Araştırma Makalesi
BibTex RIS Kaynak Göster

Elektrikli Araç Batarya Soğutma Sistemlerinden Atık Isının Organik Rankine Çevrimi ile Elektrik Enerjisine Dönüştürülmesi

Yıl 2025, Cilt: 14 Sayı: 4, 245 - 254, 30.12.2025
https://doi.org/10.18245/ijaet.1746293

Öz

Elektrikli araçların (EA) hızla yaygınlaşmasıyla birlikte batarya termal yönetim sistemleri kritik bir öneme sahip olmuştur. EA bataryalarının soğutulması sırasında açığa çıkan artık ısı, sürdürülebilir enerji geri kazanımı açısından önemli bir potansiyel sunmaktadır. Bu çalışma, elektrikli araç batarya soğutma sistemlerinden elde edilen artık ısının Organik Rankine Çevrimi (ORÇ) ile elektriğe dönüştürülme potansiyelini teorik olarak incelemektedir. ORÇ verimliliğini değerlendirmek amacıyla çeşitli çalışma akışkanları karşılaştırmalı olarak analiz edilmiştir. İncelenen akışkanlar arasında R123 ve SES36, %15 ile en yüksek termal verimliliğe ulaşırken, R134a %14 ile biraz daha düşük bir verimlilik sergilemiştir. Aynı çalışma koşullarında, en yüksek türbin güç çıkışı 20–25 °C kondansatör sıcaklığı ve 75–80 °C buharlaştırıcı sıcaklığı aralığında elde edilmiştir. R123 ile 14,70 kW, SES36 ile 14,80 kW maksimum türbin gücü sağlanırken, R134a ile 14,40 kW’lık bir türbin gücü elde edilmiştir. Dikkat çekici bir şekilde, hem en yüksek termal verimlilik hem de maksimum türbin gücü, çalışma akışkanlarının en düşük kütlesel debisinde elde edilmiştir. Elde edilen sonuçlar, elektrikli araç batarya sistemlerinde etkili termal ve atık ısı yönetiminin önemini vurgulamakta olup, sürdürülebilir ulaşım teknolojilerinin geliştirilmesi açısından kritik rol oynamaktadır. Bu alanda yapılacak ileri düzey araştırmaların, hem araç performansının artırılmasına hem de çevresel etkilerin azaltılmasına katkı sağlaması beklenmektedir.

Kaynakça

  • Boretti, A. “Electric vehicles energy efficiency versus internal combustion engine vehicles”, Energy Advances, 1(1), 1–10, 2021. https://doi.org/10.1039/D1YA00002E
  • Pesaran, A. A. “Battery thermal models for hybrid vehicle simulations”, Journal of Power Sources, 110(2), 377–382, 2002. https://doi.org/10.1016/S0378-7753(02)00200-8
  • Liu, K., Li, K., Wang, Y. “Advances in battery thermal management systems for electric vehicles”, Energy Reports, 6, 337–353, 2020. https://doi.org/10.1016/j.egyr.2020.11.021
  • Zhao, R., Zhang, S., Liu, J. “A review of thermal performance improving methods of lithium ion battery: Electrode modification and thermal management system”, Journal of Power Sources, 299, 557–577, 2015. https://doi.org/10.1016/j.jpowsour.2015.09.033
  • Santhanagopalan, S., Smith, K., Neubauer, J., Wood, E., Pesaran, A. “Design and analysis of battery packs for electric vehicles”, Elsevier Energy Storage Handbook, 1–46, 2014.
  • Rao, Z., Wang, S. “A review of power battery thermal energy management”, Renewable and Sustainable Energy Reviews, 25, 587–600, 2013. https://doi.org/10.1016/j.rser.2013.05.022
  • Mahmoudzadeh Andwari, A., Pesiridis, A., Rajoo, S., Martinez-Botas, R., Esfahanian, V. “A review of Battery Electric Vehicle technology and readiness levels”, Renewable and Sustainable Energy Reviews, 78, 414–430, 2017. https://doi.org/10.1016/j.rser.2017.03.138
  • Ling, Z., Zhang, Z., Fang, X. “Progress in thermal management of EV batteries using phase change materials”, Renewable and Sustainable Energy Reviews, 89, 26–50, 2018. https://doi.org/10.1016/j.rser.2018.03.014
  • Wang, Y., Yu, B., Wang, Y., Zhang, Y. “Performance analysis of ORC system for waste heat recovery of EV battery thermal management”, Applied Thermal Engineering, 167, 114741, 2020. https://doi.org/10.1016/j.applthermaleng.2019.114741
  • Dafen, C., Jiuchun, J., Gi-Heon, K., Chuanbo, Y., Ahmad, P. “Comparison of different cooling methods for lithium ion battery cells”, Applied Thermal Engineering, 94, 846–854, 2016. https://doi.org/10.1016/j.applthermaleng.2015.10.015
  • Yenigün, M., Utlu, Z. “Investigation and Evaluation of the Battery Cooling Systems Used In Electric Vehicles”, Engineer and Machinery, 59(692), 35–47, 2018.
  • Al-Zareer, M., Dinçer, İ., Rosen, M. A. “Heat and mass transfer modeling and assessment of a new battery cooling system”, International Journal of Heat and Mass Transfer, 126, 765–778, 2018. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.157
  • Lu, M., Zhang, X., Ji, J., Xu, X., Zhang, Y. “Research progress on power battery cooling technology for electric vehicles”, Journal of Energy Storage, 27, 101155, 2020. https://doi.org/10.1016/j.est.2019.101155
  • Kök, C., Alkaya, A. “Numerical investigation of different cooling applications for pouch type lithium ion battery cells”, Journal of the Faculty of Engineering and Architecture of Gazi University, 38(1), 381–397, 2023. https://doi.org/10.17341/gazimmfd.804866
  • Henke, M., Hailu, G. “Thermal management of stationary battery systems: A literature review”, Energies, 13(16), 4194, 2020. https://doi.org/10.3390/en13164194
  • Liu, J., Wang, T., Chen, R. “Feasibility study on oil-immersed cooling for lithium-ion batteries”, Applied Thermal Engineering, 182, 115936, 2021. https://doi.org/10.1016/j.applthermaleng.2020.115936
  • Sim, J. B., Yook, S. J., Kim, Y. W. “Performance of organic Rankine cycle using waste heat from electric vehicle battery”, Journal of Mechanical Science and Technology, 36(11), 5745–5754, 2022. https://doi.org/10.1007/s12206-022-1036-3
  • Zhang, X., Wang, X., Dang, Z., Yuan, P., Tian, H., Shu, G. “An integrated hybrid electric vehicle central thermal management system”, Cell Reports Physical Science, 6(1), 2025. https://doi.org/10.1016/j.xcrp.2024.102353
  • Xue, B., Zhou, Y., Chen, P., Meng, X., Zhang, J. “Study on performance of integrated thermal management strategy for hybrid electric vehicles under low-temperature conditions”, Processes, 13(3), 2025. https://doi.org/10.3390/pr13030651
  • Gómez Díaz, K. Y., De León Aldaco, S. E., Aguayo Alquicira, J., Ponce Silva, M., Portillo Contreras, S., Sánchez Vargas, O. “Thermal management systems for lithium-ion batteries for electric vehicles: A review”, World Electric Vehicle Journal, 16(7), 346, 2025. https://doi.org/10.3390/wevj16070346
  • Zhang, H.-H., Xi, H., He, Y.-L., Zhang, Y.-W., Ning, B. “Experimental study of the organic Rankine cycle under different heat and cooling conditions”, Energy, 180, 678–688, 2019. https://doi.org/10.1016/j.energy.2019.05.072
  • Preißinger, M., Brüggemann, D. “Thermoeconomic evaluation of modular organic Rankine cycles for waste heat recovery over a broad range of heat source temperatures and capacities”, Energies, 10(3), 269, 2017. https://doi.org/10.3390/en10030269
  • Grauberger, A., Young, D., Bandhauer, T. “Experimental validation of an organic Rankine–vapor compression cooling cycle using low GWP refrigerant R1234ze(E)”, Applied Energy, 307, 118242, 2022. https://doi.org/10.1016/j.apenergy.2021.118242
  • Kılıç, B., İpek, O. “Thermodynamic analysis of the organic Rankine cycle using diesel engine waste heat recovery”, European Science and Technology Journal, (15), 112–117, 2019. https://doi.org/10.31590/ejosat.498908
  • Bin Wan Ramli, W. R., Pesyridis, A., Gohil, D., Alshammari, F. “Organic Rankine cycle waste heat recovery for passenger hybrid electric vehicles”, Energies, 13(17), 4532, 2020. https://doi.org/10.3390/en13174532
  • Yue, C., Tong, L., Zhang, S. “Thermal and economic analysis on vehicle energy supplying system based on waste heat recovery organic Rankine cycle”, Applied Energy, 248, 241–255, 2019. https://doi.org/10.1016/j.apenergy.2019.04.081
  • Dimitrova, Z. “Performance and economic analysis of an organic Rankine cycle for hybrid electric vehicles”, IOP Conference Series: Materials Science and Engineering, 664(1), 012009, 2019.

Utilizing waste heat from EV battery cooling systems for power generation via organic Rankine cycle

Yıl 2025, Cilt: 14 Sayı: 4, 245 - 254, 30.12.2025
https://doi.org/10.18245/ijaet.1746293

Öz

As electric vehicles (EVs) become increasingly common, managing battery temperature has become a key engineering challenge. During the cooling process, EV batteries release a considerable amount of heat that often goes to waste. This study explores how that residual heat can be converted into electricity using the Organic Rankine Cycle (ORC). A theoretical analysis compares the performance of three working fluids (R123, SES36, and R134a) under the same conditions. The results show that R123 and SES36 reached up to 15% thermal efficiency, while R134a was slightly lower at 14%. The highest turbine outputs were achieved between 20–25°C condenser temperatures and 75–80°C steam generator temperatures. R123 and SES36 produced around 14.7–14.8 kW, while R134a produced 14.4 kW. Interestingly, both peak efficiency and power were observed at the lowest fluid flow rates. What makes this work unique is its focus on applying ORC technology directly to EV battery cooling systems (a concept that has not been widely explored). The findings suggest a new path for improving energy use in EVs and reducing their environmental footprint.

Kaynakça

  • Boretti, A. “Electric vehicles energy efficiency versus internal combustion engine vehicles”, Energy Advances, 1(1), 1–10, 2021. https://doi.org/10.1039/D1YA00002E
  • Pesaran, A. A. “Battery thermal models for hybrid vehicle simulations”, Journal of Power Sources, 110(2), 377–382, 2002. https://doi.org/10.1016/S0378-7753(02)00200-8
  • Liu, K., Li, K., Wang, Y. “Advances in battery thermal management systems for electric vehicles”, Energy Reports, 6, 337–353, 2020. https://doi.org/10.1016/j.egyr.2020.11.021
  • Zhao, R., Zhang, S., Liu, J. “A review of thermal performance improving methods of lithium ion battery: Electrode modification and thermal management system”, Journal of Power Sources, 299, 557–577, 2015. https://doi.org/10.1016/j.jpowsour.2015.09.033
  • Santhanagopalan, S., Smith, K., Neubauer, J., Wood, E., Pesaran, A. “Design and analysis of battery packs for electric vehicles”, Elsevier Energy Storage Handbook, 1–46, 2014.
  • Rao, Z., Wang, S. “A review of power battery thermal energy management”, Renewable and Sustainable Energy Reviews, 25, 587–600, 2013. https://doi.org/10.1016/j.rser.2013.05.022
  • Mahmoudzadeh Andwari, A., Pesiridis, A., Rajoo, S., Martinez-Botas, R., Esfahanian, V. “A review of Battery Electric Vehicle technology and readiness levels”, Renewable and Sustainable Energy Reviews, 78, 414–430, 2017. https://doi.org/10.1016/j.rser.2017.03.138
  • Ling, Z., Zhang, Z., Fang, X. “Progress in thermal management of EV batteries using phase change materials”, Renewable and Sustainable Energy Reviews, 89, 26–50, 2018. https://doi.org/10.1016/j.rser.2018.03.014
  • Wang, Y., Yu, B., Wang, Y., Zhang, Y. “Performance analysis of ORC system for waste heat recovery of EV battery thermal management”, Applied Thermal Engineering, 167, 114741, 2020. https://doi.org/10.1016/j.applthermaleng.2019.114741
  • Dafen, C., Jiuchun, J., Gi-Heon, K., Chuanbo, Y., Ahmad, P. “Comparison of different cooling methods for lithium ion battery cells”, Applied Thermal Engineering, 94, 846–854, 2016. https://doi.org/10.1016/j.applthermaleng.2015.10.015
  • Yenigün, M., Utlu, Z. “Investigation and Evaluation of the Battery Cooling Systems Used In Electric Vehicles”, Engineer and Machinery, 59(692), 35–47, 2018.
  • Al-Zareer, M., Dinçer, İ., Rosen, M. A. “Heat and mass transfer modeling and assessment of a new battery cooling system”, International Journal of Heat and Mass Transfer, 126, 765–778, 2018. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.157
  • Lu, M., Zhang, X., Ji, J., Xu, X., Zhang, Y. “Research progress on power battery cooling technology for electric vehicles”, Journal of Energy Storage, 27, 101155, 2020. https://doi.org/10.1016/j.est.2019.101155
  • Kök, C., Alkaya, A. “Numerical investigation of different cooling applications for pouch type lithium ion battery cells”, Journal of the Faculty of Engineering and Architecture of Gazi University, 38(1), 381–397, 2023. https://doi.org/10.17341/gazimmfd.804866
  • Henke, M., Hailu, G. “Thermal management of stationary battery systems: A literature review”, Energies, 13(16), 4194, 2020. https://doi.org/10.3390/en13164194
  • Liu, J., Wang, T., Chen, R. “Feasibility study on oil-immersed cooling for lithium-ion batteries”, Applied Thermal Engineering, 182, 115936, 2021. https://doi.org/10.1016/j.applthermaleng.2020.115936
  • Sim, J. B., Yook, S. J., Kim, Y. W. “Performance of organic Rankine cycle using waste heat from electric vehicle battery”, Journal of Mechanical Science and Technology, 36(11), 5745–5754, 2022. https://doi.org/10.1007/s12206-022-1036-3
  • Zhang, X., Wang, X., Dang, Z., Yuan, P., Tian, H., Shu, G. “An integrated hybrid electric vehicle central thermal management system”, Cell Reports Physical Science, 6(1), 2025. https://doi.org/10.1016/j.xcrp.2024.102353
  • Xue, B., Zhou, Y., Chen, P., Meng, X., Zhang, J. “Study on performance of integrated thermal management strategy for hybrid electric vehicles under low-temperature conditions”, Processes, 13(3), 2025. https://doi.org/10.3390/pr13030651
  • Gómez Díaz, K. Y., De León Aldaco, S. E., Aguayo Alquicira, J., Ponce Silva, M., Portillo Contreras, S., Sánchez Vargas, O. “Thermal management systems for lithium-ion batteries for electric vehicles: A review”, World Electric Vehicle Journal, 16(7), 346, 2025. https://doi.org/10.3390/wevj16070346
  • Zhang, H.-H., Xi, H., He, Y.-L., Zhang, Y.-W., Ning, B. “Experimental study of the organic Rankine cycle under different heat and cooling conditions”, Energy, 180, 678–688, 2019. https://doi.org/10.1016/j.energy.2019.05.072
  • Preißinger, M., Brüggemann, D. “Thermoeconomic evaluation of modular organic Rankine cycles for waste heat recovery over a broad range of heat source temperatures and capacities”, Energies, 10(3), 269, 2017. https://doi.org/10.3390/en10030269
  • Grauberger, A., Young, D., Bandhauer, T. “Experimental validation of an organic Rankine–vapor compression cooling cycle using low GWP refrigerant R1234ze(E)”, Applied Energy, 307, 118242, 2022. https://doi.org/10.1016/j.apenergy.2021.118242
  • Kılıç, B., İpek, O. “Thermodynamic analysis of the organic Rankine cycle using diesel engine waste heat recovery”, European Science and Technology Journal, (15), 112–117, 2019. https://doi.org/10.31590/ejosat.498908
  • Bin Wan Ramli, W. R., Pesyridis, A., Gohil, D., Alshammari, F. “Organic Rankine cycle waste heat recovery for passenger hybrid electric vehicles”, Energies, 13(17), 4532, 2020. https://doi.org/10.3390/en13174532
  • Yue, C., Tong, L., Zhang, S. “Thermal and economic analysis on vehicle energy supplying system based on waste heat recovery organic Rankine cycle”, Applied Energy, 248, 241–255, 2019. https://doi.org/10.1016/j.apenergy.2019.04.081
  • Dimitrova, Z. “Performance and economic analysis of an organic Rankine cycle for hybrid electric vehicles”, IOP Conference Series: Materials Science and Engineering, 664(1), 012009, 2019.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Otomotivde Isı Transferi
Bölüm Araştırma Makalesi
Yazarlar

Bayram Kılıç 0000-0002-8577-1845

Emre Arabacı 0000-0002-6219-7246

Gönderilme Tarihi 19 Temmuz 2025
Kabul Tarihi 2 Ekim 2025
Yayımlanma Tarihi 30 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 4

Kaynak Göster

APA Kılıç, B., & Arabacı, E. (2025). Utilizing waste heat from EV battery cooling systems for power generation via organic Rankine cycle. International Journal of Automotive Engineering and Technologies, 14(4), 245-254. https://doi.org/10.18245/ijaet.1746293
AMA Kılıç B, Arabacı E. Utilizing waste heat from EV battery cooling systems for power generation via organic Rankine cycle. International Journal of Automotive Engineering and Technologies. Aralık 2025;14(4):245-254. doi:10.18245/ijaet.1746293
Chicago Kılıç, Bayram, ve Emre Arabacı. “Utilizing waste heat from EV battery cooling systems for power generation via organic Rankine cycle”. International Journal of Automotive Engineering and Technologies 14, sy. 4 (Aralık 2025): 245-54. https://doi.org/10.18245/ijaet.1746293.
EndNote Kılıç B, Arabacı E (01 Aralık 2025) Utilizing waste heat from EV battery cooling systems for power generation via organic Rankine cycle. International Journal of Automotive Engineering and Technologies 14 4 245–254.
IEEE B. Kılıç ve E. Arabacı, “Utilizing waste heat from EV battery cooling systems for power generation via organic Rankine cycle”, International Journal of Automotive Engineering and Technologies, c. 14, sy. 4, ss. 245–254, 2025, doi: 10.18245/ijaet.1746293.
ISNAD Kılıç, Bayram - Arabacı, Emre. “Utilizing waste heat from EV battery cooling systems for power generation via organic Rankine cycle”. International Journal of Automotive Engineering and Technologies 14/4 (Aralık2025), 245-254. https://doi.org/10.18245/ijaet.1746293.
JAMA Kılıç B, Arabacı E. Utilizing waste heat from EV battery cooling systems for power generation via organic Rankine cycle. International Journal of Automotive Engineering and Technologies. 2025;14:245–254.
MLA Kılıç, Bayram ve Emre Arabacı. “Utilizing waste heat from EV battery cooling systems for power generation via organic Rankine cycle”. International Journal of Automotive Engineering and Technologies, c. 14, sy. 4, 2025, ss. 245-54, doi:10.18245/ijaet.1746293.
Vancouver Kılıç B, Arabacı E. Utilizing waste heat from EV battery cooling systems for power generation via organic Rankine cycle. International Journal of Automotive Engineering and Technologies. 2025;14(4):245-54.