Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluating STEM Based Learning Environments Created by Mathematics Pre-Service Teachers

Yıl 2018, Cilt: 33 Sayı: 3, 617 - 630, 31.07.2018

Öz

Combining Science, Technology, Engineering and Mathematics (STEM) under the same interdisciplinary
umbrella is gaining momentum. Although the idea is becoming more popular, we do
not have an answer for how teachers can support STEM when creating learning
environments in different disciplines. Once we look at the latest curriculum
prepared by Turkish Ministry of Education, we can see that the new curriculum
aims to connect science with mathematics, technology
and engineering. Thus, it is crucial to
understand not only science teachers but also mathematics and technology teachers
understand and implement STEM. Connected with this problem, we worked with 50
elementary math pre-service teachers (MPSTs) studying in a public university in
Turkey. All of these teachers were in their 4th year (senior year)
and all of them enrolled in the Science-Technology
and Society (STS) course. During the STS course MPSTs read STEM
articles, engaged in STEM discussions, and also visited several engineering
laboratories in the university. Later, all MPSTs
were asked to create a STEM-based
learning environments and lesson plans. After completing the study, some of the
participants were interviewed to describe their experience of STEM integration.
MPSTs participating in this study were
able to integrate math and science in their learning environments. On the other
hand, they had challenges when integrating technology and the design process.
Once we look at their previous coursework, we can conclude that two Physics
classes they took supported them to make links between science and math. It is
important to explore why pre-service teachers had challenges when creating
learning environments supporting the design aspect of STEM education.

Kaynakça

  • Akgündüz, D. (2016). A Research about the Placement of the Top Thousand Students in STEM Fields in Turkey between 2000 and 2014. Eurasia Journal of Mathematics, Science & Technology Education, 12(5), 1365-1377.
  • Altan, E. B., Yamak, H. ve Kırıkkaya, E. B. (2016). Hizmetöncesi öğretmen eğitiminde FETEMM eğitimi Uygulamaları: Tasarım temelli fen eğitimi. Trakya Üniversitesi Eğitim Fakültesi Dergisi, 6(2), 212-232.
  • Ayar, M. C. (2015). First-Hand Experience with Engineering Design and Career Interest in Engineering: An Informal STEM Education Case Study. Educational Sciences: Theory and Practice, 15(6), 1655-1675.
  • Barak, M. (2014). Closing the gap between attitudes and perceptions about ICT-enhanced learning among pre-service STEM teachers. Journal of Science Education and Technology, 23(1), 1-14.
  • Çorlu, M. S., Capraro, R. M. & Capraro, M. M. (2014). Introducing STEM education: Implications for educating our teachers for the age of innovation. Education and Science, 39(171), 74-85.
  • Delen, İ. (2017). Teaching Argumentation by Using Facebook Groups. International Journal of Instruction, 10(1), 151-168.
  • Delen, İ. & Krajcik, J. (2017). Using mobile devices to connect teachers and museum educators. Research in Science Education, 47(3), 473-496.
  • Fore, G. A., Feldhaus, C. R., Sorge, B. H., Agarwal, M., & Varahramyan, K. (2015). Learning at the nano-level: Accounting for complexity in the internalization of secondary STEM teacher professional development. Teaching and Teacher Education, 51, 101-112.
  • Gotwals, A. W. & Songer, N. B. (2010). Reasoning up and down a food chain: Using an assessment framework to investigate students' middle knowledge. Science Education, 94(2), 259-281.
  • Krajcik, J., Blumenfeld, P.C., Marx, R.W., Bass, K.M. & Fredericks, J. (1998). Inquiry in project based science classrooms: Initial attempts by middle school students. Journal of the Learning Sciences, 77, 317-337.
  • Krajcik, J. & Delen, İ. (2017). How to support students in developing usable and lasting knowledge of STEM. International Journal of Education in Mathematics, Science and Technology, 5(1), 21–28.
  • Land, M. H. (2013). Full STEAM ahead: The benefits of integrating the arts into STEM. Procedia Computer Science, 20, 547-552.
  • Lodico, M. G., Spaulding, D. T. ve Voegtle, K. H. (2006). Methods in educational research: From theory to practice. San Francisco, CA: Jossey-Bass.
  • Marshall, J. C., Horton, R., Igo, B. L. & Switzer, D. M. (2009). K-12 science and mathematics teachers’ beliefs about and use of inquiry in the classroom. International Journal of Science and Mathematics Education, 7, 575–596.
  • McNeill, K. L. & Krajcik, J. (2007). Middle school students’ use of appropriate and inappropriate evidence in writing scientific explanations. In M. Lovett & P. Shah (Eds.), Thinking with Data: Proceedings of the 33rd Carnegie Symposium on Cognition (pp. 233–265). New York, NY: Taylor & Francis.
  • Miles, M. B. & Huberman, A. M. (1994). Qualitative Data Analysis (2nd ed.). Thousand Oaks: Sage.
  • Milli Eğitim Bakanlığı (2005). İlköğretim Fen ve Teknoloji Dersi Öğretim Programı. Ankara.
  • Milli Eğitim Bakanlığı (2013). İlköğretim Kurumları Fen Bilimleri Dersi Öğretim Programı. Ankara.
  • Milli Eğitim Bakanlığı (2017). Fen Bilimleri Dersi Öğretim Programı. Ankara.
  • Milli Eğitim Bakanlığı (2018a). Fen Bilimleri Dersi Öğretim Programı. Ankara.
  • Milli Eğitim Bakanlığı (2018b). Matematik Dersi Öğretim Programı. Ankara.
  • Mills, A. J., Durepos, G. & Wiebe, E. [Eds.] (2010). Encyclopedia of case study research, Vol. 1, Thousand Oaks, CA: SAGE Publications, Inc.
  • Morag, O. & Tal, T. (2012). Assessing learning in the outdoors with the field trip in natural environments (FiNE) framework. International Journal of Science Education, 34(5), 745–777.
  • National Research Council (1996). National Science Education Standards. New York: National Academies Press.
  • National Research Council (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Committee on a Conceptual Framework for New K-12 Science Education Standards. Board on Science Education, Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press.
  • National Research Council (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. Washington: The National Academies Press.
  • National Science Board (2007). Science, technology, engineering, and mathematics (STEM) education issues and legislative options. Progress in Education, 14, 161-189.
  • National Science Teachers Association (1987). Criteria for Excellence. An NSTA Science Compact.
  • Osborne, J. & Dillon, J (2008). Science education in Europe: Critical reflections. A report to the Nuffield Foundation. London: King’s College.
  • PCAST (President’s Council of Advisors on Science and Technology). (2010). Prepare and inspire: K-12 education in STEM (science, technology, engineering and math) for America’s future.
  • Sanders, M. (2009). STEM, STEM education, STEM mania. Technology Teacher, 68(4), 20–26.
  • Sandoval, W. A. & Millwood, K. A. 2005. The quality of students’ use of evidence in written scientific explanations. Cognition and Instruction, 23(1), 23-55.
  • Tal, R.T., Dori, Y.J., Keiny, S. & Zoller, U. (2001). Assessing conceptual change of teachers involved in STES education and curriculum development—the STEMS project approach. International Journal of Science Education, 23(3), 247–262.
  • Vedder‐Weiss, D. & Fortus, D. (2012). Adolescents' declining motivation to learn science: A follow‐up study. Journal of Research in Science Teaching, 49(9), 1057-1095.
  • Wilson, S. M. (2011, April). Effective STEM teacher preparation, induction, and professional development. In National Research Council’s Workshop on Successful STEM Education in K–12 Schools, Washington, DC.

Matematik Öğretmen Adaylarının FeTeMM Temelli Tasarladıkları Öğrenme Ortamlarının Değerlendirilmesi

Yıl 2018, Cilt: 33 Sayı: 3, 617 - 630, 31.07.2018

Öz

Fen
bilimleri, matematik, teknoloji ve mühendislik eğitimin disiplinler arası bir
yaklaşımla öğretilmesinin önemini savunan FeTeMM yaklaşımının tüm dünyada uygulamaları
giderek artmaktadır. FeTeMM yaklaşımına olan ilgiye karşın öğretmenlerin FeTeMM
destekli öğrenme ortamlarının değişik disiplinlerde nasıl tasarlayacağının net
bir yanıtı bulunmamaktadır. 2017 yılında yayımlanan ve 2018 yılında güncellenen
öğretim programımızdaki fen
bilimlerinin matematik, teknoloji ve mühendislikle bütünleştirilmesi hedefi
düşünüldüğünde, FeTeMM yaklaşımının sadece fen bilimleri öğretmenleri için
değil, diğer branş öğretmenleri tarafından da nasıl anlaşıldığı ve uygulandığının
araştırılması bu yaklaşımın daha etkili uygulanabilmesi için önemlidir. Bu amaç
doğrultusunda bir Devlet üniversitesinde Matematik Öğretmenliği bölümünün son
sınıfında öğrenimlerine devam eden 50 öğretmen adayının bir dönem boyunca
FeTeMM yaklaşımını Fen-Teknoloji ve Toplum dersi kapsamında nasıl uyguladıkları
analiz edilmiştir. Öğretmen adaylarına FeTeMM eğitimleri verilmiş bu konuda
yazılan makaleler ve örnekler incelenmiş, üniversite bünyesindeki mühendislik
laboratuvarlarına ziyaretler düzenlenmiş ve öğretmen adaylarından ders planları
oluşturup FeTeMM yaklaşımına dayalı öğrenme ortamları tasarlamaları istenilmiştir.
Ayrıca çalışmanın sonunda bazı katılımcılar ile FeTeMM yaklaşımını uygulamada
yaşadıklarını anlamak adına mülakatlar yapılmıştır. Çalışma sonunda
katılımcıların matematik ve fen bilimlerini entegre edebildikleri ancak bunu
tasarımlara yansıtma ve bu sürece teknolojiyi ekleme noktasında zorlandıkları
görülmüştür. Öğretmen adaylarının daha önceki yıllarda aldıkları fen bilimleri
temelli dersler düşünüldüğünde matematik ve fen bilimleri bağlantısını kurmakta
neden zorlanmadıkları ve genelde iki dönemde aldıkları Fizik dersinin öğretmen adaylarına
destek olduğu anlaşılabilir. Bununla birlikte, öğretmen adaylarının FeTeMM yaklaşımının
tasarım boyutunu destekleyecek bir öğrenme ortamı oluşturmada yaşadıkları
sıkıntıların daha detaylı incelenmesi önemlidir.

Kaynakça

  • Akgündüz, D. (2016). A Research about the Placement of the Top Thousand Students in STEM Fields in Turkey between 2000 and 2014. Eurasia Journal of Mathematics, Science & Technology Education, 12(5), 1365-1377.
  • Altan, E. B., Yamak, H. ve Kırıkkaya, E. B. (2016). Hizmetöncesi öğretmen eğitiminde FETEMM eğitimi Uygulamaları: Tasarım temelli fen eğitimi. Trakya Üniversitesi Eğitim Fakültesi Dergisi, 6(2), 212-232.
  • Ayar, M. C. (2015). First-Hand Experience with Engineering Design and Career Interest in Engineering: An Informal STEM Education Case Study. Educational Sciences: Theory and Practice, 15(6), 1655-1675.
  • Barak, M. (2014). Closing the gap between attitudes and perceptions about ICT-enhanced learning among pre-service STEM teachers. Journal of Science Education and Technology, 23(1), 1-14.
  • Çorlu, M. S., Capraro, R. M. & Capraro, M. M. (2014). Introducing STEM education: Implications for educating our teachers for the age of innovation. Education and Science, 39(171), 74-85.
  • Delen, İ. (2017). Teaching Argumentation by Using Facebook Groups. International Journal of Instruction, 10(1), 151-168.
  • Delen, İ. & Krajcik, J. (2017). Using mobile devices to connect teachers and museum educators. Research in Science Education, 47(3), 473-496.
  • Fore, G. A., Feldhaus, C. R., Sorge, B. H., Agarwal, M., & Varahramyan, K. (2015). Learning at the nano-level: Accounting for complexity in the internalization of secondary STEM teacher professional development. Teaching and Teacher Education, 51, 101-112.
  • Gotwals, A. W. & Songer, N. B. (2010). Reasoning up and down a food chain: Using an assessment framework to investigate students' middle knowledge. Science Education, 94(2), 259-281.
  • Krajcik, J., Blumenfeld, P.C., Marx, R.W., Bass, K.M. & Fredericks, J. (1998). Inquiry in project based science classrooms: Initial attempts by middle school students. Journal of the Learning Sciences, 77, 317-337.
  • Krajcik, J. & Delen, İ. (2017). How to support students in developing usable and lasting knowledge of STEM. International Journal of Education in Mathematics, Science and Technology, 5(1), 21–28.
  • Land, M. H. (2013). Full STEAM ahead: The benefits of integrating the arts into STEM. Procedia Computer Science, 20, 547-552.
  • Lodico, M. G., Spaulding, D. T. ve Voegtle, K. H. (2006). Methods in educational research: From theory to practice. San Francisco, CA: Jossey-Bass.
  • Marshall, J. C., Horton, R., Igo, B. L. & Switzer, D. M. (2009). K-12 science and mathematics teachers’ beliefs about and use of inquiry in the classroom. International Journal of Science and Mathematics Education, 7, 575–596.
  • McNeill, K. L. & Krajcik, J. (2007). Middle school students’ use of appropriate and inappropriate evidence in writing scientific explanations. In M. Lovett & P. Shah (Eds.), Thinking with Data: Proceedings of the 33rd Carnegie Symposium on Cognition (pp. 233–265). New York, NY: Taylor & Francis.
  • Miles, M. B. & Huberman, A. M. (1994). Qualitative Data Analysis (2nd ed.). Thousand Oaks: Sage.
  • Milli Eğitim Bakanlığı (2005). İlköğretim Fen ve Teknoloji Dersi Öğretim Programı. Ankara.
  • Milli Eğitim Bakanlığı (2013). İlköğretim Kurumları Fen Bilimleri Dersi Öğretim Programı. Ankara.
  • Milli Eğitim Bakanlığı (2017). Fen Bilimleri Dersi Öğretim Programı. Ankara.
  • Milli Eğitim Bakanlığı (2018a). Fen Bilimleri Dersi Öğretim Programı. Ankara.
  • Milli Eğitim Bakanlığı (2018b). Matematik Dersi Öğretim Programı. Ankara.
  • Mills, A. J., Durepos, G. & Wiebe, E. [Eds.] (2010). Encyclopedia of case study research, Vol. 1, Thousand Oaks, CA: SAGE Publications, Inc.
  • Morag, O. & Tal, T. (2012). Assessing learning in the outdoors with the field trip in natural environments (FiNE) framework. International Journal of Science Education, 34(5), 745–777.
  • National Research Council (1996). National Science Education Standards. New York: National Academies Press.
  • National Research Council (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Committee on a Conceptual Framework for New K-12 Science Education Standards. Board on Science Education, Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press.
  • National Research Council (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. Washington: The National Academies Press.
  • National Science Board (2007). Science, technology, engineering, and mathematics (STEM) education issues and legislative options. Progress in Education, 14, 161-189.
  • National Science Teachers Association (1987). Criteria for Excellence. An NSTA Science Compact.
  • Osborne, J. & Dillon, J (2008). Science education in Europe: Critical reflections. A report to the Nuffield Foundation. London: King’s College.
  • PCAST (President’s Council of Advisors on Science and Technology). (2010). Prepare and inspire: K-12 education in STEM (science, technology, engineering and math) for America’s future.
  • Sanders, M. (2009). STEM, STEM education, STEM mania. Technology Teacher, 68(4), 20–26.
  • Sandoval, W. A. & Millwood, K. A. 2005. The quality of students’ use of evidence in written scientific explanations. Cognition and Instruction, 23(1), 23-55.
  • Tal, R.T., Dori, Y.J., Keiny, S. & Zoller, U. (2001). Assessing conceptual change of teachers involved in STES education and curriculum development—the STEMS project approach. International Journal of Science Education, 23(3), 247–262.
  • Vedder‐Weiss, D. & Fortus, D. (2012). Adolescents' declining motivation to learn science: A follow‐up study. Journal of Research in Science Teaching, 49(9), 1057-1095.
  • Wilson, S. M. (2011, April). Effective STEM teacher preparation, induction, and professional development. In National Research Council’s Workshop on Successful STEM Education in K–12 Schools, Washington, DC.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

İbrahim Delen 0000-0003-2816-777X

Salih Uzun 0000-0003-0903-3741

Yayımlanma Tarihi 31 Temmuz 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 33 Sayı: 3

Kaynak Göster

APA Delen, İ., & Uzun, S. (2018). Matematik Öğretmen Adaylarının FeTeMM Temelli Tasarladıkları Öğrenme Ortamlarının Değerlendirilmesi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 33(3), 617-630.