Araştırma Makalesi
BibTex RIS Kaynak Göster

Elektrostatik ekstrüzyon tekniği ile kapsüllenmiş bazı aroma maddelerinde sıcaklığın depolama stabilitesi üzerine etkisi

Yıl 2021, , 988 - 998, 15.07.2021
https://doi.org/10.17714/gumusfenbil.912533

Öz

Aroma maddeleri başta sıcaklık olmak üzere çeşitli depolama koşullarından kolaylıkla etkilenebilmektedir. Bu çalışmada, elektrostatik ekstrüzyon tekniği ile üretilen aroma mikrokapsüllerinin depolama sürecindeki termal stabilitelerinin incelenmesi amaçlanmıştır. 8 kV elektrik potansiyeli altında benzaldehit, izoamil asetat ve mentol yüklü aljinat mikrokapsülleri üretilmiş ve kullanılan aroma oranına (%10-50, a/a) bağlı olarak enkapsülasyon etkinlikleri belirlenmiştir. Serbest ve enkapsüle haldeki aroma maddeleri 90 gün süreyle -18 °C, +4 °C ve +25 °C’de karanlıkta muhafaza edilmiştir. 30 günlük periyotlarla örnekler alınmış ve kalan aroma miktarları gaz kromatografisi-kütle spektrometresi (GC-MS) kullanılarak belirlenmiştir. Liyofilize mikrokapsüllerin ortalama çaplarının 668.2-846.3 μm arasında değiştiği hesaplanmıştır. Denemesi yapılan tüm aroma maddeleri arasında en yüksek enkapsülasyon etkinliğine %10 aroma maddesi içeren bileşimde ulaşılırken; benzaldehit, izoamil asetat ve mentol için enkapsülasyon etkinlikleri sırasıyla %97.2, %98.5 ve %93.4 olarak bulunmuştur. Tüm denemelerde depolama sıcaklığındaki artışa bağlı olarak alıkonan aroma miktarında azalmalar yaşandığı belirlenmiştir. Ancak enkapsüle aroma maddelerinde gözlenen kayıp serbest hallerine göre oldukça sınırlı kalmıştır. 90 günlük depolama periyodu sonunda en yüksek aroma içeriği -18 °C’de depolanmış enkapsüle aroma maddelerinde tespit edilirken; en fazla kaybın +25 °C’de depolanmış serbest aroma maddelerinde yaşandığı belirlenmiştir. Elektrostatik ekstrüzyon ile enkapsülasyonun başta aroma maddeleri olmak üzere uçucu bileşiklerin depolama stabilitelerinin arttırılmasında önemli bir uygulama olabileceği düşünülmektedir.

Destekleyen Kurum

İnönü Üniversitesi Bilimsel Araştırma Projeleri Birimi

Proje Numarası

2016/07 (Güd.)

Teşekkür

Bu çalışmayı, 2016/07 (Güd.) proje numarası ile maddi olarak destekleyen İnönü Üniversitesi Bilimsel Araştırma Projeleri Birimi’ne teşekkür ederiz.

Kaynakça

  • Balanc, B., Kalusevic, A., Drvenica, I., Coelho, M. T., Djordjevic, V., Alves, V. D., Sousa, I., Moldao-Martins, M., Rakic, V., Nedovic, V. and Bugarski, B. (2016). Calcium-alginate-inulin microbeads as carriers for aqueous carqueja extract. Journal of Food Science, 81(1), E65-E75. https://doi.org/10.1111/1750-3841.13167
  • Baranauskiene, R., Bylaite, E., Zukauskaite, J. and Venskutonis R.P. (2007). Flavor retention of peppermint (Mentha piperita L.) essential oil spray-dried in modified starches during encapsulation and storage. Journal of Agricultural and Food Chemistry, 55, 3027-3036. https://doi.org/10.1021/jf062508c
  • Bastos, L. P. H., Vicente, J., dos Santos C. H. C., de Carvalho, M. G. and Garcia-Rojas, E. E. (2020). Encapsulation of black pepper (Piper nigrum L.) essential oil with gelatin and sodium alginate by complex coacervation. Food Hydrocolloids, 102, 105605. https://doi.org/10.1016/j.foodhyd.2019.105605
  • Belscak-Cvitanovic, A., Stojanovic, R., Manojlovic, V., Komes, D., Cindric, I. J., Nedovic, V. and Bugarski, B. (2011). Encapsulation of polyphenolic antioxidants from medicinal plant extracts in alginate-chitosan system enhanced with ascorbic acid by electrostatic extrusion. Food Research International, 44, 1094-1101. https://doi.org/ 10.1016/j.foodres.2011.03.030
  • Benavides, S., Cortes, P., Parada, J. and Franco, W. (2016). Development of alginate microspheres containing thyme essential oil using ionic gelation. Food Chemistry, 204, 77–83. http://dx.doi.org/10.1016/j.foodchem.2016.02.104
  • Bugarski, B., Obradovic, B., Nedovic, V. and Goosen, M. F. A. (2006). Electrostatic droplet generation technique for cell immobilization. J. P. Shu and A. Spasic (Eds.), Finely Dispersed Systems (s. 869-886). Boca Raton FL: CRC Press.
  • Byun, Y., Kim, Y. T., Desai, K. G. H. and Park, H. J. (2010). Microencapsulation techniques for food flavour. A. Herrmann (Ed.), The Chemistry and Biology of Volatiles (s. 307-332). UK; West Sussex: John Wiley & Sons Ltd. https://doi.org/10.1002/9780470669532
  • Chan, E. S., Wong, S. L., Lee, P. P., Lee, J. S., Ti, T. B., Zhang, Z., Poncelet, D., Ravindra, P., Phan, S. H. and Yim, Z. H. (2011). Effects of starch filler on the physical properties of lyophilized calcium-alginate beads and the viability of encapsulated cells. Carbohydrate Polymers, 83(1), 225-232. https://doi.org/10.1016/j.carbpol.2010.07.044
  • Chenni, M., El Abed, D., Neggaz, S., Rakotomanomana, N., Fernandez, X. and Chemat, F. (2020). Solvent free microwave extraction followed by encapsulation of O. basilicum L. essential oil for insecticide purpose. Journal of Stored Products Research, 86, 101575. https://doi.org/10.1016/j.jspr.2020.101575
  • Da Veiga, R. D. S., Da Silva-Buzanello, R. A., Corso, M. P. and Canan, C. (2019). Essential oils microencapsulated obtained by spray drying: a review. Journal of Essential Oil Research, 31(6), 457-473. https://doi.org/10.1080/10412905.2019.1612788
  • Fraj, A., Jaafar, F., Marti, M., Coderch, L. and Ladhari, N. (2019). A comparative study of oregano (Origanum vulgare L.) essential oil-based polycaprolactone nanocapsules/ microspheres: Preparation, physicochemical characterization, and storage stability. Industrial Crops & Products, 140, 111669. https://doi.org/10.1016/j.indcrop.2019.111669
  • Gandomi, H., Abbaszadeh, S., Misaghi, A., Bokaie, S. and Noori, N. (2016). Effect of chitosan-alginate encapsulation with inulin on survival of Lactobacillus rhamnosus GG during apple juice storage and under simulated gastrointestinal conditions. LWT - Food Science and Technology, 69, 365-371. http://dx.doi.org/10.1016/j.lwt.2016.01.064
  • Garcia, L. C., Tonon, R. V. and Hubinger, M. D. (2012). Effect of homogenization pressure and oil load on the emulsion properties and the oil retention of microencapsulated basil essential oil (Ocimum basilicum L.). Drying Technology, 30, 1413-1421. https://doi.org/10.1080/07373937.2012.685998
  • Gholamian, S., Nourani, M. and Bakhshi, N. (2021). Formation and characterization of calcium alginate hydrogel beads filled with cumin seeds essential oil. Food Chemistry, 338, 128143. https://doi.org/10.1016/j.foodchem.2020.128143
  • Hoyos-Leyva, J. D., Bello-Perez, L. A., Agama-Acevedo, J. E., Alvarez-Ramirez, J. and Jaramillo-Echeverry, L. M. (2019). Characterization of spray drying microencapsulation of almond oil into taro starch spherical aggregates. LWT - Food Science and Technology, 101, 526-533. https://doi.org/10.1016/j.lwt.2018.11.079
  • Hu, Q., Li, X., Chen, F., Wan, R., Yu, C. W., Li, J., McClements, D. J. and Deng, Z. (2020). Microencapsulation of an essential oil (cinnamon oil) by spray drying: effects of wall materials and storage conditions on microcapsule properties. Journal of Food Processing and Preservation, 44, e14805. https://doi.org/10.1111/jfpp.14805
  • Istenic, K., Balanc, B. D., Djordjevic, V. B., Bele, M., Nedovic, V. A., Bugarski, B. M. and Ulrih, N. P. (2015). Encapsulation of resveratrol into Ca-alginate submicron particles. Journal of Food Engineering, 167, 196-203. http://dx.doi.org/10.1016/j.jfoodeng.2015.04.007
  • Jafari, S. M., He, Y. and Bhandari, B. (2007). Role of powder particle size on the encapsulation efficiency of oils during spray drying. Drying Technology, 25, 1091-1099. https://doi.org/10.1080/07373930701397343
  • Jyothi, N. V. N., Prasanna, P. M., Sakarkar, S. N., Prabha, K. S., Ramaiah, P. S. and Srawan, G. Y. (2010). Microencapsulation techniques, factors influencing encapsulation efficiency. Journal of Microencapsulation, 27(3), 187-197. https://doi.org/10.3109/02652040903131301
  • Klokk, T. I. and Melvik, J. E. (2002). Controlling the size of alginate gel beads by use of a high electrostatic potential. Journal of Microencapsulation, 19(4), 415-424. https://doi.org/10.1080/02652040210144234
  • Kokina, M., Salevic, A., Kalusevic, A., Levic, S., Pantic, M., Pljevljakusic, D., Savikin, K., Shamtsyan, M., Niksic, M. and Nedovic, M. (2019). Characterization, antioxidant and antibacterial activity of essential oils and their encapsulation into biodegradable material followed by freeze drying. Food Technology & Biotechnology. 57(2), 282-289. https://doi.org/10.17113/ftb.57.02.19.5957
  • Leclercq, S., Harlander, K. R. and Reineccius, G. A. (2009). Formation and characterization of microcapsules by complex coacervation with liquid or solid aroma cores. Flavour and Fragrance Journal, 24, 17-24. https://doi.org/10.1002/ffj.1911
  • Levic, S., Djordjevic, V., Rajic, N., Milivojevic, M., Bugarski, B., Nedovic, V. (2013). Entrapment of ethyl vanillin in calcium alginate and calcium alginate/poly(vinyl alcohol) beads. Chemical Papers, 67(2), 221-228. https://doi.org/10.2478/s11696-012-0260-1
  • Levic, S., Lijakovic, I. P., Djordjevic, V., Rac, V., Rakić, V., Knudsen, T. S., Pavlovic, V, Bugarski, B. and Nedovic, V. (2015). Characterization of sodium alginate/D-limonene emulsions and respective calcium alginate/D-limonene beads produced by electrostatic extrusion. Food Hydrocolloids, 45, 111-123. http://dx.doi.org/10.1016/j.foodhyd.2014.10.001
  • Madene, A., Jacquot, M., Scher, J. and Desobry, S. (2006). Flavour encapsulation and controlled release - a review. International Journal of Food Science and Technology, 41, 1-21. https://doi.org/10.1111/j.1365-2621.2005.00980.x
  • Manojlovic, V., Rajic, N., Djonlagic, J., Obradovic, B., Nedovic, V. and Bugarski, B. (2008). Application of electrostatic extrusion - flavour encapsulation and controlled release. Sensors, 8, 1488-1496. https://doi.org/10.3390/s8031488
  • Nikoo, A. M., Kadkhodaee, R., Ghorani, B., Razzaq, H. and Tucker, N. (2018). Electrospray-assisted encapsulation of caffeine in alginate microhydrogels. International Journal of Biological Macromolecules, 116, 208-216. https://doi.org/10.1016/j.ijbiomac.2018.04.167
  • Noghabi, M.S. and Molaveisi, M. (2020). The effect of wall formulation on storage stability and physicochemical properties of cinnamon essential oil microencapsulated by spray drying. Chemical Papers, 74, 3455-3465. https://doi.org/10.1007/s11696-020-01171-9
  • Ozdemir, N., Bayrak, A., Tat, B., Altay, F., Kiralan, M. and Kurt, A. (2021). Microencapsulation of basil essential oil: utilization of gum arabic/whey protein isolate/maltodextrin combinations for encapsulation efficiency and in vitro release. Journal of Food Measurement and Characterization, 15, 1865-1876. https://doi.org/10.1007/s11694-020-00771-z
  • Paris, M. J., Ramirez-Corona, N., Palou, E. and Lopez-Malo, A. (2020). Modelling release mechanisms of cinnamon (Cinnamomum zeylanicum) essential oil encapsulated in alginate beads during vapor-phase application. Journal of Food Engineering, 282, 110024. https://doi.org/10.1016/j.jfoodeng.2020.110024
  • Renu, R. and Zehra, F. (2015). Microencapsulation of flavours. International Journal of Basic and Applied Biology, 2 (5), 333-338.
  • Sahlan, M. and Rahman, M. R. (2017). Optimization of microencapsulation composition of menthol, vanillin, and benzyl acetate inside polyvinyl alcohol with coacervation method for application in perfumery. 2016 2nd Materials Research Society of Indonesia Meeting (MRS), 214, 012005. Bandung: IOP. https://doi.org/10.1088/1757-899X/214/1/012005
  • Saifullah, M., Shishir, M. R. I., Ferdowsi, R., Rahman, M. R. T. and Vuong, Q. V. (2019). Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: a critical review. Trends in Food Science & Technology, 8, 230-251. https://doi.org/10.1016/j.tifs.2019.02.030
  • Sun, P., Zeng, M., He, Z., Qin, F. and Chen, J. (2013) Controlled release of fluidized bed-coated menthol powder with a gelatin coating. Drying Technology, 31,13-14, 1619-1626. https://doi.org/10.1080/07373937.2013.798331
  • Turasan, H., Sahin, S. and Sumnu, G. (2015). Encapsulation of rosemary essential oil. LWT - Food Science and Technology, 64, 112-119. http://dx.doi.org/10.1016/j.lwt.2015.05.036
  • Vicente, J., Pinto, J., Menezes, J. and Gaspar, F. (2013). Fundamental analysis of particle formation in spray drying. Powder Technology, 247, 1-7. http://dx.doi.org/10.1016/j.powtec.2013.06.038
  • Volic, M., Lijakovic, I. P., Djordjevic, V., Jugovic, Z.K., Pecinar, I., Dajic, Z. S., Veljovic, D., Hadnadjev, M. and Bugarski, B. (2018). Alginate/soy protein system for essential oil encapsulation with intestinal delivery. Carbohydrate Polymers, 200, 15-24. https://doi.org/10.1016/j.carbpol.2018.07.033
  • Yilmaztekin, M., Levic, S., Kalusevic, A., Cam, M., Bugarski, B., Rakic, V., Pavlovic, V. and Nedovic, V. (2019). Characterisation of peppermint (Mentha piperita L.) essential oil encapsulates. Journal of Microencapsulation, 36(2), 109-119. https://doi.org/10.1080/02652048.2019.1607596
  • Zhu, L., Lan, H., He, B., Hong, W. and Li, J. (2010). Encapsulation of menthol in beeswax by a supercritical fluid technique. International Journal of Chemical Engineering, 608680. https://doi.org/10.1155/2010/608680
  • Zhu, H., Zhang, Y., Tian, J. and Chu, Z. (2018). Effect of a new shell material-Jackfruit seed starch on novel flavor microcapsules containing vanilla oil. Industrial Crops & Products, 112, 47-52. http://dx.doi.org/10.1016/j.indcrop.2017.10.060
  • Zuidam N. J. and Heinrich E. (2010). Encapsulation of aroma. N. J. Zuidam and V. Nedovic (Eds.), Encapsulation Technologies for Active Food Ingredients and Food Processing (s. 127-160). New York: Springer. https://doi.org/10.1007/978-1-4419-1008-0_5

Effect of temperature on storage stability of some flavor compounds encapsulated by electrostatic extrusion technique

Yıl 2021, , 988 - 998, 15.07.2021
https://doi.org/10.17714/gumusfenbil.912533

Öz

Aroma compounds can be easily affected by various storage conditions, especially temperature. In this study, it was aimed to investigate thermal stability of aroma microcapsules produced by electrostatic extrusion technique during storage process. Benzaldehyde, isoamyl acetate and menthol loaded alginate microcapsules were produced under 8 kV electrical potential and encapsulation efficiencies were determined depending on aroma concentration (10-50%, w/w) used. Free and encapsulated forms of aroma compounds were stored in dark at -18 °C, +4 °C and +25 °C for 90 days. Samples were taken at time intervals of 30 days and remained amounts of the aroma was determined by using gas chromatography-mass spectrometry (GC-MS). It was measured that mean diameters of lyophilized microcapsules were ranged between 668.2-846.3 μm. While the highest encapsulation efficiency was reached in that formulation containing 10% aroma for all tested substances, the efficiencies were found 97.2%, 98.5% and 93.4% for benzaldehyde, isoamyl acetate and menthol, respectively. In all trials, it was determined that there was a decrease in the amount of aroma retained due to increase in storage temperature. However, the loss observed in the encapsulated aroma compounds was rather limited compared to their free form. In the end of 90 days storage period, the highest aroma content was detected in encapsulated aroma substances stored at -18 °C, while the highest loss was determined on the free forms stored at +25 °C. It is thought that encapsulation by electrostatic extrusion can be an important application in increasing storage stability of volatile substances, particularly aroma compounds.

Proje Numarası

2016/07 (Güd.)

Kaynakça

  • Balanc, B., Kalusevic, A., Drvenica, I., Coelho, M. T., Djordjevic, V., Alves, V. D., Sousa, I., Moldao-Martins, M., Rakic, V., Nedovic, V. and Bugarski, B. (2016). Calcium-alginate-inulin microbeads as carriers for aqueous carqueja extract. Journal of Food Science, 81(1), E65-E75. https://doi.org/10.1111/1750-3841.13167
  • Baranauskiene, R., Bylaite, E., Zukauskaite, J. and Venskutonis R.P. (2007). Flavor retention of peppermint (Mentha piperita L.) essential oil spray-dried in modified starches during encapsulation and storage. Journal of Agricultural and Food Chemistry, 55, 3027-3036. https://doi.org/10.1021/jf062508c
  • Bastos, L. P. H., Vicente, J., dos Santos C. H. C., de Carvalho, M. G. and Garcia-Rojas, E. E. (2020). Encapsulation of black pepper (Piper nigrum L.) essential oil with gelatin and sodium alginate by complex coacervation. Food Hydrocolloids, 102, 105605. https://doi.org/10.1016/j.foodhyd.2019.105605
  • Belscak-Cvitanovic, A., Stojanovic, R., Manojlovic, V., Komes, D., Cindric, I. J., Nedovic, V. and Bugarski, B. (2011). Encapsulation of polyphenolic antioxidants from medicinal plant extracts in alginate-chitosan system enhanced with ascorbic acid by electrostatic extrusion. Food Research International, 44, 1094-1101. https://doi.org/ 10.1016/j.foodres.2011.03.030
  • Benavides, S., Cortes, P., Parada, J. and Franco, W. (2016). Development of alginate microspheres containing thyme essential oil using ionic gelation. Food Chemistry, 204, 77–83. http://dx.doi.org/10.1016/j.foodchem.2016.02.104
  • Bugarski, B., Obradovic, B., Nedovic, V. and Goosen, M. F. A. (2006). Electrostatic droplet generation technique for cell immobilization. J. P. Shu and A. Spasic (Eds.), Finely Dispersed Systems (s. 869-886). Boca Raton FL: CRC Press.
  • Byun, Y., Kim, Y. T., Desai, K. G. H. and Park, H. J. (2010). Microencapsulation techniques for food flavour. A. Herrmann (Ed.), The Chemistry and Biology of Volatiles (s. 307-332). UK; West Sussex: John Wiley & Sons Ltd. https://doi.org/10.1002/9780470669532
  • Chan, E. S., Wong, S. L., Lee, P. P., Lee, J. S., Ti, T. B., Zhang, Z., Poncelet, D., Ravindra, P., Phan, S. H. and Yim, Z. H. (2011). Effects of starch filler on the physical properties of lyophilized calcium-alginate beads and the viability of encapsulated cells. Carbohydrate Polymers, 83(1), 225-232. https://doi.org/10.1016/j.carbpol.2010.07.044
  • Chenni, M., El Abed, D., Neggaz, S., Rakotomanomana, N., Fernandez, X. and Chemat, F. (2020). Solvent free microwave extraction followed by encapsulation of O. basilicum L. essential oil for insecticide purpose. Journal of Stored Products Research, 86, 101575. https://doi.org/10.1016/j.jspr.2020.101575
  • Da Veiga, R. D. S., Da Silva-Buzanello, R. A., Corso, M. P. and Canan, C. (2019). Essential oils microencapsulated obtained by spray drying: a review. Journal of Essential Oil Research, 31(6), 457-473. https://doi.org/10.1080/10412905.2019.1612788
  • Fraj, A., Jaafar, F., Marti, M., Coderch, L. and Ladhari, N. (2019). A comparative study of oregano (Origanum vulgare L.) essential oil-based polycaprolactone nanocapsules/ microspheres: Preparation, physicochemical characterization, and storage stability. Industrial Crops & Products, 140, 111669. https://doi.org/10.1016/j.indcrop.2019.111669
  • Gandomi, H., Abbaszadeh, S., Misaghi, A., Bokaie, S. and Noori, N. (2016). Effect of chitosan-alginate encapsulation with inulin on survival of Lactobacillus rhamnosus GG during apple juice storage and under simulated gastrointestinal conditions. LWT - Food Science and Technology, 69, 365-371. http://dx.doi.org/10.1016/j.lwt.2016.01.064
  • Garcia, L. C., Tonon, R. V. and Hubinger, M. D. (2012). Effect of homogenization pressure and oil load on the emulsion properties and the oil retention of microencapsulated basil essential oil (Ocimum basilicum L.). Drying Technology, 30, 1413-1421. https://doi.org/10.1080/07373937.2012.685998
  • Gholamian, S., Nourani, M. and Bakhshi, N. (2021). Formation and characterization of calcium alginate hydrogel beads filled with cumin seeds essential oil. Food Chemistry, 338, 128143. https://doi.org/10.1016/j.foodchem.2020.128143
  • Hoyos-Leyva, J. D., Bello-Perez, L. A., Agama-Acevedo, J. E., Alvarez-Ramirez, J. and Jaramillo-Echeverry, L. M. (2019). Characterization of spray drying microencapsulation of almond oil into taro starch spherical aggregates. LWT - Food Science and Technology, 101, 526-533. https://doi.org/10.1016/j.lwt.2018.11.079
  • Hu, Q., Li, X., Chen, F., Wan, R., Yu, C. W., Li, J., McClements, D. J. and Deng, Z. (2020). Microencapsulation of an essential oil (cinnamon oil) by spray drying: effects of wall materials and storage conditions on microcapsule properties. Journal of Food Processing and Preservation, 44, e14805. https://doi.org/10.1111/jfpp.14805
  • Istenic, K., Balanc, B. D., Djordjevic, V. B., Bele, M., Nedovic, V. A., Bugarski, B. M. and Ulrih, N. P. (2015). Encapsulation of resveratrol into Ca-alginate submicron particles. Journal of Food Engineering, 167, 196-203. http://dx.doi.org/10.1016/j.jfoodeng.2015.04.007
  • Jafari, S. M., He, Y. and Bhandari, B. (2007). Role of powder particle size on the encapsulation efficiency of oils during spray drying. Drying Technology, 25, 1091-1099. https://doi.org/10.1080/07373930701397343
  • Jyothi, N. V. N., Prasanna, P. M., Sakarkar, S. N., Prabha, K. S., Ramaiah, P. S. and Srawan, G. Y. (2010). Microencapsulation techniques, factors influencing encapsulation efficiency. Journal of Microencapsulation, 27(3), 187-197. https://doi.org/10.3109/02652040903131301
  • Klokk, T. I. and Melvik, J. E. (2002). Controlling the size of alginate gel beads by use of a high electrostatic potential. Journal of Microencapsulation, 19(4), 415-424. https://doi.org/10.1080/02652040210144234
  • Kokina, M., Salevic, A., Kalusevic, A., Levic, S., Pantic, M., Pljevljakusic, D., Savikin, K., Shamtsyan, M., Niksic, M. and Nedovic, M. (2019). Characterization, antioxidant and antibacterial activity of essential oils and their encapsulation into biodegradable material followed by freeze drying. Food Technology & Biotechnology. 57(2), 282-289. https://doi.org/10.17113/ftb.57.02.19.5957
  • Leclercq, S., Harlander, K. R. and Reineccius, G. A. (2009). Formation and characterization of microcapsules by complex coacervation with liquid or solid aroma cores. Flavour and Fragrance Journal, 24, 17-24. https://doi.org/10.1002/ffj.1911
  • Levic, S., Djordjevic, V., Rajic, N., Milivojevic, M., Bugarski, B., Nedovic, V. (2013). Entrapment of ethyl vanillin in calcium alginate and calcium alginate/poly(vinyl alcohol) beads. Chemical Papers, 67(2), 221-228. https://doi.org/10.2478/s11696-012-0260-1
  • Levic, S., Lijakovic, I. P., Djordjevic, V., Rac, V., Rakić, V., Knudsen, T. S., Pavlovic, V, Bugarski, B. and Nedovic, V. (2015). Characterization of sodium alginate/D-limonene emulsions and respective calcium alginate/D-limonene beads produced by electrostatic extrusion. Food Hydrocolloids, 45, 111-123. http://dx.doi.org/10.1016/j.foodhyd.2014.10.001
  • Madene, A., Jacquot, M., Scher, J. and Desobry, S. (2006). Flavour encapsulation and controlled release - a review. International Journal of Food Science and Technology, 41, 1-21. https://doi.org/10.1111/j.1365-2621.2005.00980.x
  • Manojlovic, V., Rajic, N., Djonlagic, J., Obradovic, B., Nedovic, V. and Bugarski, B. (2008). Application of electrostatic extrusion - flavour encapsulation and controlled release. Sensors, 8, 1488-1496. https://doi.org/10.3390/s8031488
  • Nikoo, A. M., Kadkhodaee, R., Ghorani, B., Razzaq, H. and Tucker, N. (2018). Electrospray-assisted encapsulation of caffeine in alginate microhydrogels. International Journal of Biological Macromolecules, 116, 208-216. https://doi.org/10.1016/j.ijbiomac.2018.04.167
  • Noghabi, M.S. and Molaveisi, M. (2020). The effect of wall formulation on storage stability and physicochemical properties of cinnamon essential oil microencapsulated by spray drying. Chemical Papers, 74, 3455-3465. https://doi.org/10.1007/s11696-020-01171-9
  • Ozdemir, N., Bayrak, A., Tat, B., Altay, F., Kiralan, M. and Kurt, A. (2021). Microencapsulation of basil essential oil: utilization of gum arabic/whey protein isolate/maltodextrin combinations for encapsulation efficiency and in vitro release. Journal of Food Measurement and Characterization, 15, 1865-1876. https://doi.org/10.1007/s11694-020-00771-z
  • Paris, M. J., Ramirez-Corona, N., Palou, E. and Lopez-Malo, A. (2020). Modelling release mechanisms of cinnamon (Cinnamomum zeylanicum) essential oil encapsulated in alginate beads during vapor-phase application. Journal of Food Engineering, 282, 110024. https://doi.org/10.1016/j.jfoodeng.2020.110024
  • Renu, R. and Zehra, F. (2015). Microencapsulation of flavours. International Journal of Basic and Applied Biology, 2 (5), 333-338.
  • Sahlan, M. and Rahman, M. R. (2017). Optimization of microencapsulation composition of menthol, vanillin, and benzyl acetate inside polyvinyl alcohol with coacervation method for application in perfumery. 2016 2nd Materials Research Society of Indonesia Meeting (MRS), 214, 012005. Bandung: IOP. https://doi.org/10.1088/1757-899X/214/1/012005
  • Saifullah, M., Shishir, M. R. I., Ferdowsi, R., Rahman, M. R. T. and Vuong, Q. V. (2019). Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: a critical review. Trends in Food Science & Technology, 8, 230-251. https://doi.org/10.1016/j.tifs.2019.02.030
  • Sun, P., Zeng, M., He, Z., Qin, F. and Chen, J. (2013) Controlled release of fluidized bed-coated menthol powder with a gelatin coating. Drying Technology, 31,13-14, 1619-1626. https://doi.org/10.1080/07373937.2013.798331
  • Turasan, H., Sahin, S. and Sumnu, G. (2015). Encapsulation of rosemary essential oil. LWT - Food Science and Technology, 64, 112-119. http://dx.doi.org/10.1016/j.lwt.2015.05.036
  • Vicente, J., Pinto, J., Menezes, J. and Gaspar, F. (2013). Fundamental analysis of particle formation in spray drying. Powder Technology, 247, 1-7. http://dx.doi.org/10.1016/j.powtec.2013.06.038
  • Volic, M., Lijakovic, I. P., Djordjevic, V., Jugovic, Z.K., Pecinar, I., Dajic, Z. S., Veljovic, D., Hadnadjev, M. and Bugarski, B. (2018). Alginate/soy protein system for essential oil encapsulation with intestinal delivery. Carbohydrate Polymers, 200, 15-24. https://doi.org/10.1016/j.carbpol.2018.07.033
  • Yilmaztekin, M., Levic, S., Kalusevic, A., Cam, M., Bugarski, B., Rakic, V., Pavlovic, V. and Nedovic, V. (2019). Characterisation of peppermint (Mentha piperita L.) essential oil encapsulates. Journal of Microencapsulation, 36(2), 109-119. https://doi.org/10.1080/02652048.2019.1607596
  • Zhu, L., Lan, H., He, B., Hong, W. and Li, J. (2010). Encapsulation of menthol in beeswax by a supercritical fluid technique. International Journal of Chemical Engineering, 608680. https://doi.org/10.1155/2010/608680
  • Zhu, H., Zhang, Y., Tian, J. and Chu, Z. (2018). Effect of a new shell material-Jackfruit seed starch on novel flavor microcapsules containing vanilla oil. Industrial Crops & Products, 112, 47-52. http://dx.doi.org/10.1016/j.indcrop.2017.10.060
  • Zuidam N. J. and Heinrich E. (2010). Encapsulation of aroma. N. J. Zuidam and V. Nedovic (Eds.), Encapsulation Technologies for Active Food Ingredients and Food Processing (s. 127-160). New York: Springer. https://doi.org/10.1007/978-1-4419-1008-0_5
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Hüseyin Karakaya 0000-0002-6311-473X

Murat Yilmaztekin 0000-0002-5667-9169

Proje Numarası 2016/07 (Güd.)
Yayımlanma Tarihi 15 Temmuz 2021
Gönderilme Tarihi 9 Nisan 2021
Kabul Tarihi 13 Haziran 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Karakaya, H., & Yilmaztekin, M. (2021). Elektrostatik ekstrüzyon tekniği ile kapsüllenmiş bazı aroma maddelerinde sıcaklığın depolama stabilitesi üzerine etkisi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(3), 988-998. https://doi.org/10.17714/gumusfenbil.912533