Araştırma Makalesi
BibTex RIS Kaynak Göster

A Study On Maximal Embedding Dimension Numerical Semigroups

Yıl 2024, , 303 - 308, 30.06.2024
https://doi.org/10.29132/ijpas.1456138

Öz

In this article, it is examine some the numerical semigroups W and W/2 such that W= < p, q > and W/2= < p, p+q/2, q > where p < q and p, q are odd natural numbers.

Kaynakça

  • Barucci, V., Dobbs, D. E. and Fontana, M. (1997). Maximality properties in numerical semigroups and applications to one-dimensional analytically irreducible local domains, Mem. Amer. Math. Soc. 125, no. 598.
  • Rosales, J. C. and Garcia-Sanchez, P. A. (2005).Pseudo-symmetric numerical semigroups with three generators , Journal of Algebra, 291(1), 46-54.
  • Rosales, J. C. (1996). On symmetric numerical semigroups. J. Algebra, 182(2), 422–434.
  • Rosales, J.C. and Garcia-Sanchez , P.A. (2008). Every numerical semigroup is one half of a symmetric numerical semigroup, Proc. Amer. Math. Soc., 136, 475-477.
  • Süer, M. and Çelik, Ö. (2022). On Delta Sets of Some Pseudo-Symmetric Numerical Semigroups with Embedding Dimension Three, Bitlis Eren University Journal of Science, 3(1), 335-343.
  • Froberg, R., Gotlieb, C. and Haggkvist, R. (1987). On numerical semigroups, Semigroup Forum, 35, 63-68.
  • Harold J. S., Fractions of Numerical Semigroups. (2010). University of Tennessee, Doctoral Dis-sertations.
  • Assi, A. and Garcia-Sanchez, P. A. (2016). Numerical Semigroups and Applications, Springer: Cham, Switzerland.
  • Çelik, A. (2023). A note on the some class of symmetric numerical semigroups, Adıyaman Uni-versity Journal of Science, 13(1-2), 18-27.
  • Çelik, A. (2023). On Arf Closure Of Some Symmetrıc Numerıcal Semıgroups With Multıplıcıty P-Prıme, JP Journal of Algebra, Number Theory and Applications, 62(2), 109-122.
Yıl 2024, , 303 - 308, 30.06.2024
https://doi.org/10.29132/ijpas.1456138

Öz

Kaynakça

  • Barucci, V., Dobbs, D. E. and Fontana, M. (1997). Maximality properties in numerical semigroups and applications to one-dimensional analytically irreducible local domains, Mem. Amer. Math. Soc. 125, no. 598.
  • Rosales, J. C. and Garcia-Sanchez, P. A. (2005).Pseudo-symmetric numerical semigroups with three generators , Journal of Algebra, 291(1), 46-54.
  • Rosales, J. C. (1996). On symmetric numerical semigroups. J. Algebra, 182(2), 422–434.
  • Rosales, J.C. and Garcia-Sanchez , P.A. (2008). Every numerical semigroup is one half of a symmetric numerical semigroup, Proc. Amer. Math. Soc., 136, 475-477.
  • Süer, M. and Çelik, Ö. (2022). On Delta Sets of Some Pseudo-Symmetric Numerical Semigroups with Embedding Dimension Three, Bitlis Eren University Journal of Science, 3(1), 335-343.
  • Froberg, R., Gotlieb, C. and Haggkvist, R. (1987). On numerical semigroups, Semigroup Forum, 35, 63-68.
  • Harold J. S., Fractions of Numerical Semigroups. (2010). University of Tennessee, Doctoral Dis-sertations.
  • Assi, A. and Garcia-Sanchez, P. A. (2016). Numerical Semigroups and Applications, Springer: Cham, Switzerland.
  • Çelik, A. (2023). A note on the some class of symmetric numerical semigroups, Adıyaman Uni-versity Journal of Science, 13(1-2), 18-27.
  • Çelik, A. (2023). On Arf Closure Of Some Symmetrıc Numerıcal Semıgroups With Multıplıcıty P-Prıme, JP Journal of Algebra, Number Theory and Applications, 62(2), 109-122.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Robotik ve Kodlama
Bölüm Makaleler
Yazarlar

Sedat İlhan 0000-0002-6608-8848

Erken Görünüm Tarihi 28 Haziran 2024
Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 20 Mart 2024
Kabul Tarihi 17 Mayıs 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA İlhan, S. (2024). A Study On Maximal Embedding Dimension Numerical Semigroups. International Journal of Pure and Applied Sciences, 10(1), 303-308. https://doi.org/10.29132/ijpas.1456138
AMA İlhan S. A Study On Maximal Embedding Dimension Numerical Semigroups. International Journal of Pure and Applied Sciences. Haziran 2024;10(1):303-308. doi:10.29132/ijpas.1456138
Chicago İlhan, Sedat. “A Study On Maximal Embedding Dimension Numerical Semigroups”. International Journal of Pure and Applied Sciences 10, sy. 1 (Haziran 2024): 303-8. https://doi.org/10.29132/ijpas.1456138.
EndNote İlhan S (01 Haziran 2024) A Study On Maximal Embedding Dimension Numerical Semigroups. International Journal of Pure and Applied Sciences 10 1 303–308.
IEEE S. İlhan, “A Study On Maximal Embedding Dimension Numerical Semigroups”, International Journal of Pure and Applied Sciences, c. 10, sy. 1, ss. 303–308, 2024, doi: 10.29132/ijpas.1456138.
ISNAD İlhan, Sedat. “A Study On Maximal Embedding Dimension Numerical Semigroups”. International Journal of Pure and Applied Sciences 10/1 (Haziran 2024), 303-308. https://doi.org/10.29132/ijpas.1456138.
JAMA İlhan S. A Study On Maximal Embedding Dimension Numerical Semigroups. International Journal of Pure and Applied Sciences. 2024;10:303–308.
MLA İlhan, Sedat. “A Study On Maximal Embedding Dimension Numerical Semigroups”. International Journal of Pure and Applied Sciences, c. 10, sy. 1, 2024, ss. 303-8, doi:10.29132/ijpas.1456138.
Vancouver İlhan S. A Study On Maximal Embedding Dimension Numerical Semigroups. International Journal of Pure and Applied Sciences. 2024;10(1):303-8.

154501544915448154471544615445