Derleme
BibTex RIS Kaynak Göster

Gıda Analizlerinde Hasarsız Akustik Yöntemlerin Kullanımı

Yıl 2021, Cilt: 6 Sayı: 1, 64 - 79, 30.04.2021
https://doi.org/10.46578/humder.812184

Öz

Gıda ürünlerin kalitesinin değerlendirilmesinde hasar veren gıda analiz yöntemlerine alternatif olarak geliştirilen ve hasar vermeyen spektroskopik ve kromatografik tekniklerin yanı sıra, mekanik yöntemlerin kullanımının son yıllarda arttığı görülmektedir. Bu teknikler arasında yer alan akustik ve ultrasonik tekniklerin özellikle büyük hacimli gıdaların kalitesinin değerlendirilmesinde kullanımı ile analiz sırasında örneklerin kaybının engellenebileceği ve bu şekilde ekonomik bir kazanç sağlanacağı öngörülmektedir. Akustik teknikler, büyüklük, hacim, şekil ve doku fark etmeksizin birçok gıdanın sertlik, iç kusur, olgunluğunun belirlenmesinde ve gıdaların seçilen kalite özelliklerine göre sınıflandırılmasında başarıyla kullanılabilmektedir. Bu derleme çalışmasında ağırlıklı olarak meyve ve sebzelerin kalitesinin incelenmesinde kullanılan akustik teknikler, lazer Doppler titreşim ve ultrasonik yöntemler incelenmiş olup, farklı gıda gruplarında bu tekniklerin kullanımıyla elde edilen sonuçlar detaylı olarak kıyaslanmıştır.

Kaynakça

  • Abbaszadeh, R., Rajabipour, A., Ahmadi, H., Mahjoob, M. J., & Delshad, M. (2013). Prediction of watermelon quality based on vibration spectrum. Postharvest Biology and Technology, 86, 291-293. https://doi.org/10.1016/j.postharvbio.2013.07.013
  • Abbaszadeh, R., Rajabipour, A., Sadrnia, H., Mahjoob, M. J., Delshad, M., & Ahmadi, H. (2014). Application of modal analysis to the watermelon through finite element modeling for use in ripeness assessment. Journal of Food Engineering, 127, 80-84. https://doi.org/10.1016/j.jfoodeng.2013.11.020
  • Abbaszadeh, R., Rajabipour, A., Ying, Y., Delshad, M., Mahjoob, M. J., & Ahmadi, H. (2015). Nondestructive determination of watermelon flesh firmness by frequency response. LWT-Food Science and Technology, 60(1), 637-640. https://doi.org/10.1016/j.lwt.2014.08.029
  • Abbott, J. A. (1968). Sonic technique for measuring texture of fruits and vegetables. Food Technol., 22, 635-646.
  • Aboudaoud, I., Faiz, B., Aassif, E., Moudden, A., Izbaim, D., Abassi, D., ... & Azergui, M. (2012). The maturity characterization of orange fruit by using high frequency ultrasonic echo pulse method. In IOP Conference Series: Materials Science and Engineering (Vol. 42, No. 1, p. 012038). IOP Publishing. https://doi.org/10.1088/1757-899X/42/1/012038
  • Ali, M. M., Hashim, N., Bejo, S. K., & Shamsudin, R. (2017). Rapid and nondestructive techniques for internal and external quality evaluation of watermelons: A review. Scientia Horticulturae, 225, 689-699. https://doi.org/10.1016/j.scienta.2017.08.012
  • Armstrong, P. R., Stone, M. L., & Brusewitz, G. H. (1997). Peach firmness determination using two different nondestructive vibrational sensing instruments. Transactions of the ASAE, 40(3), 699-703. https://doi.org/10.13031/2013.21289
  • Armstrong, P., Zapp, H. R., & Brown, G. K. (1990). Impulsive excitation of acoustic vibrations in apples for firmness determination. Transactions of the ASAE, 33(4), 1353-1359. https://doi.org/10.13031/2013.31480
  • Awad, T. S., Moharram, H. A., Shaltout, O. E., Asker, D., & Youssef, M. M. (2012). Applications of ultrasound in analysis, processing and quality control of food: A review. Food Research International, 48(2), 410-427. https://doi.org/10.1016/j.foodres.2012.05.004
  • Baki, S. R. M. S., Yassin, I. M., Hasliza, A. H., & Zabidi, A. (2010). Non-destructive classification of watermelon ripeness using Mel-frequency cepstrum coefficients and Multilayer Perceptrons. In The 2010 International Joint Conference on Neural Networks (IJCNN) (pp. 1-6). IEEE. https://doi.org/10.1109/IJCNN.2010.5596573
  • Barriga-Téllez, L. M., Garnica-Romo, M. G., Aranda-Sánchez, J. I., Correa, G. A., Bartolomé-Camacho, M. C., & Martínez-Flores, H. E. (2011). Nondestructive tests for measuring the firmness of guava fruit stored and treated with methyl jasmonate and calcium chloride. International Journal of Food Science & Technology, 46(6), 1310-1315. https://doi.org/10.1111/j.1365-2621.2011.02633.x
  • Chen, H., & DeBaerdemaeker, J. (1993). Effect of apple shape on acoustic measurements of firmness. Journal of Agricultural Engineering Research, 56(3), 253-266. https://doi.org/10.1006/jaer.1993.1077
  • Chen, P., Sun, Z., & Huarng, L. (1992). Factors affecting acoustic responses of apples. Transactions of the ASAE, 35(6), 1915-1920. https://doi.org/10.13031 / 2013.28815
  • Chen, X., Yuan, P., & Deng, X. (2018). Watermelon ripeness detection by wavelet multiresolution decomposition of acoustic impulse response signals. Postharvest Biology and Technology, 142, 135-141. https://doi.org/10.1016/j.postharvbio.2017.08.018
  • Cho, B. K., & Irudayaraj, J. M. K. (2003). A noncontact ultrasound approach for mechanical property determination of cheeses. Journal of Food Science, 68(7), 2243-2247. https://doi.org/10.1111/j.1365-2621.2003.tb05754.x
  • Clark, H. L., & Walter, M. (1942). U.S. Patent No. 2,277,037. Washington, DC: U.S. Patent and Trademark Office.
  • Cooke, J. R. (1972). An interpretation of the resonant behavior of intact fruits and vegetables. Transactions of the ASAE, 15(6), 1075-1080. https://doi.org/10.13031/ 2013.38074
  • Corona, E., Garcia-Perez, J. V., Alvarez-Arenas, T. E. G., Watson, N., Povey, M. J., & Benedito, J. (2013). Advances in the ultrasound characterization of dry-cured meat products. Journal of Food Engineering, 119(3), 464-470. https://doi.org/10.1016/j.jfoodeng.2013.06.023
  • Cui, D., Gao, Z., Zhang, W., & Ying, Y. (2015). The use of a laser Doppler vibrometer to assess watermelon firmness. Computers and Electronics in Agriculture, 112, 116-120. https://doi.org/10.1016/j.compag.2014.11.012
  • De Baerdemaeker, J., Lemaitre, L., & Meire, R. (1982). Quality detection by frequency spectrum analysis of the fruit impact force. Transactions of the ASAE, 25(1), 175-0178. https://doi.org/10.13031/2013.33499
  • De Belie, N., Schotte, S., Coucke, P., & De Baerdemaeker, J. (2000). Development of an automated monitoring device to quantify changes in firmness of apples during storage. Postharvest Biology and Technology, 18(1), 1-8. https://doi.org/10.1016/S0925-5214(99)00063-0
  • Diezma-Iglesias, B., Ruiz-Altisent, M., & Barreiro, P. (2004). Detection of internal quality in seedless watermelon by acoustic impulse response. Biosystems Engineering, 88(2), 221-230. https://doi.org/10.1016/j.biosystemseng.2004.03.007
  • Ding, C., Wu, H., Feng, Z., Wang, D., Li, W., & Cui, D. (2020). Online assessment of pear firmness by acoustic vibration analysis. Postharvest Biology and Technology, 160, 111042. https://doi.org/10.1016/j.postharvbio.2019.111042
  • Elbatawi, I. E. (2008). An acoustic impact method to detect hollow heart of potato tubers. Biosystems Engineering, 100(2), 206-213. https://doi.org/10.1016/j.biosystemseng.2008.02.009
  • Finney, E. E. (1970). Mechanical resonance within Red Delicious apples and its relation to fruit texture. Transactions of the ASAE, 13(2), 177-0180. https://doi.org/10.13031/ 2013.38564
  • Gao, Y., Li, Q., Rao, X., & Ying, Y. (2018). Precautionary analysis of sprouting potato eyes using hyperspectral imaging technology. International Journal of Agricultural and Biological Engineering, 11(2), 153-157. https://doi.org/10.25165/j.ijabe.20181102.2748
  • González, M., Budelli, E., Pérez, N., & Lema, P. (2020). Acoustic techniques to detect eye formation during ripening of Emmental type cheese. Innovative Food Science & Emerging Technologies, 59, 102270. https://doi.org/10.1016/j.ifset.2019.102270
  • Harker, F. R., Feng, J., Johnston, J. W., Gamble, J., Alavi, M., Hall, M., & Chheang, S. L. (2019). Influence of postharvest water loss on apple quality: The use of a sensory panel to verify destructive and non-destructive instrumental measurements of texture. Postharvest Biology and Technology, 148, 32-37. https://doi.org/10.1016/j.postharvbio.2018.10.008
  • Hertog, M. L., Ben-Arie, R., Róth, E., & Nicolaı̈, B. M. (2004). Humidity and temperature effects on invasive and non-invasive firmness measures. Postharvest Biology and Technology, 33(1), 79-91. https://doi.org/10.1016/j.postharvbio.2004.01.005
  • Hitchman, S., van Wijk, K., & Davidson, Z. (2016). Monitoring attenuation and the elastic properties of an apple with laser ultrasound. Postharvest Biology and Technology, 121, 71-77. https://doi.org/10.1016/j.postharvbio.2016.07.006
  • Hung, Y. C., Prussia, S. E., & Ezeike, G. O. I. (1999). Nondestructive firmness sensing using a laser air-puff detector. Postharvest biology and technology, 16(1), 15-25. https://doi.org/10.1016/S0925-5214(98)00103-3
  • Irudayaraj, J., & Reh, C. (Eds.). (2008). Nondestructive testing of food quality (Vol. 18). John Wiley & Sons.
  • Jancsók, P. T., Clijmans, L., Nicolaı̈, B. M., & De Baerdemaeker, J. (2001). Investigation of the effect of shape on the acoustic response of ‘conference’pears by finite element modelling. Postharvest Biology and Technology, 23(1), 1-12. https://doi.org/10.1016/S0925-5214(01)00098-9
  • Jones, C. D., Jones, J. B., & Lee, W. S. (2010). Diagnosis of bacterial spot of tomato using spectral signatures. Computers and Electronics in Agriculture, 74(2), 329-335. https://doi.org/10.1016/j.compag.2010.09.008
  • Kilcast, D. (Ed.). (2004). Texture in food: Solid foods. Elsevier.
  • Kojima, K., Sakurai, N., Kuraishi, S., Yamamoto, R., & Nevins, D. J. (1991). Novel technique for measuring tissue firmness within tomato (Lycopersicon esculentum Mill.) fruit. Plant Physiology, 96(2), 545-550. https://doi.org/10.1104/pp.96.2.545
  • Lamikanra, O. (Ed.). (2002). Fresh-cut fruits and vegetables: science, technology, and market. CRC Press.
  • Landahl, S., & Terry, L. A. (2020). Non-destructive discrimination of avocado fruit ripeness using laser Doppler vibrometry. Biosystems Engineering, 194, 251-260. https://doi.org/10.1016/j.biosystemseng.2020.04.001
  • Li, B., Lecourt, J., & Bishop, G. (2018). Advances in non-destructive early assessment of fruit ripeness towards defining optimal time of harvest and yield prediction—a review. Plants, 7(1), 3. https://doi.org/10.3390/plants7010003
  • Li, H., Pidakala, P., Billing, D., & Burdon, J. (2016). Kiwifruit firmness: Measurement by penetrometer and non-destructive devices. Postharvest Biology and Technology, 120, 127-137. https://doi.org/10.1016/j.postharvbio.2016.06.007
  • Lien, C. C., Ay, C., & Ting, C. H. (2009). Non-destructive impact test for assessment of tomato maturity. Journal of Food Engineering, 91(3), 402-407. https://doi.org/10.1016/j.jfoodeng.2008.09.036
  • Lu, R., Srivastava, A. K., & Beaudry, R. M. (2005). A new bioyield tester for measuring apple fruit firmness. Applied Engineering in Agriculture, 21(5), 893-900. https://doi.org/10.13031 / 2013.19693
  • Magness, J. R., & Taylor, G. F. (1925). improved type of pressure tester for the determination of fruit maturity.
  • Mao, J., Yu, Y., Rao, X., & Wang, J. (2016). Firmness prediction and modeling by optimizing acoustic device for watermelons. Journal of Food Engineering, 168, 1-6. https://doi.org/10.1016/j.jfoodeng.2015.07.009
  • McGlone, V. A., Ko, S. M. W., & Jordan, R. B. (1999). Non-contact fruit firmness measurement by the laser air-puff method. Transactions of the ASAE, 42(5), 1391. https://doi.org/10.13031 / 2013.13302
  • Mireei, S. A., Sadeghi, M., Heidari, A., & Hemmat, A. (2015). On-line firmness sensing of dates using a non-destructive impact testing device. Biosystems Engineering, 129, 288-297. https://doi.org/10.1016/j.biosystemseng.2014.10.012
  • Mizrach, A. (2000). Determination of avocado and mango fruit properties by ultrasonic technique. Ultrasonics, 38(1-8), 717-722. https://doi.org/10.1016/S0041-624X(99)00154-7
  • Mizrach, A. (2004). Assessing plum fruit quality attributes with an ultrasonic method. Food Research International, 37(6), 627-631. https://doi.org/10.1016/j.foodres.2003.12.015
  • Mizrach, A. (2007). Nondestructive ultrasonic monitoring of tomato quality during shelf-life storage. Postharvest Biology and Technology, 46(3), 271-274. https://doi.org/10.1016/j.postharvbio.2007.05.012
  • Mizrach, A., Flitsanov, U., Schmilovitch, Z. E., & Fuchs, Y. (1999). Determination of mango physiological indices by mechanical wave analysis. Postharvest Biology and Technology, 16(2), 179-186. https://doi.org/10.1016/S0925-5214(99)00007-1
  • Mohsenin, N. N., & Goehlich, H. (1962). Techniques for determination of mechanical properties of fruits and vegetables as related to design and development of harvesting and processing machinery. Journal of Agricultural Engineering Research, 7(4), 300-315.
  • Molina-Delgado, D., Alegre, S., Puy, J., & Recasens, I. (2009). Relationship between acoustic firmness and Magness Taylor firmness in Royal Gala and Golden Smoothee apples. Food Science and Technology International, 15(1), 31-40. https://doi.org/10.1177/1082013208100507
  • Morrison, D. S., & Abeyratne, U. R. (2014). Ultrasonic technique for non-destructive quality evaluation of oranges. Journal of Food Engineering, 141, 107-112. https://doi.org/10.1016/j.jfoodeng.2014.05.018
  • Muramatsu, N., Sakurai, N., Wada, N., Yamamoto, R., Takahara, T., Ogata, T., ... & Nevins, D. J. (1999). Evaluation of fruit tissue texture and internal disorders by laser Doppler detection. Postharvest Biology and Technology, 15(1), 83-88. https://doi.org/10.1016/S0925-5214(98)00062-3
  • Muramatsu, N., Sakurai, N., Yamamoto, R., Nevins, D. J., Takahara, T., & Ogata, T. (1997). Comparison of a non-destructive acoustic method with an intrusive method for firmness measurement of kiwifruit. Postharvest Biology and Technology, 12(3), 221-228. https://doi.org/10.1016/S0925-5214(97)00054-9
  • Nicolaï, B. M., Defraeye, T., De Ketelaere, B., Herremans, E., Hertog, M. L., Saeys, W., ... & Verboven, P. (2014). Nondestructive measurement of fruit and vegetable quality. Annual Review of Food Science and Technology, 5, 285-312. https://doi.org/10.1146/annurev-food-030713-092410
  • Nouri, M., Nasehi, B., Mehdizadeh, S. A., & Goudarzi, M. (2017). A novel application of vibration technique for non-destructive evaluation of bread staling. Journal of Food Engineering, 197, 44-47. https://doi.org/10.1016/j.jfoodeng.2016.11.003
  • Nowak, K. W., & Markowski, M. (2013). A comparison of methods for the determination of sound velocity in biological materials: A case study. Ultrasonics, 53(5), 923-927. https://doi.org/10.1016/j.ultras.2013.01.009
  • Pearson, T. C. (2001). Detection of pistachio nuts with closed shells using impact acoustics. Applied Engineering in Agriculture, 17(2), 249. https://doi.org/10.13031 / 2013.5450
  • Ragni, L., Berardinelli, A., & Guarnieri, A. (2010). Impact device for measuring the flesh firmness of kiwifruits. Journal of Food Engineering, 96(4), 591-597. https://doi.org/10.1016/j.jfoodeng.2009.09.006
  • Rubio-Diaz, D. E., Francis, D. M., & Rodriguez-Saona, L. E. (2011). External calibration models for the measurement of tomato carotenoids by infrared spectroscopy. Journal of Food Composition and Analysis, 24(1), 121-126. https://doi.org/10.1016/j.jfca.2010.06.006.
  • Saggin, R., & Coupland, J. N. (2001). Non-contact ultrasonic measurements in food materials. Food Research International, 34(10), 865-870. https://doi.org/10.1016/S0963-9969(01)00110-7
  • Schotte, S., De Belie, N., & De Baerdemaeker, J. (1999). Acoustic impulse-response technique for evaluation and modelling of firmness of tomato fruit. Postharvest Biology and Technology, 17(2), 105-115. https://doi.org/10.1016/S0925-5214(99)00041-1
  • Shmulevich, I., Ben-Arie, R., Sendler, N., & Carmi, Y. (2003). Sensing technology for quality assessment in controlled atmospheres. Postharvest Biology and Technology, 29(2), 145-154. https://doi.org/10.1016/S0925-5214(03)00002-4
  • Sirisomboon, P., Tanaka, M., Fujıta, S., & Kojıma, T. (2000). Relationship between the texture and pectin constituents of Japanese pear. Journal of Texture Studies, 31(6), 679-690. https://doi.org/10.1111/j.1745-4603.2000.tb01028.x
  • Strnková, J., Nedomová, Š., Trnka, J., Buchar, J., & Simeonovová, J. (2014). Behavıor Of Cracked Eggs At Non–Destructıve Impact. Journal of Microbiology, Biotechnology and Food Sciences, 9(4), 43-50.
  • Studman, C. J. (2001). Computers and electronics in postharvest technology—a review. Computers and electronics in Agriculture, 30(1-3), 109-124. https://doi.org/10.1016/S0168-1699(00)00160-5
  • Su, W. H., & Sun, D. W. (2018). Multispectral imaging for plant food quality analysis and visualization. Comprehensive Reviews in Food Science and Food Safety, 17(1), 220-239. https://doi.org/10.1111/1541-4337.12317
  • Su, W. H., He, H. J., & Sun, D. W. (2017). Non-destructive and rapid evaluation of staple foods quality by using spectroscopic techniques: a review. Critical Reviews in Food Science and Nutrition, 57(5), 1039-1051. https://doi.org/10.1080/10408398.2015.1082966
  • Subedi, P. P., & Walsh, K. B. (2009). Non-invasive techniques for measurement of fresh fruit firmness. Postharvest biology and technology, 51(3), 297-304. https://doi.org/10.1016/j.postharvbio.2008.03.004
  • Sugiyama, J. (2001). Application of non-destructive portable firmness tester to pears. Food Science and Technology Research, 7(2), 161-163. https://doi.org/10.3136/fstr.7.161
  • Sugiyama, J., Katsurai, T., Hong, J., Koyama, H., & Mikuriya, K. (1998). Melon ripeness monitoring by a portable firmness tester. Transactions of the ASAE, 41(1), 121. https://doi.org/10.13031/2013.17135
  • Sun, D.W. (Ed.), 2010. Hyperspectral İmaging for food quality analysis and control. Elsevier.
  • Taniwaki, M., Hanada, T., & Sakurai, N. (2009c). Postharvest quality evaluation of “Fuyu” and “Taishuu” persimmons using a nondestructive vibrational method and an acoustic vibration technique. Postharvest Biology and Technology, 51(1), 80-85. https://doi.org/10.1016/j.postharvbio.2008.05.014
  • Taniwaki, M., Hanada, T., Tohro, M., & Sakurai, N. (2009a). Non-destructive determination of the optimum eating ripeness of pears and their texture measurements using acoustical vibration techniques. Postharvest Biology and Technology, 51(3), 305-310. https://doi.org/10.1016/j.postharvbio.2008.08.004
  • Taniwaki, M., Takahashi, M., & Sakurai, N. (2009b). Determination of optimum ripeness for edibility of postharvest melons using nondestructive vibration. Food Research International, 42(1), 137-141. https://doi.org/10.1016/j.foodres.2008.09.007
  • Terasaki, S., Sakurai, N., Zebrowski, J., Murayama, H., Yamamoto, R., & Nevins, D. J. (2006). Laser Doppler vibrometer analysis of changes in elastic properties of ripening ‘La France’pears after postharvest storage. Postharvest Biology and Technology, 42(2), 198-207. https://doi.org/10.1016/j.postharvbio.2006.06.007
  • Trnka, J., Pavloušek, P., Nedomová, Š., & Buchar, J. (2016). Time and frequency domain response of grape berries to nondestructive impact during the harvesting period. Journal of Texture Studies, 47(1), 24-33. https://doi.org/10.1111/jtxs.12156
  • Verlinden, B. E., De Smedt, V., & Nicolaı̈, B. M. (2004). Evaluation of ultrasonic wave propagation to measure chilling injury in tomatoes. Postharvest Biology and Technology, 32(1), 109-113. https://doi.org/10.1016/j.postharvbio.2003.11.006
  • Wang, J., Gomez, A. H., & Pereira, A. G. (2006). Acoustic impulse response for measuring the firmness of mandarin during storage. Journal of Food Quality, 29(4), 392-404. https://doi.org/10.1111/j.1745-4557.2006.00081.x
  • Yamamoto, H., Iwamoto, M., & Haginuma, S. (1980). Acoustic impulse response method for measuring natural frequency of intact fruits and preliminary applications to internal quality evaluation of apples and watermelons. Journal of Texture Studies, 11(2), 117-136. https://doi.org/10.1111/j.1745-4603.1980.tb00312.x
  • Yurtlu, Y. B. (2012). Comparison of nondestructive impact and acoustic techniques for measuring firmness in peaches. Journal of Food, Agriculture & Environment, 10(2 Part 1), 180-185. https://doi.org/10.1234/4.2012.2932
  • Zeng, W., Huang, X., Arisona, S. M., & McLoughlin, I. V. (2014). Classifying watermelon ripeness by analysing acoustic signals using mobile devices. Personal and ubiquitous computing, 18(7), 1753-1762. https://doi.org/10.1007/s00779-013-0706-7
  • Zhang, C., Wei, N., Gao, E., & Sun, Q. (2020b). Poisson’s ratio of two-dimensional hexagonal crystals: A mechanics model study. Extreme Mechanics Letters, 100748. https://doi.org/10.1016/j.eml.2020.100748
  • Zhang, H., Wu, J., Zhao, Z., & Wang, Z. (2018a). Nondestructive firmness measurement of differently shaped pears with a dual-frequency index based on acoustic vibration. Postharvest Biology and Technology, 138, 11-18. https://doi.org/10.1016/j.postharvbio.2017.12.002
  • Zhang, W., Cui, D., & Ying, Y. (2014). Nondestructive measurement of pear texture by acoustic vibration method. Postharvest Biology and Technology, 96, 99-105. https://doi.org/10.1016/j.postharvbio.2014.05.006
  • Zhang, W., Lv, Z., & Xiong, S. (2018b). Nondestructive quality evaluation of agro0p*azsüx, bnm-products using acoustic vibration methods—A review. Critical Reviews in Food Science and Nutrition, 58(14), 2386-2397. https://doi.org/10.1080/10408398.2017.1324830
  • Zhang, W., Wang, A., Lv, Z., & Gao, Z. (2020a). Nondestructive measurement of kiwifruit firmness, soluble solid content (SSC), titratable acidity (TA), and sensory quality by vibration spectrum. Food Science & Nutrition, 8(2), 1058-1066. https://doi.org/10.1002/fsn3.1390

Using of Non-destructive Acoustic Methods in Food Analyses

Yıl 2021, Cilt: 6 Sayı: 1, 64 - 79, 30.04.2021
https://doi.org/10.46578/humder.812184

Öz

In recent years, the use of non-destructive food analysis methods such as; spectroscopic, chromatographic techniques and mechanical methods which are developed as an alternative to the classical destructive analysis techniques for evaluation of the quality of food products has increased. By employing acoustic and ultrasonic techniques, the loss of food samples during application of the analysis can be prevented, especially the quality determination of large-volume foods, and thus possible economic gain will be achieved due to the food loss. Acoustic techniques, regardless of the size, volume, shape and texture of food can be successfully used in determining the firmness, internal defects and maturity of many foods and for classification of these foods according to the selected quality parameters. In this review, the acoustic techniques, laser Doppler vibrometry and ultrasonic methods, which are used to evaluate mostly the quality of fruits and vegetables were discussed, and the results of different food groups obtained from these techniques were compared in detail.

Kaynakça

  • Abbaszadeh, R., Rajabipour, A., Ahmadi, H., Mahjoob, M. J., & Delshad, M. (2013). Prediction of watermelon quality based on vibration spectrum. Postharvest Biology and Technology, 86, 291-293. https://doi.org/10.1016/j.postharvbio.2013.07.013
  • Abbaszadeh, R., Rajabipour, A., Sadrnia, H., Mahjoob, M. J., Delshad, M., & Ahmadi, H. (2014). Application of modal analysis to the watermelon through finite element modeling for use in ripeness assessment. Journal of Food Engineering, 127, 80-84. https://doi.org/10.1016/j.jfoodeng.2013.11.020
  • Abbaszadeh, R., Rajabipour, A., Ying, Y., Delshad, M., Mahjoob, M. J., & Ahmadi, H. (2015). Nondestructive determination of watermelon flesh firmness by frequency response. LWT-Food Science and Technology, 60(1), 637-640. https://doi.org/10.1016/j.lwt.2014.08.029
  • Abbott, J. A. (1968). Sonic technique for measuring texture of fruits and vegetables. Food Technol., 22, 635-646.
  • Aboudaoud, I., Faiz, B., Aassif, E., Moudden, A., Izbaim, D., Abassi, D., ... & Azergui, M. (2012). The maturity characterization of orange fruit by using high frequency ultrasonic echo pulse method. In IOP Conference Series: Materials Science and Engineering (Vol. 42, No. 1, p. 012038). IOP Publishing. https://doi.org/10.1088/1757-899X/42/1/012038
  • Ali, M. M., Hashim, N., Bejo, S. K., & Shamsudin, R. (2017). Rapid and nondestructive techniques for internal and external quality evaluation of watermelons: A review. Scientia Horticulturae, 225, 689-699. https://doi.org/10.1016/j.scienta.2017.08.012
  • Armstrong, P. R., Stone, M. L., & Brusewitz, G. H. (1997). Peach firmness determination using two different nondestructive vibrational sensing instruments. Transactions of the ASAE, 40(3), 699-703. https://doi.org/10.13031/2013.21289
  • Armstrong, P., Zapp, H. R., & Brown, G. K. (1990). Impulsive excitation of acoustic vibrations in apples for firmness determination. Transactions of the ASAE, 33(4), 1353-1359. https://doi.org/10.13031/2013.31480
  • Awad, T. S., Moharram, H. A., Shaltout, O. E., Asker, D., & Youssef, M. M. (2012). Applications of ultrasound in analysis, processing and quality control of food: A review. Food Research International, 48(2), 410-427. https://doi.org/10.1016/j.foodres.2012.05.004
  • Baki, S. R. M. S., Yassin, I. M., Hasliza, A. H., & Zabidi, A. (2010). Non-destructive classification of watermelon ripeness using Mel-frequency cepstrum coefficients and Multilayer Perceptrons. In The 2010 International Joint Conference on Neural Networks (IJCNN) (pp. 1-6). IEEE. https://doi.org/10.1109/IJCNN.2010.5596573
  • Barriga-Téllez, L. M., Garnica-Romo, M. G., Aranda-Sánchez, J. I., Correa, G. A., Bartolomé-Camacho, M. C., & Martínez-Flores, H. E. (2011). Nondestructive tests for measuring the firmness of guava fruit stored and treated with methyl jasmonate and calcium chloride. International Journal of Food Science & Technology, 46(6), 1310-1315. https://doi.org/10.1111/j.1365-2621.2011.02633.x
  • Chen, H., & DeBaerdemaeker, J. (1993). Effect of apple shape on acoustic measurements of firmness. Journal of Agricultural Engineering Research, 56(3), 253-266. https://doi.org/10.1006/jaer.1993.1077
  • Chen, P., Sun, Z., & Huarng, L. (1992). Factors affecting acoustic responses of apples. Transactions of the ASAE, 35(6), 1915-1920. https://doi.org/10.13031 / 2013.28815
  • Chen, X., Yuan, P., & Deng, X. (2018). Watermelon ripeness detection by wavelet multiresolution decomposition of acoustic impulse response signals. Postharvest Biology and Technology, 142, 135-141. https://doi.org/10.1016/j.postharvbio.2017.08.018
  • Cho, B. K., & Irudayaraj, J. M. K. (2003). A noncontact ultrasound approach for mechanical property determination of cheeses. Journal of Food Science, 68(7), 2243-2247. https://doi.org/10.1111/j.1365-2621.2003.tb05754.x
  • Clark, H. L., & Walter, M. (1942). U.S. Patent No. 2,277,037. Washington, DC: U.S. Patent and Trademark Office.
  • Cooke, J. R. (1972). An interpretation of the resonant behavior of intact fruits and vegetables. Transactions of the ASAE, 15(6), 1075-1080. https://doi.org/10.13031/ 2013.38074
  • Corona, E., Garcia-Perez, J. V., Alvarez-Arenas, T. E. G., Watson, N., Povey, M. J., & Benedito, J. (2013). Advances in the ultrasound characterization of dry-cured meat products. Journal of Food Engineering, 119(3), 464-470. https://doi.org/10.1016/j.jfoodeng.2013.06.023
  • Cui, D., Gao, Z., Zhang, W., & Ying, Y. (2015). The use of a laser Doppler vibrometer to assess watermelon firmness. Computers and Electronics in Agriculture, 112, 116-120. https://doi.org/10.1016/j.compag.2014.11.012
  • De Baerdemaeker, J., Lemaitre, L., & Meire, R. (1982). Quality detection by frequency spectrum analysis of the fruit impact force. Transactions of the ASAE, 25(1), 175-0178. https://doi.org/10.13031/2013.33499
  • De Belie, N., Schotte, S., Coucke, P., & De Baerdemaeker, J. (2000). Development of an automated monitoring device to quantify changes in firmness of apples during storage. Postharvest Biology and Technology, 18(1), 1-8. https://doi.org/10.1016/S0925-5214(99)00063-0
  • Diezma-Iglesias, B., Ruiz-Altisent, M., & Barreiro, P. (2004). Detection of internal quality in seedless watermelon by acoustic impulse response. Biosystems Engineering, 88(2), 221-230. https://doi.org/10.1016/j.biosystemseng.2004.03.007
  • Ding, C., Wu, H., Feng, Z., Wang, D., Li, W., & Cui, D. (2020). Online assessment of pear firmness by acoustic vibration analysis. Postharvest Biology and Technology, 160, 111042. https://doi.org/10.1016/j.postharvbio.2019.111042
  • Elbatawi, I. E. (2008). An acoustic impact method to detect hollow heart of potato tubers. Biosystems Engineering, 100(2), 206-213. https://doi.org/10.1016/j.biosystemseng.2008.02.009
  • Finney, E. E. (1970). Mechanical resonance within Red Delicious apples and its relation to fruit texture. Transactions of the ASAE, 13(2), 177-0180. https://doi.org/10.13031/ 2013.38564
  • Gao, Y., Li, Q., Rao, X., & Ying, Y. (2018). Precautionary analysis of sprouting potato eyes using hyperspectral imaging technology. International Journal of Agricultural and Biological Engineering, 11(2), 153-157. https://doi.org/10.25165/j.ijabe.20181102.2748
  • González, M., Budelli, E., Pérez, N., & Lema, P. (2020). Acoustic techniques to detect eye formation during ripening of Emmental type cheese. Innovative Food Science & Emerging Technologies, 59, 102270. https://doi.org/10.1016/j.ifset.2019.102270
  • Harker, F. R., Feng, J., Johnston, J. W., Gamble, J., Alavi, M., Hall, M., & Chheang, S. L. (2019). Influence of postharvest water loss on apple quality: The use of a sensory panel to verify destructive and non-destructive instrumental measurements of texture. Postharvest Biology and Technology, 148, 32-37. https://doi.org/10.1016/j.postharvbio.2018.10.008
  • Hertog, M. L., Ben-Arie, R., Róth, E., & Nicolaı̈, B. M. (2004). Humidity and temperature effects on invasive and non-invasive firmness measures. Postharvest Biology and Technology, 33(1), 79-91. https://doi.org/10.1016/j.postharvbio.2004.01.005
  • Hitchman, S., van Wijk, K., & Davidson, Z. (2016). Monitoring attenuation and the elastic properties of an apple with laser ultrasound. Postharvest Biology and Technology, 121, 71-77. https://doi.org/10.1016/j.postharvbio.2016.07.006
  • Hung, Y. C., Prussia, S. E., & Ezeike, G. O. I. (1999). Nondestructive firmness sensing using a laser air-puff detector. Postharvest biology and technology, 16(1), 15-25. https://doi.org/10.1016/S0925-5214(98)00103-3
  • Irudayaraj, J., & Reh, C. (Eds.). (2008). Nondestructive testing of food quality (Vol. 18). John Wiley & Sons.
  • Jancsók, P. T., Clijmans, L., Nicolaı̈, B. M., & De Baerdemaeker, J. (2001). Investigation of the effect of shape on the acoustic response of ‘conference’pears by finite element modelling. Postharvest Biology and Technology, 23(1), 1-12. https://doi.org/10.1016/S0925-5214(01)00098-9
  • Jones, C. D., Jones, J. B., & Lee, W. S. (2010). Diagnosis of bacterial spot of tomato using spectral signatures. Computers and Electronics in Agriculture, 74(2), 329-335. https://doi.org/10.1016/j.compag.2010.09.008
  • Kilcast, D. (Ed.). (2004). Texture in food: Solid foods. Elsevier.
  • Kojima, K., Sakurai, N., Kuraishi, S., Yamamoto, R., & Nevins, D. J. (1991). Novel technique for measuring tissue firmness within tomato (Lycopersicon esculentum Mill.) fruit. Plant Physiology, 96(2), 545-550. https://doi.org/10.1104/pp.96.2.545
  • Lamikanra, O. (Ed.). (2002). Fresh-cut fruits and vegetables: science, technology, and market. CRC Press.
  • Landahl, S., & Terry, L. A. (2020). Non-destructive discrimination of avocado fruit ripeness using laser Doppler vibrometry. Biosystems Engineering, 194, 251-260. https://doi.org/10.1016/j.biosystemseng.2020.04.001
  • Li, B., Lecourt, J., & Bishop, G. (2018). Advances in non-destructive early assessment of fruit ripeness towards defining optimal time of harvest and yield prediction—a review. Plants, 7(1), 3. https://doi.org/10.3390/plants7010003
  • Li, H., Pidakala, P., Billing, D., & Burdon, J. (2016). Kiwifruit firmness: Measurement by penetrometer and non-destructive devices. Postharvest Biology and Technology, 120, 127-137. https://doi.org/10.1016/j.postharvbio.2016.06.007
  • Lien, C. C., Ay, C., & Ting, C. H. (2009). Non-destructive impact test for assessment of tomato maturity. Journal of Food Engineering, 91(3), 402-407. https://doi.org/10.1016/j.jfoodeng.2008.09.036
  • Lu, R., Srivastava, A. K., & Beaudry, R. M. (2005). A new bioyield tester for measuring apple fruit firmness. Applied Engineering in Agriculture, 21(5), 893-900. https://doi.org/10.13031 / 2013.19693
  • Magness, J. R., & Taylor, G. F. (1925). improved type of pressure tester for the determination of fruit maturity.
  • Mao, J., Yu, Y., Rao, X., & Wang, J. (2016). Firmness prediction and modeling by optimizing acoustic device for watermelons. Journal of Food Engineering, 168, 1-6. https://doi.org/10.1016/j.jfoodeng.2015.07.009
  • McGlone, V. A., Ko, S. M. W., & Jordan, R. B. (1999). Non-contact fruit firmness measurement by the laser air-puff method. Transactions of the ASAE, 42(5), 1391. https://doi.org/10.13031 / 2013.13302
  • Mireei, S. A., Sadeghi, M., Heidari, A., & Hemmat, A. (2015). On-line firmness sensing of dates using a non-destructive impact testing device. Biosystems Engineering, 129, 288-297. https://doi.org/10.1016/j.biosystemseng.2014.10.012
  • Mizrach, A. (2000). Determination of avocado and mango fruit properties by ultrasonic technique. Ultrasonics, 38(1-8), 717-722. https://doi.org/10.1016/S0041-624X(99)00154-7
  • Mizrach, A. (2004). Assessing plum fruit quality attributes with an ultrasonic method. Food Research International, 37(6), 627-631. https://doi.org/10.1016/j.foodres.2003.12.015
  • Mizrach, A. (2007). Nondestructive ultrasonic monitoring of tomato quality during shelf-life storage. Postharvest Biology and Technology, 46(3), 271-274. https://doi.org/10.1016/j.postharvbio.2007.05.012
  • Mizrach, A., Flitsanov, U., Schmilovitch, Z. E., & Fuchs, Y. (1999). Determination of mango physiological indices by mechanical wave analysis. Postharvest Biology and Technology, 16(2), 179-186. https://doi.org/10.1016/S0925-5214(99)00007-1
  • Mohsenin, N. N., & Goehlich, H. (1962). Techniques for determination of mechanical properties of fruits and vegetables as related to design and development of harvesting and processing machinery. Journal of Agricultural Engineering Research, 7(4), 300-315.
  • Molina-Delgado, D., Alegre, S., Puy, J., & Recasens, I. (2009). Relationship between acoustic firmness and Magness Taylor firmness in Royal Gala and Golden Smoothee apples. Food Science and Technology International, 15(1), 31-40. https://doi.org/10.1177/1082013208100507
  • Morrison, D. S., & Abeyratne, U. R. (2014). Ultrasonic technique for non-destructive quality evaluation of oranges. Journal of Food Engineering, 141, 107-112. https://doi.org/10.1016/j.jfoodeng.2014.05.018
  • Muramatsu, N., Sakurai, N., Wada, N., Yamamoto, R., Takahara, T., Ogata, T., ... & Nevins, D. J. (1999). Evaluation of fruit tissue texture and internal disorders by laser Doppler detection. Postharvest Biology and Technology, 15(1), 83-88. https://doi.org/10.1016/S0925-5214(98)00062-3
  • Muramatsu, N., Sakurai, N., Yamamoto, R., Nevins, D. J., Takahara, T., & Ogata, T. (1997). Comparison of a non-destructive acoustic method with an intrusive method for firmness measurement of kiwifruit. Postharvest Biology and Technology, 12(3), 221-228. https://doi.org/10.1016/S0925-5214(97)00054-9
  • Nicolaï, B. M., Defraeye, T., De Ketelaere, B., Herremans, E., Hertog, M. L., Saeys, W., ... & Verboven, P. (2014). Nondestructive measurement of fruit and vegetable quality. Annual Review of Food Science and Technology, 5, 285-312. https://doi.org/10.1146/annurev-food-030713-092410
  • Nouri, M., Nasehi, B., Mehdizadeh, S. A., & Goudarzi, M. (2017). A novel application of vibration technique for non-destructive evaluation of bread staling. Journal of Food Engineering, 197, 44-47. https://doi.org/10.1016/j.jfoodeng.2016.11.003
  • Nowak, K. W., & Markowski, M. (2013). A comparison of methods for the determination of sound velocity in biological materials: A case study. Ultrasonics, 53(5), 923-927. https://doi.org/10.1016/j.ultras.2013.01.009
  • Pearson, T. C. (2001). Detection of pistachio nuts with closed shells using impact acoustics. Applied Engineering in Agriculture, 17(2), 249. https://doi.org/10.13031 / 2013.5450
  • Ragni, L., Berardinelli, A., & Guarnieri, A. (2010). Impact device for measuring the flesh firmness of kiwifruits. Journal of Food Engineering, 96(4), 591-597. https://doi.org/10.1016/j.jfoodeng.2009.09.006
  • Rubio-Diaz, D. E., Francis, D. M., & Rodriguez-Saona, L. E. (2011). External calibration models for the measurement of tomato carotenoids by infrared spectroscopy. Journal of Food Composition and Analysis, 24(1), 121-126. https://doi.org/10.1016/j.jfca.2010.06.006.
  • Saggin, R., & Coupland, J. N. (2001). Non-contact ultrasonic measurements in food materials. Food Research International, 34(10), 865-870. https://doi.org/10.1016/S0963-9969(01)00110-7
  • Schotte, S., De Belie, N., & De Baerdemaeker, J. (1999). Acoustic impulse-response technique for evaluation and modelling of firmness of tomato fruit. Postharvest Biology and Technology, 17(2), 105-115. https://doi.org/10.1016/S0925-5214(99)00041-1
  • Shmulevich, I., Ben-Arie, R., Sendler, N., & Carmi, Y. (2003). Sensing technology for quality assessment in controlled atmospheres. Postharvest Biology and Technology, 29(2), 145-154. https://doi.org/10.1016/S0925-5214(03)00002-4
  • Sirisomboon, P., Tanaka, M., Fujıta, S., & Kojıma, T. (2000). Relationship between the texture and pectin constituents of Japanese pear. Journal of Texture Studies, 31(6), 679-690. https://doi.org/10.1111/j.1745-4603.2000.tb01028.x
  • Strnková, J., Nedomová, Š., Trnka, J., Buchar, J., & Simeonovová, J. (2014). Behavıor Of Cracked Eggs At Non–Destructıve Impact. Journal of Microbiology, Biotechnology and Food Sciences, 9(4), 43-50.
  • Studman, C. J. (2001). Computers and electronics in postharvest technology—a review. Computers and electronics in Agriculture, 30(1-3), 109-124. https://doi.org/10.1016/S0168-1699(00)00160-5
  • Su, W. H., & Sun, D. W. (2018). Multispectral imaging for plant food quality analysis and visualization. Comprehensive Reviews in Food Science and Food Safety, 17(1), 220-239. https://doi.org/10.1111/1541-4337.12317
  • Su, W. H., He, H. J., & Sun, D. W. (2017). Non-destructive and rapid evaluation of staple foods quality by using spectroscopic techniques: a review. Critical Reviews in Food Science and Nutrition, 57(5), 1039-1051. https://doi.org/10.1080/10408398.2015.1082966
  • Subedi, P. P., & Walsh, K. B. (2009). Non-invasive techniques for measurement of fresh fruit firmness. Postharvest biology and technology, 51(3), 297-304. https://doi.org/10.1016/j.postharvbio.2008.03.004
  • Sugiyama, J. (2001). Application of non-destructive portable firmness tester to pears. Food Science and Technology Research, 7(2), 161-163. https://doi.org/10.3136/fstr.7.161
  • Sugiyama, J., Katsurai, T., Hong, J., Koyama, H., & Mikuriya, K. (1998). Melon ripeness monitoring by a portable firmness tester. Transactions of the ASAE, 41(1), 121. https://doi.org/10.13031/2013.17135
  • Sun, D.W. (Ed.), 2010. Hyperspectral İmaging for food quality analysis and control. Elsevier.
  • Taniwaki, M., Hanada, T., & Sakurai, N. (2009c). Postharvest quality evaluation of “Fuyu” and “Taishuu” persimmons using a nondestructive vibrational method and an acoustic vibration technique. Postharvest Biology and Technology, 51(1), 80-85. https://doi.org/10.1016/j.postharvbio.2008.05.014
  • Taniwaki, M., Hanada, T., Tohro, M., & Sakurai, N. (2009a). Non-destructive determination of the optimum eating ripeness of pears and their texture measurements using acoustical vibration techniques. Postharvest Biology and Technology, 51(3), 305-310. https://doi.org/10.1016/j.postharvbio.2008.08.004
  • Taniwaki, M., Takahashi, M., & Sakurai, N. (2009b). Determination of optimum ripeness for edibility of postharvest melons using nondestructive vibration. Food Research International, 42(1), 137-141. https://doi.org/10.1016/j.foodres.2008.09.007
  • Terasaki, S., Sakurai, N., Zebrowski, J., Murayama, H., Yamamoto, R., & Nevins, D. J. (2006). Laser Doppler vibrometer analysis of changes in elastic properties of ripening ‘La France’pears after postharvest storage. Postharvest Biology and Technology, 42(2), 198-207. https://doi.org/10.1016/j.postharvbio.2006.06.007
  • Trnka, J., Pavloušek, P., Nedomová, Š., & Buchar, J. (2016). Time and frequency domain response of grape berries to nondestructive impact during the harvesting period. Journal of Texture Studies, 47(1), 24-33. https://doi.org/10.1111/jtxs.12156
  • Verlinden, B. E., De Smedt, V., & Nicolaı̈, B. M. (2004). Evaluation of ultrasonic wave propagation to measure chilling injury in tomatoes. Postharvest Biology and Technology, 32(1), 109-113. https://doi.org/10.1016/j.postharvbio.2003.11.006
  • Wang, J., Gomez, A. H., & Pereira, A. G. (2006). Acoustic impulse response for measuring the firmness of mandarin during storage. Journal of Food Quality, 29(4), 392-404. https://doi.org/10.1111/j.1745-4557.2006.00081.x
  • Yamamoto, H., Iwamoto, M., & Haginuma, S. (1980). Acoustic impulse response method for measuring natural frequency of intact fruits and preliminary applications to internal quality evaluation of apples and watermelons. Journal of Texture Studies, 11(2), 117-136. https://doi.org/10.1111/j.1745-4603.1980.tb00312.x
  • Yurtlu, Y. B. (2012). Comparison of nondestructive impact and acoustic techniques for measuring firmness in peaches. Journal of Food, Agriculture & Environment, 10(2 Part 1), 180-185. https://doi.org/10.1234/4.2012.2932
  • Zeng, W., Huang, X., Arisona, S. M., & McLoughlin, I. V. (2014). Classifying watermelon ripeness by analysing acoustic signals using mobile devices. Personal and ubiquitous computing, 18(7), 1753-1762. https://doi.org/10.1007/s00779-013-0706-7
  • Zhang, C., Wei, N., Gao, E., & Sun, Q. (2020b). Poisson’s ratio of two-dimensional hexagonal crystals: A mechanics model study. Extreme Mechanics Letters, 100748. https://doi.org/10.1016/j.eml.2020.100748
  • Zhang, H., Wu, J., Zhao, Z., & Wang, Z. (2018a). Nondestructive firmness measurement of differently shaped pears with a dual-frequency index based on acoustic vibration. Postharvest Biology and Technology, 138, 11-18. https://doi.org/10.1016/j.postharvbio.2017.12.002
  • Zhang, W., Cui, D., & Ying, Y. (2014). Nondestructive measurement of pear texture by acoustic vibration method. Postharvest Biology and Technology, 96, 99-105. https://doi.org/10.1016/j.postharvbio.2014.05.006
  • Zhang, W., Lv, Z., & Xiong, S. (2018b). Nondestructive quality evaluation of agro0p*azsüx, bnm-products using acoustic vibration methods—A review. Critical Reviews in Food Science and Nutrition, 58(14), 2386-2397. https://doi.org/10.1080/10408398.2017.1324830
  • Zhang, W., Wang, A., Lv, Z., & Gao, Z. (2020a). Nondestructive measurement of kiwifruit firmness, soluble solid content (SSC), titratable acidity (TA), and sensory quality by vibration spectrum. Food Science & Nutrition, 8(2), 1058-1066. https://doi.org/10.1002/fsn3.1390
Toplam 88 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Derleme Makaleleri
Yazarlar

Eylem Odabaş 0000-0001-5034-1370

Hülya Çakmak 0000-0002-4936-939X

Yayımlanma Tarihi 30 Nisan 2021
Gönderilme Tarihi 19 Ekim 2020
Kabul Tarihi 24 Mart 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 6 Sayı: 1

Kaynak Göster

APA Odabaş, E., & Çakmak, H. (2021). Gıda Analizlerinde Hasarsız Akustik Yöntemlerin Kullanımı. Harran Üniversitesi Mühendislik Dergisi, 6(1), 64-79. https://doi.org/10.46578/humder.812184