Araştırma Makalesi
BibTex RIS Kaynak Göster

Türkiye’de Online Giyim Alışverişinde Cinsiyet Farklılıklarının Lojistik Regresyon ile Araştırılması

Yıl 2023, Cilt: 25 Sayı: 1, 9 - 23, 30.06.2023

Öz

İnternet kullanımının yaygınlaşması ile birlikte bilgi akışı hızlanmış ve tüketicinin alışveriş yapma şekli değişmiştir. Dolayısıyla günümüzün yükselen eğilimi olan internet üzerinden alışverişin her geçen gün daha fazla ilgi görür hale geldiği görülmektedir. Online alışveriş sayesinde coğrafi sınırlamalar ortadan kalkmakta ve kullanıcılar daha fazla bilgiye, çok daha az zaman ve maliyet ile ulaşabilmektedirler. Dünyada olduğu gibi ülkemizde de tüketicilerin hayat tarzlarının değişmesi, iş yoğunluğunun artması ve zaman darlığı gibi faktörler, internet üzerinden alışverişin hızlanmasına katkı sağlamıştır. İnternet ortamında açılan pek çok sanal mağazanın, farklı sayıda ve kalitede seçenekler ve hizmetler sunarak tüketicilere küresel ürün yelpazesi arasından tercih yapma şansı sağladığı görülmektedir. E- ticaret ile pek çok ürün internet üzerinden dünyanın her yerinde alınır satılır hale gelmiştir. E ticaret ile pazarlaması ve satışı yapılan yaygın ürünlerden biriside giysidir. Çalışmada, Türkiye İstatistik Kurumu tarafından yapılan 2021 yılına ait Hanehalkı Bilişim Teknolojileri Kullanım Araştırmasından elde edilen mikro veri seti kullanılmıştır. Çalışmada 15 yaş ve üzeri bireylerin cinsiyet farklılıklarına göre internet üzerinden yapılan giyim alışverişlerinde etkili olan sosyo-demografik ve ekonomik faktörlerin belirlenmesi amaçlanmıştır. Çalışmanın sonucuna göre, kadınların web sitesi veya mobil uygulama üzerinden giyim alışverişlerinde yaş, meslek, hanenin dizüstü bilgisayar sahipliği, gelir, bölge ve eğitim durumu etkili olmaktadır. Erkeklerin web sitesi veya mobil uygulama üzerinden giyim alışverişlerinde ise yaş, meslek, gelir, bölge, hanenin masaüstü bilgisayar sahipliği ve hanenin dizüstü bilgisayar sahipliği durumu etkili olmaktadır.

Kaynakça

  • Afsar, B., Qureshi, J. A., Rehman, A., & Bangash, R. U. (2011). Consumer panacea over internet usage in Pakistan. Management & Marketing Journal, 9(1), 43-52.
  • Akman, I., & Mishra, A. (2010). Gender, age and income differences in internet usage among employees in organizations. Computers in Human Behavior, 26(3), 482-490.
  • Akman, I., & Rehan, M. (2014). Online purchase behaviour among professionals: a socio-demographic perspective for Turkey. Economic ResearchEkonomska Istraživanja, 27(1), 689-699.
  • Ağaç, S., & Solak, C. Ö. (2016). Üniversite Öğrencilerinin Online Giysi Alışveriş Davranışlarının İncelenmesi. Selçuk Ün. Sos. Bil. Ens. Der., 36, 142-151. Ağaç, S., Sevinir, S. D., & Yılmaz, T. (2018). Online Giyim Alışverişinde Tüketicilerin Karşılaştıkları Sorunların Cinsiyet Değişkenine Göre İncelenmesi. Karadeniz Teknik Üniversitesi Sosyal Bilimler Enstitüsü Sosyal Bilimler Dergisi, 8(15), 57-71.
  • Alkan, Ö., Oktay, E, Ünver, Ş., & Gerni, E. (2020). Determination of Factors Affecting the Financial Literacy of University Students in Eastern Anatolia using Ordered Regression Models. Asian Economic and Financial Review, 10(5), 536–546. Alkan, Ö., & Ünver, Ş. (2020). Determinants of Domestic Physical Violence Against Women in Turkey. Humanities & Social Sciences Reviews, 8(6), 55-67.
  • Alkan, Ö., & Ünver, Ş. (2020). Türkiye’de E-Devlet Hizmetlerinin Kullanımını Etkileyen Faktörlerin Analizi . Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 34(4), 1431-1453.
  • Alkan, Ö., & Ünver, Ş. (2021). Determination of Factors That Affect Use of E-Commerce in Eastern Turkey Through Categorical Data Analysis. Toros University FEASS Journal of Social Sciences, 8(Special Issue), 22-36.
  • Alkan, Ö., & Ünver, Ş. (2022). Secondhand smoke exposure for different education levels: findings from a large, nationally representative survey in Turkey. BMJ Open,12:e057360., 1-12.
  • Alkan, Ö., & Ünver, Ş. (2022). Tobacco smoke exposure among women in Turkey and determinants. Journal of Substance Use, 27(1), 43-49.
  • Alkan, Ö., Özar, Ş., & Ünver, Ş. (2021). Economic violence against women: A case in Turkey. PLoS ONE, 16(3): e0248630, 1-23.
  • Armağan, E. A., & Turan, A. (2014). İnternet Üzerinden Alışveriş: Demografik Faktörlerin, Bireysel İhtiyaçların Etkisi Üzerine Ampirik Bir Değerlendirme,. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 3, 1-22.
  • Beneke, J., Scheffer, M., & Du, W. (2010). Beyond Price – An Exploration into the Factors That Drive Young Adults to Purchase Online. International Journal of Marketing Studies, 2(2), 212-222.
  • Bhatnagar, A., & Ghose, S. (2004). A latent class segmentation analysis of e-shoppers. Journal of Business Research, 57, 758-67.
  • Cao, Y., Ajjan, H., & Hong, P. (2018). Post-purchase shipping and customer service experiences in online shopping and their impact on customer satisfaction. An empirical study with comparison. Asia Pacific Journal of Marketing and Logistics, 30(2), 400-416.
  • Changchit, C., Cutshall, R., Lonkani, R., Pholwan, K. & Pongwiritthon, R. (2019). Determinants of Online Shopping Influencing Thai Consumer’s Buying Choices. Journal of Internet Commerce, 18(1), 1-23.
  • Chen, Y., & Yang, Z. (2021). The behavioral analysis of choice difficulty states during clothing online shopping. International Journal of Clothing, 33(4), 577-589.
  • Cheng, F., Liu, T., & Wu, C. (2013). Perceived Risks and Risk Reduction Strategies in Online Group-Bu. Perceived Risks and Risk Reduction Strategies in Online Group-Buying, (s. 18-25). Phuket, Thailand.
  • Cheung, C. M., Chan, G. W., & Limayem, M. (2005). A critical review of online consumer behavior: Empirical research. Journal of Electronic Commerce in Organizations, 3(4), 1-19.
  • Cristóbal-Fransi, E., Martín-Fuentes, E., & Daries-Ramon, N. (2015). Behavioural analysis of subjects interacting with information technology: categorising the behaviour of e-consumers. International Journal of Services Technology and Management, 21(1-3), 163-182.
  • Çil, B. (2021). İnternet Alışverişlerinde Algılanan Risk:Karaman İlinde Kuşaklar Üzerinde Bir Araştırma. Karaman: Karamanoğlu Mehmet Bey Üniversitesi Sosyal Bilimler Enstitüsü (Yüksek Lisans Tezi).
  • Do Site (2008). Differences in the Use of the Internet, Current status of the digitaldivide in Japan. Available from:http://www.dosite.go.jp/e/do/j-state_net.html
  • Durmuş, B., Ulusu, Y., & Erdem, Ş. (2013). Which dimensions affect private shopping e-customer loyalty? Procedia - Social and Behavioral Sciences 99, 420 – 427.
  • Enginkaya, E. (2006). Elektronik Perakendecilik ve Elektronik Alışveriş. Ege Akademik Bakış: Ekonomi, İşletme, Uluslararası İlişkiler ve Siyaset Bilimleri Dergisi, 6(1), 10-16.
  • Erceg, A., & Kilic Z. (2018). Interconnection of E-Commerce and Logistics: Examples From Croatia and Turkey 18th International scientific conference Business Logistics in Modern Management October 11-12, Osijek, Croatia, 265.
  • Ganesan-Lim, C., R. Russell-Bennett., & T. Dagger. (2008). The Impact of Service Contact Type and Demographic Characteristics on Service Quality Perceptions. Journal of Services Marketing, 22 (7), 550–561.
  • Global E-Commerce Report (2019). E-commerce Foundation, www.ecommercefoundation.org, 9-158
  • Gökmen, A. (2012). Virtual business operations, e-commerce & its significance and the case of Turkey: current situation and its potential. Electron Commer Res, 12, 31–51.
  • Han, Y., & Xie G. (2019). Determinants of customer perceived online shopping logistics service quality value: an empirical study from China. International Journal of Logistics Research and Applications, 22 (6), 614-637.
  • Hashim, A., GhaniE.K., & Said, J. (2009). Does Consumers’ Demographic Profile Influence Online Shopping?: An Examination Using Fishbein’s Theory,. Canadian Social Science, 6, 19-31.
  • Huang , H.Y., &Bashir, M. (2016). Privacy by Region: Evaluation Online Users’ Privacy Perceptions by Geographical Region. Future Technologies Conference 6-7 December 2016 | San Francisco, United States 968-977 |
  • Huseynov, F., & Yıldırım, S.O. (2016). Internet users’ attitudes toward business-to-consumer online shopping: A survey. Information Development, 32(3), 452–465.
  • Hu, X., & Deng, Z. (2019). Research on perception bias of implementation benefits of urban intelligent transportation system based on big data EURASIP Journal on Wireless Communications and Networking, 2019:116.
  • Hwang, W., Jung, H.-S. & Salvendy. G. (2006). Internationalisation of e-commerce: a comparison of online shopping preferences among Korean, Turkish and US populations. Behaviour & Information Technology, 25(1), 3-18.
  • İşçioğlu, T. E., & Ağyol, B. (2019). Giyim Alışverişinde Çevrimiçi ve Çevrimdışı Kanal Tercihini Belirleyen Unsurlar. BMIJ;7(2), 1042-1060.
  • İzgi, B. Ş. (2013). Elektronik Perakende Sektörü Ve İnternet Alışverişi Tüketici Davranışı: Türkiye Örneği. Ekonomi ve Yönetim Araştırmaları Dergisi, 1, 9-27.
  • Kıyıcı, M. (2012). Internet Shopping Behavior Of College Of Education Students. The Turkish Online Journal of Educational Technology, 11, 202-214.
  • Koyuncu, C., & Lien, D. (2003). E-commerce and consumer's purchasing behaviour. Applied Economics, 35(6), 721-726.
  • Lightner, N. J. (2003). What users want in e-commerce design: effects of age, education and income. Ergonomics, 46(1-3), 153-168.
  • Losh, S. C. (2003). Gender and educational digital chasms ın computer and ınternet access and use over time: 1982-2000. IT and Society, 1, 73–86.
  • Loureiro, S. M., & Breazeale, M. (2016). Pressing the Buy Button:Generation Y’s Online Clothing Shopping Orientation and Its Impact on Purchase. Clothing and Textiles, 34(3), 163-178.
  • Ono, H., & Zavodny, M. (2007). Digital inequality: A five country comparison using microdata. Social Science Research, 36(3), 1135-1155.
  • Özgüven, N. (2011). Tüketicilerin Online Alışverişe Karşı Tutumları İle Demografik Özellikleri Arasındaki İlişkinin Analizi. KMÜ Sosyal ve Ekonomik Araştırmalar Dergisi, 13 (21), 47-54.
  • Potosky, D. (2007). The Internet knowledge (iKnow) measure. Computers in Human behavior, 23(6), 2760-2777.
  • Rodrigues, T., Silva, S. C., & Duarte, P. (2017). The value of textual haptic information in online clothing shopping. Journal of Fashion Marketing, 21(1), 88-102.
  • Shin, D.-H., & Biocca, F. (2017). Explicating user behavior toward multi-screen adoption and diffusion: User experience in the multi-screen media ecology. Internet Research, 27(2), 338–361
  • Silahtaroğlu, G., & Dönertaşlı, H. (2015). Analysis and Prediction of E-Customers’ Behavior by Mining Clickstream Data. IEEE International Conference on Big Data (Big Data) 978-1-4799-9926-2/15/$31.00 1466-1472.
  • Sim, L. L., & Koi, S. M. (2002). Singapore's Internet shoppers and their impact on traditional shopping patterns. Journal of Retailing and Consumer Services, 9(2), 115-124.
  • Smith, P., Smith, N., Sherman, K., Kriplani, K., Goodwin, I., Bell, A., & Crothers, C. (2008). The Internet: Social and Demographic Impacts in Aotearoa NewZealand. Observatorio (OBS) Journal, 6, 307–330.
  • Sorkun, M.F. (2019). The impact of product variety on LSQ in e-marketplaces. International Journal of Physical Distribution & Logistics Management, 49 (7), 749-766.
  • Sweeney, J., L. W. Johnson., & R. W. Armstrong. (2016). The Effect of Cues on Service Quality Expectations and Service Selection in a Restaurant Setting: A Retrospective and Prospective Commentary. Journal of Services Marketing, 30(2), 136–140.
  • Tatlı, H. &. (2015). Sanal Alışverişte Tüketici Davranışlarını Etkileyen Faktörler: Bingöl Üniversitesi Öğrencileri Üzerinde Bir Uygulama. Erzincan Üniversitesi Sosyal Biimler Enstitüsü Dergisi, 8(1), 63-78.
  • Teo, T. S., & Lim, V. K. (2000). Gender differences in internet usage and task preferences. Behaviour & Information Technology, 19(4), 283-295.
  • Uygun, M., Özçifçi, V., & Uslu Divanoğlu, S. (2011). Tüketicilerin Online Alışveriş Davranışını Etkileyen Faktörler. Organizasyon ve Yönetim Bilimleri Dergisi, 3 (2),, 373-385.
  • Ünver, Ş., & Alkan, Ö. (2021). Determinants of e-Commerce Use at Different Educational Levels: Empirical Evidence from Turkey. International Journal of Advanced Computer Science and Applications, 12(3), 40-49.
  • Yang, S. C., & Tung, C.-J. (2007). Comparison of Internet addicts and non-addicts in Taiwanese high school. Computers in Human Behavior, 23(1), 79-96.
  • Yu, U., Lee, H., & Damhorst, M. (2012). Exploring Multidimensions of Product Performance Risk in the Online Apparel Shopping Context: Visual, Tactile and Trial Risks. Clothing & Textiles Research Journal, 30 (4), 251-266.
  • Zhang, Y. (2005). Age, gender, and Internet attitudes among employees in the business world. Computers in Human Behavior, 21(1), 1-10.
  • Zhou, L., Dai, L., & Zhang, D. (2007). Onlıne Shopping Acceptance Model A Critical Survey of Consumer Factors in Onlıne Shopping. Journal of Electronic Commerce Research,8(1), 41-62.

Factors Affecting Online Clothing Shopping Decisions: Gender Differences in Turkey

Yıl 2023, Cilt: 25 Sayı: 1, 9 - 23, 30.06.2023

Öz

The flow of information has accelerated and the way consumers shop has changed with the widespread use of the Internet. Therefore, it is observed that online shopping, which is currently the emerging trend, is gaining more and more attention each day. Thanks to online shopping, geographical limitations are removed and users get access to more information at a reduced cost and in a shorter amount of time. The growth of internet shopping in our country and worldwide has been accelerated by factors such as changing lifestyles of consumers, increasing workloads and time constraints. It is seen that many virtual stores opened on the Internet offer consumers a variety of options and services, allowing them to choose from a global product selection. Many products can now be bought and sold from anywhere in the world thanks to e-commerce. Clothing is a popular product that e-commerce markets and sells. The study used a micro data set from the 2021 Information and Communication Technology Usage Survey in Households conducted by Turkey Statistical Institute. In the study, it was aimed to determine the socio-demographic and economic factors that affect online clothing shopping based on the gender differences of individuals aged 15 and older. According to the study's findings, age, occupation, family laptop ownership, income, geography, and education status all impact women's clothing shopping via the website or mobile application. On the other hand, age, occupation, income, region, household computer ownership, and household laptop ownership are all useful factors when shopping for men's clothing online or through a mobile application.

Kaynakça

  • Afsar, B., Qureshi, J. A., Rehman, A., & Bangash, R. U. (2011). Consumer panacea over internet usage in Pakistan. Management & Marketing Journal, 9(1), 43-52.
  • Akman, I., & Mishra, A. (2010). Gender, age and income differences in internet usage among employees in organizations. Computers in Human Behavior, 26(3), 482-490.
  • Akman, I., & Rehan, M. (2014). Online purchase behaviour among professionals: a socio-demographic perspective for Turkey. Economic ResearchEkonomska Istraživanja, 27(1), 689-699.
  • Ağaç, S., & Solak, C. Ö. (2016). Üniversite Öğrencilerinin Online Giysi Alışveriş Davranışlarının İncelenmesi. Selçuk Ün. Sos. Bil. Ens. Der., 36, 142-151. Ağaç, S., Sevinir, S. D., & Yılmaz, T. (2018). Online Giyim Alışverişinde Tüketicilerin Karşılaştıkları Sorunların Cinsiyet Değişkenine Göre İncelenmesi. Karadeniz Teknik Üniversitesi Sosyal Bilimler Enstitüsü Sosyal Bilimler Dergisi, 8(15), 57-71.
  • Alkan, Ö., Oktay, E, Ünver, Ş., & Gerni, E. (2020). Determination of Factors Affecting the Financial Literacy of University Students in Eastern Anatolia using Ordered Regression Models. Asian Economic and Financial Review, 10(5), 536–546. Alkan, Ö., & Ünver, Ş. (2020). Determinants of Domestic Physical Violence Against Women in Turkey. Humanities & Social Sciences Reviews, 8(6), 55-67.
  • Alkan, Ö., & Ünver, Ş. (2020). Türkiye’de E-Devlet Hizmetlerinin Kullanımını Etkileyen Faktörlerin Analizi . Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 34(4), 1431-1453.
  • Alkan, Ö., & Ünver, Ş. (2021). Determination of Factors That Affect Use of E-Commerce in Eastern Turkey Through Categorical Data Analysis. Toros University FEASS Journal of Social Sciences, 8(Special Issue), 22-36.
  • Alkan, Ö., & Ünver, Ş. (2022). Secondhand smoke exposure for different education levels: findings from a large, nationally representative survey in Turkey. BMJ Open,12:e057360., 1-12.
  • Alkan, Ö., & Ünver, Ş. (2022). Tobacco smoke exposure among women in Turkey and determinants. Journal of Substance Use, 27(1), 43-49.
  • Alkan, Ö., Özar, Ş., & Ünver, Ş. (2021). Economic violence against women: A case in Turkey. PLoS ONE, 16(3): e0248630, 1-23.
  • Armağan, E. A., & Turan, A. (2014). İnternet Üzerinden Alışveriş: Demografik Faktörlerin, Bireysel İhtiyaçların Etkisi Üzerine Ampirik Bir Değerlendirme,. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 3, 1-22.
  • Beneke, J., Scheffer, M., & Du, W. (2010). Beyond Price – An Exploration into the Factors That Drive Young Adults to Purchase Online. International Journal of Marketing Studies, 2(2), 212-222.
  • Bhatnagar, A., & Ghose, S. (2004). A latent class segmentation analysis of e-shoppers. Journal of Business Research, 57, 758-67.
  • Cao, Y., Ajjan, H., & Hong, P. (2018). Post-purchase shipping and customer service experiences in online shopping and their impact on customer satisfaction. An empirical study with comparison. Asia Pacific Journal of Marketing and Logistics, 30(2), 400-416.
  • Changchit, C., Cutshall, R., Lonkani, R., Pholwan, K. & Pongwiritthon, R. (2019). Determinants of Online Shopping Influencing Thai Consumer’s Buying Choices. Journal of Internet Commerce, 18(1), 1-23.
  • Chen, Y., & Yang, Z. (2021). The behavioral analysis of choice difficulty states during clothing online shopping. International Journal of Clothing, 33(4), 577-589.
  • Cheng, F., Liu, T., & Wu, C. (2013). Perceived Risks and Risk Reduction Strategies in Online Group-Bu. Perceived Risks and Risk Reduction Strategies in Online Group-Buying, (s. 18-25). Phuket, Thailand.
  • Cheung, C. M., Chan, G. W., & Limayem, M. (2005). A critical review of online consumer behavior: Empirical research. Journal of Electronic Commerce in Organizations, 3(4), 1-19.
  • Cristóbal-Fransi, E., Martín-Fuentes, E., & Daries-Ramon, N. (2015). Behavioural analysis of subjects interacting with information technology: categorising the behaviour of e-consumers. International Journal of Services Technology and Management, 21(1-3), 163-182.
  • Çil, B. (2021). İnternet Alışverişlerinde Algılanan Risk:Karaman İlinde Kuşaklar Üzerinde Bir Araştırma. Karaman: Karamanoğlu Mehmet Bey Üniversitesi Sosyal Bilimler Enstitüsü (Yüksek Lisans Tezi).
  • Do Site (2008). Differences in the Use of the Internet, Current status of the digitaldivide in Japan. Available from:http://www.dosite.go.jp/e/do/j-state_net.html
  • Durmuş, B., Ulusu, Y., & Erdem, Ş. (2013). Which dimensions affect private shopping e-customer loyalty? Procedia - Social and Behavioral Sciences 99, 420 – 427.
  • Enginkaya, E. (2006). Elektronik Perakendecilik ve Elektronik Alışveriş. Ege Akademik Bakış: Ekonomi, İşletme, Uluslararası İlişkiler ve Siyaset Bilimleri Dergisi, 6(1), 10-16.
  • Erceg, A., & Kilic Z. (2018). Interconnection of E-Commerce and Logistics: Examples From Croatia and Turkey 18th International scientific conference Business Logistics in Modern Management October 11-12, Osijek, Croatia, 265.
  • Ganesan-Lim, C., R. Russell-Bennett., & T. Dagger. (2008). The Impact of Service Contact Type and Demographic Characteristics on Service Quality Perceptions. Journal of Services Marketing, 22 (7), 550–561.
  • Global E-Commerce Report (2019). E-commerce Foundation, www.ecommercefoundation.org, 9-158
  • Gökmen, A. (2012). Virtual business operations, e-commerce & its significance and the case of Turkey: current situation and its potential. Electron Commer Res, 12, 31–51.
  • Han, Y., & Xie G. (2019). Determinants of customer perceived online shopping logistics service quality value: an empirical study from China. International Journal of Logistics Research and Applications, 22 (6), 614-637.
  • Hashim, A., GhaniE.K., & Said, J. (2009). Does Consumers’ Demographic Profile Influence Online Shopping?: An Examination Using Fishbein’s Theory,. Canadian Social Science, 6, 19-31.
  • Huang , H.Y., &Bashir, M. (2016). Privacy by Region: Evaluation Online Users’ Privacy Perceptions by Geographical Region. Future Technologies Conference 6-7 December 2016 | San Francisco, United States 968-977 |
  • Huseynov, F., & Yıldırım, S.O. (2016). Internet users’ attitudes toward business-to-consumer online shopping: A survey. Information Development, 32(3), 452–465.
  • Hu, X., & Deng, Z. (2019). Research on perception bias of implementation benefits of urban intelligent transportation system based on big data EURASIP Journal on Wireless Communications and Networking, 2019:116.
  • Hwang, W., Jung, H.-S. & Salvendy. G. (2006). Internationalisation of e-commerce: a comparison of online shopping preferences among Korean, Turkish and US populations. Behaviour & Information Technology, 25(1), 3-18.
  • İşçioğlu, T. E., & Ağyol, B. (2019). Giyim Alışverişinde Çevrimiçi ve Çevrimdışı Kanal Tercihini Belirleyen Unsurlar. BMIJ;7(2), 1042-1060.
  • İzgi, B. Ş. (2013). Elektronik Perakende Sektörü Ve İnternet Alışverişi Tüketici Davranışı: Türkiye Örneği. Ekonomi ve Yönetim Araştırmaları Dergisi, 1, 9-27.
  • Kıyıcı, M. (2012). Internet Shopping Behavior Of College Of Education Students. The Turkish Online Journal of Educational Technology, 11, 202-214.
  • Koyuncu, C., & Lien, D. (2003). E-commerce and consumer's purchasing behaviour. Applied Economics, 35(6), 721-726.
  • Lightner, N. J. (2003). What users want in e-commerce design: effects of age, education and income. Ergonomics, 46(1-3), 153-168.
  • Losh, S. C. (2003). Gender and educational digital chasms ın computer and ınternet access and use over time: 1982-2000. IT and Society, 1, 73–86.
  • Loureiro, S. M., & Breazeale, M. (2016). Pressing the Buy Button:Generation Y’s Online Clothing Shopping Orientation and Its Impact on Purchase. Clothing and Textiles, 34(3), 163-178.
  • Ono, H., & Zavodny, M. (2007). Digital inequality: A five country comparison using microdata. Social Science Research, 36(3), 1135-1155.
  • Özgüven, N. (2011). Tüketicilerin Online Alışverişe Karşı Tutumları İle Demografik Özellikleri Arasındaki İlişkinin Analizi. KMÜ Sosyal ve Ekonomik Araştırmalar Dergisi, 13 (21), 47-54.
  • Potosky, D. (2007). The Internet knowledge (iKnow) measure. Computers in Human behavior, 23(6), 2760-2777.
  • Rodrigues, T., Silva, S. C., & Duarte, P. (2017). The value of textual haptic information in online clothing shopping. Journal of Fashion Marketing, 21(1), 88-102.
  • Shin, D.-H., & Biocca, F. (2017). Explicating user behavior toward multi-screen adoption and diffusion: User experience in the multi-screen media ecology. Internet Research, 27(2), 338–361
  • Silahtaroğlu, G., & Dönertaşlı, H. (2015). Analysis and Prediction of E-Customers’ Behavior by Mining Clickstream Data. IEEE International Conference on Big Data (Big Data) 978-1-4799-9926-2/15/$31.00 1466-1472.
  • Sim, L. L., & Koi, S. M. (2002). Singapore's Internet shoppers and their impact on traditional shopping patterns. Journal of Retailing and Consumer Services, 9(2), 115-124.
  • Smith, P., Smith, N., Sherman, K., Kriplani, K., Goodwin, I., Bell, A., & Crothers, C. (2008). The Internet: Social and Demographic Impacts in Aotearoa NewZealand. Observatorio (OBS) Journal, 6, 307–330.
  • Sorkun, M.F. (2019). The impact of product variety on LSQ in e-marketplaces. International Journal of Physical Distribution & Logistics Management, 49 (7), 749-766.
  • Sweeney, J., L. W. Johnson., & R. W. Armstrong. (2016). The Effect of Cues on Service Quality Expectations and Service Selection in a Restaurant Setting: A Retrospective and Prospective Commentary. Journal of Services Marketing, 30(2), 136–140.
  • Tatlı, H. &. (2015). Sanal Alışverişte Tüketici Davranışlarını Etkileyen Faktörler: Bingöl Üniversitesi Öğrencileri Üzerinde Bir Uygulama. Erzincan Üniversitesi Sosyal Biimler Enstitüsü Dergisi, 8(1), 63-78.
  • Teo, T. S., & Lim, V. K. (2000). Gender differences in internet usage and task preferences. Behaviour & Information Technology, 19(4), 283-295.
  • Uygun, M., Özçifçi, V., & Uslu Divanoğlu, S. (2011). Tüketicilerin Online Alışveriş Davranışını Etkileyen Faktörler. Organizasyon ve Yönetim Bilimleri Dergisi, 3 (2),, 373-385.
  • Ünver, Ş., & Alkan, Ö. (2021). Determinants of e-Commerce Use at Different Educational Levels: Empirical Evidence from Turkey. International Journal of Advanced Computer Science and Applications, 12(3), 40-49.
  • Yang, S. C., & Tung, C.-J. (2007). Comparison of Internet addicts and non-addicts in Taiwanese high school. Computers in Human Behavior, 23(1), 79-96.
  • Yu, U., Lee, H., & Damhorst, M. (2012). Exploring Multidimensions of Product Performance Risk in the Online Apparel Shopping Context: Visual, Tactile and Trial Risks. Clothing & Textiles Research Journal, 30 (4), 251-266.
  • Zhang, Y. (2005). Age, gender, and Internet attitudes among employees in the business world. Computers in Human Behavior, 21(1), 1-10.
  • Zhou, L., Dai, L., & Zhang, D. (2007). Onlıne Shopping Acceptance Model A Critical Survey of Consumer Factors in Onlıne Shopping. Journal of Electronic Commerce Research,8(1), 41-62.
Toplam 58 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Hizmet Pazarlaması
Bölüm Araştırma Makalesi
Yazarlar

Şeyda Ünver 0000-0002-2310-4545

Ömer Alkan 0000-0002-3814-3539

Erkan Oktay 0000-0002-1739-3184

Yayımlanma Tarihi 30 Haziran 2023
Gönderilme Tarihi 23 Temmuz 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 25 Sayı: 1

Kaynak Göster

APA Ünver, Ş., Alkan, Ö., & Oktay, E. (2023). Türkiye’de Online Giyim Alışverişinde Cinsiyet Farklılıklarının Lojistik Regresyon ile Araştırılması. Kastamonu Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, 25(1), 9-23. https://doi.org/10.21180/iibfdkastamonu.1147617