Araştırma Makalesi
BibTex RIS Kaynak Göster

In Vitro Investigation of the Therapeutic Effects of Coriander Powder Extract in the Detoxification of Pb and Cd Exposure

Yıl 2025, Sayı: 27, 930 - 943, 31.12.2025
https://doi.org/10.38079/igusabder.1827900

Öz

Aim: This study was conducted to investigate the effect of coriander seed powder extract on the chelation rate of cadmium (Cd) and lead (Pb) in saliva, stomach and intestine using an in vitro digestion model.
Method: The method recommended by the Dutch National Institute for Public Health and the Environment (RIVM) was used as an in vitro digestion model. 5 different concentrations (50, 100, 200, 300 and 500 mg) of coriander and garlic powder extracts, to which 100 ppm Cd and Pb were added, were digested in saliva, stomach and intestine. Cd and Pb ratios in each medium were measured by ICP- OES device.
Results: As the amount of coriander (50, 100, 200, 300 and 500 mg) increased, the bioavailability of Cd similarly decreased in saliva to 73.09%, 69.72%, 68.86%, 69.71% and 64.70%, respectively, in the stomach environment to 35.93%, 38.40%, 38.46%, 37.06% and 34.44%, and in the intestinal environment to 16.45%, 15.09%, 11.89%, 4.69% and 3.70%. The bioavailability of Pb decreased in saliva to 72.72%, 67.16%, 69.46%, 68.31% and 64.06%, respectively, in the stomach it decreased to 37.50%, 35.97%, 37.07%, 34.93% and 33.81% respectively, and in the intestine it decreased to 16.83%, 14.94%, 9.86%, 4.26% and 3.10% respectively. Coriander was found to be effective in reducing the bioavailability of both Pb and Cd. In the medium-based comparison, the availability of Cd was highest in saliva and lowest in the intestine. In coriander extracts, Cd availability was significantly reduced compared to the control group (p < 0.01). A statistically significant decrease in availability was detected as the concentration increased (p < 0.01). In the medium-based comparison, the bioavailability of Pb was highest in saliva and lowest in the intestine. A significant decrease in the bioavailability of Pb was detected.
Conclusion: This study has demonstrated that coriander possesses the capacity to bind cadmium and lead in an in vitro digestion model. Furthermore, this study has determined that coriander can be used as an alternative to chemical chelators (e.g. D-penicillamine) that may be harmful to the body in cases of chronic heavy metal exposure. Therefore, as an alternative, it is recommended to regularly provide coriander tablets or coriander consumption to prevent Cd and Pb exposure.

Etik Beyan

The study entitled ‘In Vitro Investigation of the Therapeutic Effects of Coriander Powder Extract in the Detoxification of Pb and Cd Exposure’ was written without resorting to any assistance that would be contrary to scientific ethics and traditions throughout the entire process from the project phase to its completion. I declare that the works I have used are those listed in the Bibliography, that these have been utilised with proper citation, and I declare this with my honour.

Kaynakça

  • 1. Özbolat G, Tuli A. Ağır metal toksisitesinin insan sağlığına etkileri. Arşiv Kaynak Tarama Dergisi. 2016;25(4):502-521.
  • 2. Kitman JL. The secret history of lead. Nation. 2000;270(11):11-11.
  • 3. Gupta VK, Singh S, Agrawal A, Siddiqi NJ, Sharma B. Phytochemicals mediated remediation of neurotoxicity induced by heavy metals. Biochemistry Research International. 2015;2015(1):534769.
  • 4. Gautam RK, Sharma SK, Mahiya S, Chattopadhyaya MC, Contamination of Heavy Metals in Aquatic Media: Transport, Toxicity and Technologies for Remediation in Heavy Metals in Water: Presence, Removal and Safety. ed. S. Sharma, The Royal Society of Chemistry, 2014, pp. 1.
  • 5. Lancranjan I, Popescu HI, Găvănescu O, Klepsch I, Serbănescu M. Reproductive ability of workmen occupationally exposed to lead. Archives of Environmental Health: An International Journal. 1975;30(8):396-401.
  • 6. WHO Childhood lead poisoning. WHO library cataloguing-in- publication data. Geneva, World Health Organization. 2010 Available: https://www.who.int/publications/i/item/childhood-lead-poisoning
  • 7. Lockitch G. Blood lead levels in children. CMAJ: Canadian Medical Association Journal. 1993;149(2):139.
  • 8. Tatar ÇP. Kurşun Maruziyetinin İş Sağlığı ve Güvenliği Açısından Değerlendirilmesi (Akü, Maden ve Metal İşyerlerinde). [İş Sağlığı ve Güvenliği Uzmanlık Tezi.] TC Çalışma ve Sosyal Güvenlik Bakanlığı İş Sağlığı ve Güvenliği Genel Müdürlüğü, (2014). Ankara.
  • 9. Sürücü HA, Kale E, Ertem M, Canoruç N. Otopark çalışanlarında kan kurşun, kadmiyum, krom ve total antioksidan düzeyinin değerlendirilmesi. Turkish Journal of Family Practice. 2012;16(2):61-70.
  • 10. Baldwin DR, Marshall WJ. Heavy metal poisoning and its laboratory investigation. Annals of Clinical Biochemistry. 1999;36(3):267-300.
  • 11. IARC, Summaries & Evaluations: Cadmium and Cadmium Compounds (Group 1). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, (1993) Vol. 58, International Agency for Research on Cancer, Lyon, 119. Available: http://www.inchem.org/documents/iarc/vol58/mono58-2.html
  • 12. Ebrahimi M, Khalili N, Razi S, Keshavarz-Fathi M, Khalili N, Rezaei N. Effects of lead and cadmium on the immune system and cancer progression. Journal of Environmental Health Science and Engineering. 2020;18(1):335-343.
  • 13. Khanra R, Dewanjee S, K Dua T, et al. Abroma augusta L. (Malvaceae) leaf extract attenuates diabetes induced nephropathy and cardiomyopathy via inhibition of oxidative stress and inflammatory response. Journal of Translational Medicine. 2015;13(1):6.
  • 14. Singh P, Mitra P, Goyal T, Sharma S, Sharma P. Blood lead and cadmium levels in occupationally exposed workers and their effect on markers of DNA damage and repair. Environmental Geochemistry and Health. 2021;43(1):185-193.
  • 15. Unsal V, Dalkıran T, Çiçek M, Kölükçü E. The role of natural antioxidants against reactive oxygen species produced by cadmium toxicity: a review. Advanced Pharmaceutical Bulletin. 2020;10(2):184.
  • 16. Argüelles-Velázquez N, Alvarez-González I, Madrigal-Bujaidar E, Chamorro-Cevallos G. Amelioration of Cadmium‐Produced Teratogenicity and Genotoxicity in Mice Given Arthrospira maxima (Spirulina) Treatment. Evidence‐Based Complementary and Alternative Medicine. 2013;1-8. doi: 10.1155/2013/604535
  • 17. Al-Saleh I. Health risk assessment of trace metals through breast milk consumption in Saudi Arabia. Biological Trace Element Research. 2021;199(12):4535-4545.
  • 18. Bertin G, Averbeck D. Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie. 2006;88(11):1549-1559.
  • 19. Menke A, Muntner P, Silbergeld EK, Platz EA, Guallar E. Cadmium levels in urine and mortality among US adults. Environmental Health Perspectives. 2009;117(2):190-196.
  • 20. Mohammed E, Hashem K, Rheim M. Biochemical study on the impact of Nigella sativa and virgin olive oils on cadmium-induced nephrotoxicity and neurotoxicity in rats. Journal of Investigational Biochemistry. 2014;3(2):71.
  • 21. Bhardwaj JK, Panchal H, Saraf P. Cadmium as a testicular toxicant: A review. Journal of Applied Toxicology. 2021;41(1):105-117.
  • 22. Tüzün DK. Kurşuna Maruz Kalan İşçilerin Tedavisinde Kullanılan Şelatör Ajanların Değerlendirilmesi. [Yüksek Lisans Tezi]. (2007). Ankara: Hacettepe Üniversitesi.
  • 23. Klaassen CD. Heavy metals and heavy-metal antagonists. Goodman & Gilman’s The Pharmacological Basis Of Therapeutics. 2006:1753-1775.
  • 24. Shalan MG, Mostafa MS, Hassouna MM, El-Nabi SH, El-Refaie A. Amelioration of lead toxicity on rat liver with vitamin C and silymarin supplements. Toxicology. 2005;206(1):1-5.
  • 25. Shan B, Cai YZ, Sun M, Corke H. Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. Journal of Agricultural and Food Chemistry. 2005;53(20):7749-7759.
  • 26. Khanduja KL, Bhardwaj A. Stable free radical scavenging and antiperoxidative properties of resveratrol compared in vitro with some other bioflavonoids. Indian Journal of Biochemistry and Biophysics. 2003;40(6):416-422.
  • 27. Ozsoy N, Candoken E, Akev N. Implications for degenerative disorders: Antioxidative activity, total phenols, flavonoids, ascorbic acid, β‐carotene and β‐tocopherol in aloe vera. Oxidative Medicine And Cellular Longevity. 2009;2(2):99-106.
  • 28. Samaranayaka AG, Li-Chan EC. Food-derived peptidic antioxidants: A review of their production, assessment, and potential applications. Journal of Functional Foods. 2011;3(4):229-2254.
  • 29. Yang UJ, Yoon SR, Chung JH, et al. Water spinach (Ipomoea aquatic Forsk.) reduced the absorption of heavy metals in an in vitro bio-mimicking model system. Food and Chemical Toxicology. 2012;50(10):3862-3866.
  • 30. Baer-Dubowska W, Szaefer H. Modulation of carcinogen-metabolizing cytochromes P450 by phytochemicals in humans. Expert Opinion On Drug Metabolism & Toxicology. 2013;9(8):927-941.
  • 31. Bhattacharya S. Medicinal plants and natural products in amelioration of arsenic toxicity: a short review. Pharmaceutical Biology. 2017;55(1):349-354.
  • 32. Zhai Q, Tian F, Zhao J, Zhang H, Narbad A, Chen W. Oral administration of probiotics inhibits absorption of the heavy metal cadmium by protecting the intestinal barrier. Applied and Environmental Microbiology. 2016;82(14):4429-4440.
  • 33. Versantvoort CHM, Van DKE, Rompelberg, CJM. Development and applicability of an in vitro digestion model in assessing the bioaccessibility of contaminants from food. 46 RIVM Report No. 320102002. (2004). Bilthoven. Available https://rivm.openrepository.com/server/api/core/bitstreams/5553a174-6d26-4302-a282-234238245479/content
  • 34. Omar NA, Praveena SM, Aris AZ, Hashim Z. Bioavailability of heavy metal in rice using in vitro digestion model. International Food Research Journal. 2013;20(6):2979.
  • 35. Wragg J, Cave MR. In-vitro methods for the measurement of the oral bioaccessibility of selected metals and metalloids in soils: a critical review. Bristol: Environment Agency. 2003.
  • 36. Das B, Hossain MA, Islam MS, et al. Effect of the garlic as chelation therapy in reducing lead and cadmium deposition on suckling mice. Bioactivities. 2024;2(2):130-140.
  • 37. Aslani MR, Najarnezhad V, Mohri, M. Individual and combined effect of meso-2,3-dimercaptosuccinic acid and allicin on blood and tissue lead content in mice. Planta Med. 2010;76:241–244.
  • 38. Cha CW. A study on the effect of garlic to the heavy metal poisoning of rat. J Korean Med Sci.; 1987;2(4):213-24. doi: 10.3346/jkms.1987.2.4.213.
  • 39. Horton GMJ, Fennell MJ, Prasad BM. Effect of dietary garlic (Allium sativum) on performance, carcass composition and blood chemistry changes in broiler chickens. Canadian Journal of Animal Science. 1991;71(3):939-942.

Pb ve Cd Maruziyetinin Detoksifikasyonunda Kişniş Toz Ekstraktının Terapötik Etkilerinin in Vitro İncelenmesi

Yıl 2025, Sayı: 27, 930 - 943, 31.12.2025
https://doi.org/10.38079/igusabder.1827900

Öz

Amaç: Bu çalışma, in vitro sindirim modelini kullanarak, kişniş tohumu toz ekstarktının tükürük, mide ve bağırsak ortamında kadmiyum (Cd) ve kurşunu (Pb) şelatlama oranı üzerindeki etkisini incelemek amacıyla yapılmıştır.
Yöntem: İn vitro sindirim modeli olarak Hollanda Ulusal Halk Sağlığı ve Çevre Enstitüsü’nün (RIVM) önerdiği metot kullanılmıştır. 100 ppm Cd ve Pb ilave edilmiş, 5’er farklı konsantrasyonda (50, 100, 200, 300 ve 500 mg) kişniş toz ekstresi, tükürük, mide ve bağırsak ortamında sindirim işlemine tabi tutulmuştur. Her bir ortamdaki Cd ve Pb oranları ICP-OES cihazı ile ölçülmüştür.
Bulgular: Kişniş miktarı (50, 100, 200, 300 ve 500 mg) arttıkça Cd’nin biyoerişilebilirliği benzer şekilde tükürükte sırasıyla %73,09, %69,72, %68,86, %69,71 ve %64,70’e, mide ortamında %35,93, %38,40, %38,46, %37,06 ve %34,44’e ve bağırsak ortamında ise %16,45, %15,09, %11,89, %4,69 ve %3,70 ‘ e düşmüştür. Pb'nin biyoerişilebilirliği ise tükürükte sırasıyla %72,72, %67,16, %69,46, %68,31 ve %64,06’e, midede sırasıyla %37,50, %35,97, %37,07, %34,93 ve %33,81’e ve bağırsakta sırasıyla %16,83, %14,94, %9,86, %4,26 ve %3,10’ a düşmüştür. Kişnişin hem Pb hem de Cd'nin biyoerişilebilirliğini azaltmada etkili olduğu görülmüştür. Ortam bazlı karşılaştırmada, Cd’nin erişilebilirliği en yüksek tükürükte, en düşük ise bağırsakta gözlemlenmiştir. Kişniş ekstraktlarında, kontrol grubuna kıyasla Cd erişilebilirliği anlamlı düzeyde azaldığı görülmüşür (p<0.01). Konsantrasyon arttıkça erişilebilirlikte istatistiksel olarak anlamlı bir azalma tespit edilmiştir (p<0.01). Ortam bazlı karşılaştırmada, Pb’nin biyoerişilebilirliği, en yüksek tükürükte, en düşük değerler bağırsakta gözlemlenmiştir. Pb’nin biyoerişilebililiğinde anlamlı azalma tespit edilmiştir.
Sonuç: Bu çalışma kişnişin in vitro sindirim modelinde Cd ve kurşunu bağlama kapasitesine sahip olduğunu göstermiştir. Ayrıca bu çalışma ile kişnişin, kronik ağır metal maruziyetinde vücut için zararlı olabilecek kimyasal şelatörlerin (örn. D-penisilamin) yerine kullanılabileceği belirlenmiştir. Bu nedenle, alternatif olarak, Cd ve Pb maruziyetini önlemek için düzenli olarak kişniş tabletlerinin veya kişniş tüketiminin sağlanması önerilmektedir.

Etik Beyan

“İn Vitro Investigation of the Therapeutic Effects of Coriander Powder Extract in the Detoxification of Pb and Cd Exposure” adlı çalışmanın proje safhasından sonuçlanmasına kadarki bütün süreçlerde bilimsel ahlak ve geleneklere aykırı düşecek bir yardıma başvurulmaksızın yazıldığını ve yararlandığım eserlerin Bibliyografya’da gösterilenlerden oluştuğunu, bunlara atıf yapılarak yararlanılmış olduğunu belirtir ve onurumla beyan ederim

Kaynakça

  • 1. Özbolat G, Tuli A. Ağır metal toksisitesinin insan sağlığına etkileri. Arşiv Kaynak Tarama Dergisi. 2016;25(4):502-521.
  • 2. Kitman JL. The secret history of lead. Nation. 2000;270(11):11-11.
  • 3. Gupta VK, Singh S, Agrawal A, Siddiqi NJ, Sharma B. Phytochemicals mediated remediation of neurotoxicity induced by heavy metals. Biochemistry Research International. 2015;2015(1):534769.
  • 4. Gautam RK, Sharma SK, Mahiya S, Chattopadhyaya MC, Contamination of Heavy Metals in Aquatic Media: Transport, Toxicity and Technologies for Remediation in Heavy Metals in Water: Presence, Removal and Safety. ed. S. Sharma, The Royal Society of Chemistry, 2014, pp. 1.
  • 5. Lancranjan I, Popescu HI, Găvănescu O, Klepsch I, Serbănescu M. Reproductive ability of workmen occupationally exposed to lead. Archives of Environmental Health: An International Journal. 1975;30(8):396-401.
  • 6. WHO Childhood lead poisoning. WHO library cataloguing-in- publication data. Geneva, World Health Organization. 2010 Available: https://www.who.int/publications/i/item/childhood-lead-poisoning
  • 7. Lockitch G. Blood lead levels in children. CMAJ: Canadian Medical Association Journal. 1993;149(2):139.
  • 8. Tatar ÇP. Kurşun Maruziyetinin İş Sağlığı ve Güvenliği Açısından Değerlendirilmesi (Akü, Maden ve Metal İşyerlerinde). [İş Sağlığı ve Güvenliği Uzmanlık Tezi.] TC Çalışma ve Sosyal Güvenlik Bakanlığı İş Sağlığı ve Güvenliği Genel Müdürlüğü, (2014). Ankara.
  • 9. Sürücü HA, Kale E, Ertem M, Canoruç N. Otopark çalışanlarında kan kurşun, kadmiyum, krom ve total antioksidan düzeyinin değerlendirilmesi. Turkish Journal of Family Practice. 2012;16(2):61-70.
  • 10. Baldwin DR, Marshall WJ. Heavy metal poisoning and its laboratory investigation. Annals of Clinical Biochemistry. 1999;36(3):267-300.
  • 11. IARC, Summaries & Evaluations: Cadmium and Cadmium Compounds (Group 1). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, (1993) Vol. 58, International Agency for Research on Cancer, Lyon, 119. Available: http://www.inchem.org/documents/iarc/vol58/mono58-2.html
  • 12. Ebrahimi M, Khalili N, Razi S, Keshavarz-Fathi M, Khalili N, Rezaei N. Effects of lead and cadmium on the immune system and cancer progression. Journal of Environmental Health Science and Engineering. 2020;18(1):335-343.
  • 13. Khanra R, Dewanjee S, K Dua T, et al. Abroma augusta L. (Malvaceae) leaf extract attenuates diabetes induced nephropathy and cardiomyopathy via inhibition of oxidative stress and inflammatory response. Journal of Translational Medicine. 2015;13(1):6.
  • 14. Singh P, Mitra P, Goyal T, Sharma S, Sharma P. Blood lead and cadmium levels in occupationally exposed workers and their effect on markers of DNA damage and repair. Environmental Geochemistry and Health. 2021;43(1):185-193.
  • 15. Unsal V, Dalkıran T, Çiçek M, Kölükçü E. The role of natural antioxidants against reactive oxygen species produced by cadmium toxicity: a review. Advanced Pharmaceutical Bulletin. 2020;10(2):184.
  • 16. Argüelles-Velázquez N, Alvarez-González I, Madrigal-Bujaidar E, Chamorro-Cevallos G. Amelioration of Cadmium‐Produced Teratogenicity and Genotoxicity in Mice Given Arthrospira maxima (Spirulina) Treatment. Evidence‐Based Complementary and Alternative Medicine. 2013;1-8. doi: 10.1155/2013/604535
  • 17. Al-Saleh I. Health risk assessment of trace metals through breast milk consumption in Saudi Arabia. Biological Trace Element Research. 2021;199(12):4535-4545.
  • 18. Bertin G, Averbeck D. Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie. 2006;88(11):1549-1559.
  • 19. Menke A, Muntner P, Silbergeld EK, Platz EA, Guallar E. Cadmium levels in urine and mortality among US adults. Environmental Health Perspectives. 2009;117(2):190-196.
  • 20. Mohammed E, Hashem K, Rheim M. Biochemical study on the impact of Nigella sativa and virgin olive oils on cadmium-induced nephrotoxicity and neurotoxicity in rats. Journal of Investigational Biochemistry. 2014;3(2):71.
  • 21. Bhardwaj JK, Panchal H, Saraf P. Cadmium as a testicular toxicant: A review. Journal of Applied Toxicology. 2021;41(1):105-117.
  • 22. Tüzün DK. Kurşuna Maruz Kalan İşçilerin Tedavisinde Kullanılan Şelatör Ajanların Değerlendirilmesi. [Yüksek Lisans Tezi]. (2007). Ankara: Hacettepe Üniversitesi.
  • 23. Klaassen CD. Heavy metals and heavy-metal antagonists. Goodman & Gilman’s The Pharmacological Basis Of Therapeutics. 2006:1753-1775.
  • 24. Shalan MG, Mostafa MS, Hassouna MM, El-Nabi SH, El-Refaie A. Amelioration of lead toxicity on rat liver with vitamin C and silymarin supplements. Toxicology. 2005;206(1):1-5.
  • 25. Shan B, Cai YZ, Sun M, Corke H. Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. Journal of Agricultural and Food Chemistry. 2005;53(20):7749-7759.
  • 26. Khanduja KL, Bhardwaj A. Stable free radical scavenging and antiperoxidative properties of resveratrol compared in vitro with some other bioflavonoids. Indian Journal of Biochemistry and Biophysics. 2003;40(6):416-422.
  • 27. Ozsoy N, Candoken E, Akev N. Implications for degenerative disorders: Antioxidative activity, total phenols, flavonoids, ascorbic acid, β‐carotene and β‐tocopherol in aloe vera. Oxidative Medicine And Cellular Longevity. 2009;2(2):99-106.
  • 28. Samaranayaka AG, Li-Chan EC. Food-derived peptidic antioxidants: A review of their production, assessment, and potential applications. Journal of Functional Foods. 2011;3(4):229-2254.
  • 29. Yang UJ, Yoon SR, Chung JH, et al. Water spinach (Ipomoea aquatic Forsk.) reduced the absorption of heavy metals in an in vitro bio-mimicking model system. Food and Chemical Toxicology. 2012;50(10):3862-3866.
  • 30. Baer-Dubowska W, Szaefer H. Modulation of carcinogen-metabolizing cytochromes P450 by phytochemicals in humans. Expert Opinion On Drug Metabolism & Toxicology. 2013;9(8):927-941.
  • 31. Bhattacharya S. Medicinal plants and natural products in amelioration of arsenic toxicity: a short review. Pharmaceutical Biology. 2017;55(1):349-354.
  • 32. Zhai Q, Tian F, Zhao J, Zhang H, Narbad A, Chen W. Oral administration of probiotics inhibits absorption of the heavy metal cadmium by protecting the intestinal barrier. Applied and Environmental Microbiology. 2016;82(14):4429-4440.
  • 33. Versantvoort CHM, Van DKE, Rompelberg, CJM. Development and applicability of an in vitro digestion model in assessing the bioaccessibility of contaminants from food. 46 RIVM Report No. 320102002. (2004). Bilthoven. Available https://rivm.openrepository.com/server/api/core/bitstreams/5553a174-6d26-4302-a282-234238245479/content
  • 34. Omar NA, Praveena SM, Aris AZ, Hashim Z. Bioavailability of heavy metal in rice using in vitro digestion model. International Food Research Journal. 2013;20(6):2979.
  • 35. Wragg J, Cave MR. In-vitro methods for the measurement of the oral bioaccessibility of selected metals and metalloids in soils: a critical review. Bristol: Environment Agency. 2003.
  • 36. Das B, Hossain MA, Islam MS, et al. Effect of the garlic as chelation therapy in reducing lead and cadmium deposition on suckling mice. Bioactivities. 2024;2(2):130-140.
  • 37. Aslani MR, Najarnezhad V, Mohri, M. Individual and combined effect of meso-2,3-dimercaptosuccinic acid and allicin on blood and tissue lead content in mice. Planta Med. 2010;76:241–244.
  • 38. Cha CW. A study on the effect of garlic to the heavy metal poisoning of rat. J Korean Med Sci.; 1987;2(4):213-24. doi: 10.3346/jkms.1987.2.4.213.
  • 39. Horton GMJ, Fennell MJ, Prasad BM. Effect of dietary garlic (Allium sativum) on performance, carcass composition and blood chemistry changes in broiler chickens. Canadian Journal of Animal Science. 1991;71(3):939-942.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Koruyucu Sağlık Hizmetleri
Bölüm Araştırma Makalesi
Yazarlar

Fatma Nizamlioğlu 0000-0003-2544-7768

Hasan Uğur Öncel 0000-0002-6900-1955

Gönderilme Tarihi 21 Kasım 2025
Kabul Tarihi 17 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Sayı: 27

Kaynak Göster

JAMA Nizamlioğlu F, Öncel HU. In Vitro Investigation of the Therapeutic Effects of Coriander Powder Extract in the Detoxification of Pb and Cd Exposure. IGUSABDER. 2025;:930–943.

 Alıntı-Gayriticari-Türetilemez 4.0 Uluslararası (CC BY-NC-ND 4.0)