Castro, V.S., Moura, A., Neto, A. da C., and Eustáquio, E. (2024). Optimizing the antimicrobial activity of sodium hypochlorite (NaClO) over exposure time for the control of Salmonella spp. in vitro. Antibiotics, 13(1), 68-68.
-
Xiao, X., He, M., Ma, L., Lv, W., Huang, K., Yang, H., Li, Y., Zou, L., Xiao, Y., and Wang, W. (2024). Insights into microbial contamination and antibiotic resistome traits in pork wholesale market: An evaluation of the disinfection effect of sodium hypochlorite. Journal of Hazardous Materials, 468, 133811.
-
Wanja, D.W., Mbuthia, P.G., Waruiru, R.M., Bebora, L.C., Ngowi, H.A., and Nyaga, P.N. (2020). Antibiotic and disinfectant susceptibility patterns of bacteria isolated from farmed fish in Kirinyaga county, Kenya. International Journal of Microbiology, Volume 2020, 8897338.
-
Alajlan, A.A., Mukhtar, L.E., Almussallam, A.S., Alnuqaydan, A.M., Albakiri, N.S., Almutari, T.F., Bin Shehail, K.M., Aldawsari, F.S., and Alajel, S.M. (2022). Assessment of disinfectant efficacy in reducing microbial growth. PLoS ONE, 17(6), e0269850.
-
Arthur, M., Afari, E.L., Alexa, E-A., Zhu, M-J., Gaffney, M.T., Celayeta, J.M.F., Burgess, C.M. (2025). Recent advances in examining the factors influencing the efficacy of biocides against Listeria monocytogenes biofilms in the food industry: A systematic review. Comprehensive Reviews in Food Science and Food Safety, 24, e70083.