Araştırma Makalesi
BibTex RIS Kaynak Göster

Doğal Elyaf Takviyeli (Jüt-Keten-Kenevir) Kompozit Malzemelerin Mekanik ve Metalografik Olarak İncelenmesi

Yıl 2023, Cilt: 9 Sayı: 2, 240 - 249, 31.12.2023
https://doi.org/10.29132/ijpas.1371357

Öz

Teknolojinin gelişmesiyle birlikte özellikle polimer esaslı saf haldeki malzemelerin yetersiz kalmasından dolayı kompozit malzemeler geliştirilmiş ve zamanla kullanım alanları çoğalmıştır. Son yıllarda artan çevre bilincinin getirdiği üretimde sürdürülebilirlik ve yenilenebilir, çevre dostu kompozitlerin kullanımını giderek yaygınlaşmaktadır. İçeriğindeki malzemelerden en az birisinin doğal olması ile tanımlanan biyokompozitlerin, alternatiflerine kıyasla çok daha çevre dostu olmalarına karşın, hidrofilik yapıda olmaları ve mekanik özelliklerinin zayıf olması sebebiyle sanayide kısıtlı alanda kullanılmaktadır. Bu çalışmada takviye malzemesi olarak kullanıla bilirliğini ortaya koymak için jüt, keten ve kenevir den oluşan doğal lif takviyeli epoksi kompozitlerin (NFRC) mekanik ve metalografik açıdan ortaya koyduğu farkındalıklar incelenmiştir. Üretim yöntemi olarak vakum destekli reçine transfer kalıplama (VDRTK) metodu kullanılmıştır. Metalografik olarak incelediğimizde; doğal liflerin yapı içerisinde yer alması ve epoksinin ara yüzeylere nüfuziyeti açısından problem oluşturmadığı görülmüştür. Çekme testleri, kompozitler arasında farklı mekanik davranışları ortaya çıkarmıştır; keten kompoziti en yüksek çekme mukavemetini (75,56 MPa) jüt ve kenevirin ise ketene kıyasla düşük çekme mukavetine sahip olduğu görülmektedir. Endüstriyel olarak üretilen yapay elyaflara (Cam elyafı) kıyasla mekanik ve mikro yapı açısından zayıf görünse de özellikle karmaşık yapılı parçaların üretiminde nüfuziyet ve ara bölgelere yerleşebilecek olmasından kaynaklı daha kullanışlı olduğu ortaya çıkmıştır.

Kaynakça

  • Abu-Sharkh, B. F. ve Hamid, H. (2004). Degradation study of date palm fibre/polypropylene composites in natural and artificial weathering: mechanical and thermal analysis. Polymer Degradation and Stability, 85(3), 967-973.
  • Ak, B. (1994). Composites reinforced with cellulose based fibers. Prog Polym Sci, 24, 221-274.
  • Baley, C. (2005). Fibres naturelles de renfort pour matériaux composites. Ed. Techniques Ingénieur.
  • Demircan, G., Kisa, M., Ozen, M. ve Acikgoz, A. (2021). Quasi-static penetration behavior of glass-fiber-reinforced epoxy nanocomposites. Mechanics of Composite Materials, 57, 503-516.
  • Fortea-Verdejo, M., Bumbaris, E., Burgstaller, C., Bismarck, A. ve Lee, K. Y. (2017). Plant fibre-reinforced polymers: where do we stand in terms of tensile properties?. International Materials Reviews, 62(8), 441-464.
  • Habibi, M., Laperrière, L. ve Hassanabadi, H. M. (2018). Replacing stitching and weaving in natural fiber reinforcement manufacturing, part 2: Mechanical behavior of flax fiber composite laminates. Journal of natural fibers.
  • Karthi, N., Kumaresan, K., Sathish, S., Gokulkumar, S., Prabhu, L. ve Vigneshkumar, N. (2020). An overview: Natural fiber reinforced hybrid composites, chemical treatments and application areas. Materials today: proceedings, 27, 2828-2834.
  • May-Pat, A., Valadez-González, A. ve Herrera-Franco, P. J. (2013). Effect of fiber surface treatments on the essential work of fracture of HDPE-continuous henequen fiber-reinforced composites. Polymer Testing, 32(6), 1114-1122.
  • Naskar, A. K., Keum, J. K. ve Boeman, R. G. (2016). Polymer matrix nanocomposites for automotive structural components. Nature nanotechnology, 11(12), 1026-1030.
  • Pradhan, P., Purohit, A., Mohapatra, S. S., Subudhi, C., Das, M., Singh, N. K. ve Sahoo, B. B. (2022). A computational investigation for the impact of particle size on the mechanical and thermal properties of teak wood dust (TWD) filled polyester composites. Materials Today: Proceedings, 63, 756-763.
  • Sassoni, E., Manzi, S., Motori, A., Montecchi, M. ve Canti, M. (2014). Novel sustainable hemp-based composites for application in the building industry: Physical, thermal and mechanical characterization. Energy and Buildings, 77, 219-226.
  • Selmi, S., Habibi, M., Laperrière, L. ve Kelouwani, S. (2022). Characterisation of natural flax fibers honeycomb: compression damage analysis using acoustic emission. Journal of Natural Fibers, 19(3), 1084-1093.
  • Shinoj, S., Visvanathan, R. ve Panigrahi, S. (2010). Towards industrial utilization of oil palm fibre: Physical and dielectric characterization of linear low density polyethylene composites and comparison with other fibre sources. Biosystems engineering, 106(4), 378-388.
  • Tahir, P. M., Ahmed, A. B., SaifulAzry, S. O. ve Ahmed, Z. (2011). Retting process of some bast plant fibres and its effect on fibre quality: a review. BioResources, 6(4).
  • Tanzi, M. C., Farè, S. ve Candiani, G. (2019). Foundations of biomaterials engineering. Academic Press. URL-1 https://www.filofibra.com.tr/tr/blog/iplik-cesitleri-ve-tekstil-sektorunde-kullanimi (Erişim tarihi:08.05.2022)
  • Väisänen, T., Das, O. ve Tomppo, L. (2017). A review on new bio-based constituents for natural fiber-polymer composites. Journal of Cleaner Production, 149, 582-596.
  • Wilson, A. (2017). Vehicle weight is the key driver for automotive composites. Reinforced Plastics, 61(2), 100-102.

Mechanical and Metallographic Investigation of Natural Fiber Reinforced (Jute-Linen-Hemp) Composite Materials

Yıl 2023, Cilt: 9 Sayı: 2, 240 - 249, 31.12.2023
https://doi.org/10.29132/ijpas.1371357

Öz

With the development of technology, especially due to the inadequacy of polymer-based pure materials, composite materials have been developed and their usage areas have increased over time. In recent years, the concern for sustainability and renewability in production brought about by increasing environmental awareness has made the use of environmentally friendly composites increasingly widespread. Although biocomposites, which are defined by the fact that at least one of the materials in their content is natural, are much more environmentally friendly compared to their alternatives, they are used in limited areas in the industry due to their hydrophilic structure and poor mechanical properties. In this study, the mechanical and metallographic properties of natural fiber reinforced epoxy composites (NFRC) consisting of jute, flax and hemp were investigated to demonstrate their suitability as reinforcement materials. Vacuum assisted resin transfer molding (VDRTK) method was used as the production method. When we examined metallographically; it was seen that the natural fibers were not a problem in terms of the presence of natural fibers in the structure and the penetration of epoxy into the interfaces. Tensile tests revealed different mechanical behaviors among the composites, with flax composite having the highest tensile strength (75.56 MPa) and jute and hemp having low tensile strength compared to flax. Although it seems to be weaker in terms of mechanical and microstructure compared to industrially produced man-made fibers (glass fiber), it has been revealed that it is more useful in the production of complex structured parts due to its ability to penetrate and settle in intermediate regions.

Kaynakça

  • Abu-Sharkh, B. F. ve Hamid, H. (2004). Degradation study of date palm fibre/polypropylene composites in natural and artificial weathering: mechanical and thermal analysis. Polymer Degradation and Stability, 85(3), 967-973.
  • Ak, B. (1994). Composites reinforced with cellulose based fibers. Prog Polym Sci, 24, 221-274.
  • Baley, C. (2005). Fibres naturelles de renfort pour matériaux composites. Ed. Techniques Ingénieur.
  • Demircan, G., Kisa, M., Ozen, M. ve Acikgoz, A. (2021). Quasi-static penetration behavior of glass-fiber-reinforced epoxy nanocomposites. Mechanics of Composite Materials, 57, 503-516.
  • Fortea-Verdejo, M., Bumbaris, E., Burgstaller, C., Bismarck, A. ve Lee, K. Y. (2017). Plant fibre-reinforced polymers: where do we stand in terms of tensile properties?. International Materials Reviews, 62(8), 441-464.
  • Habibi, M., Laperrière, L. ve Hassanabadi, H. M. (2018). Replacing stitching and weaving in natural fiber reinforcement manufacturing, part 2: Mechanical behavior of flax fiber composite laminates. Journal of natural fibers.
  • Karthi, N., Kumaresan, K., Sathish, S., Gokulkumar, S., Prabhu, L. ve Vigneshkumar, N. (2020). An overview: Natural fiber reinforced hybrid composites, chemical treatments and application areas. Materials today: proceedings, 27, 2828-2834.
  • May-Pat, A., Valadez-González, A. ve Herrera-Franco, P. J. (2013). Effect of fiber surface treatments on the essential work of fracture of HDPE-continuous henequen fiber-reinforced composites. Polymer Testing, 32(6), 1114-1122.
  • Naskar, A. K., Keum, J. K. ve Boeman, R. G. (2016). Polymer matrix nanocomposites for automotive structural components. Nature nanotechnology, 11(12), 1026-1030.
  • Pradhan, P., Purohit, A., Mohapatra, S. S., Subudhi, C., Das, M., Singh, N. K. ve Sahoo, B. B. (2022). A computational investigation for the impact of particle size on the mechanical and thermal properties of teak wood dust (TWD) filled polyester composites. Materials Today: Proceedings, 63, 756-763.
  • Sassoni, E., Manzi, S., Motori, A., Montecchi, M. ve Canti, M. (2014). Novel sustainable hemp-based composites for application in the building industry: Physical, thermal and mechanical characterization. Energy and Buildings, 77, 219-226.
  • Selmi, S., Habibi, M., Laperrière, L. ve Kelouwani, S. (2022). Characterisation of natural flax fibers honeycomb: compression damage analysis using acoustic emission. Journal of Natural Fibers, 19(3), 1084-1093.
  • Shinoj, S., Visvanathan, R. ve Panigrahi, S. (2010). Towards industrial utilization of oil palm fibre: Physical and dielectric characterization of linear low density polyethylene composites and comparison with other fibre sources. Biosystems engineering, 106(4), 378-388.
  • Tahir, P. M., Ahmed, A. B., SaifulAzry, S. O. ve Ahmed, Z. (2011). Retting process of some bast plant fibres and its effect on fibre quality: a review. BioResources, 6(4).
  • Tanzi, M. C., Farè, S. ve Candiani, G. (2019). Foundations of biomaterials engineering. Academic Press. URL-1 https://www.filofibra.com.tr/tr/blog/iplik-cesitleri-ve-tekstil-sektorunde-kullanimi (Erişim tarihi:08.05.2022)
  • Väisänen, T., Das, O. ve Tomppo, L. (2017). A review on new bio-based constituents for natural fiber-polymer composites. Journal of Cleaner Production, 149, 582-596.
  • Wilson, A. (2017). Vehicle weight is the key driver for automotive composites. Reinforced Plastics, 61(2), 100-102.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kompozit ve Hibrit Malzemeler
Bölüm Makaleler
Yazarlar

Yahya Taşgın 0000-0002-0902-336X

Seçkin Kandemir 0000-0002-5925-4123

Erken Görünüm Tarihi 29 Aralık 2023
Yayımlanma Tarihi 31 Aralık 2023
Gönderilme Tarihi 4 Ekim 2023
Kabul Tarihi 12 Ekim 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 9 Sayı: 2

Kaynak Göster

APA Taşgın, Y., & Kandemir, S. (2023). Doğal Elyaf Takviyeli (Jüt-Keten-Kenevir) Kompozit Malzemelerin Mekanik ve Metalografik Olarak İncelenmesi. International Journal of Pure and Applied Sciences, 9(2), 240-249. https://doi.org/10.29132/ijpas.1371357
AMA Taşgın Y, Kandemir S. Doğal Elyaf Takviyeli (Jüt-Keten-Kenevir) Kompozit Malzemelerin Mekanik ve Metalografik Olarak İncelenmesi. International Journal of Pure and Applied Sciences. Aralık 2023;9(2):240-249. doi:10.29132/ijpas.1371357
Chicago Taşgın, Yahya, ve Seçkin Kandemir. “Doğal Elyaf Takviyeli (Jüt-Keten-Kenevir) Kompozit Malzemelerin Mekanik Ve Metalografik Olarak İncelenmesi”. International Journal of Pure and Applied Sciences 9, sy. 2 (Aralık 2023): 240-49. https://doi.org/10.29132/ijpas.1371357.
EndNote Taşgın Y, Kandemir S (01 Aralık 2023) Doğal Elyaf Takviyeli (Jüt-Keten-Kenevir) Kompozit Malzemelerin Mekanik ve Metalografik Olarak İncelenmesi. International Journal of Pure and Applied Sciences 9 2 240–249.
IEEE Y. Taşgın ve S. Kandemir, “Doğal Elyaf Takviyeli (Jüt-Keten-Kenevir) Kompozit Malzemelerin Mekanik ve Metalografik Olarak İncelenmesi”, International Journal of Pure and Applied Sciences, c. 9, sy. 2, ss. 240–249, 2023, doi: 10.29132/ijpas.1371357.
ISNAD Taşgın, Yahya - Kandemir, Seçkin. “Doğal Elyaf Takviyeli (Jüt-Keten-Kenevir) Kompozit Malzemelerin Mekanik Ve Metalografik Olarak İncelenmesi”. International Journal of Pure and Applied Sciences 9/2 (Aralık 2023), 240-249. https://doi.org/10.29132/ijpas.1371357.
JAMA Taşgın Y, Kandemir S. Doğal Elyaf Takviyeli (Jüt-Keten-Kenevir) Kompozit Malzemelerin Mekanik ve Metalografik Olarak İncelenmesi. International Journal of Pure and Applied Sciences. 2023;9:240–249.
MLA Taşgın, Yahya ve Seçkin Kandemir. “Doğal Elyaf Takviyeli (Jüt-Keten-Kenevir) Kompozit Malzemelerin Mekanik Ve Metalografik Olarak İncelenmesi”. International Journal of Pure and Applied Sciences, c. 9, sy. 2, 2023, ss. 240-9, doi:10.29132/ijpas.1371357.
Vancouver Taşgın Y, Kandemir S. Doğal Elyaf Takviyeli (Jüt-Keten-Kenevir) Kompozit Malzemelerin Mekanik ve Metalografik Olarak İncelenmesi. International Journal of Pure and Applied Sciences. 2023;9(2):240-9.

154501544915448154471544615445