Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı Yosun Türlerinin Boya Çözeltilerinden Renk Giderme Etkinliğinin Karşılaştırmalı Olarak İncelenmesi

Yıl 2024, Cilt: 10 Sayı: 1, 136 - 151, 30.06.2024
https://doi.org/10.29132/ijpas.1446298

Öz

Bu çalışmada, tekstil endüstrisinde yaygın olarak kullanılan Asit Kırmızısı-88 (Sodyum 4-(2-hidroksi-1-naftalenylazo)-naftalensülfonat) çözeltisi, çeşitli mantarlarla boya giderimi amacıyla kullanılmıştır. Boya giderim etkinliği belirleme çalışmaları ilk olarak Chiloscyphus Polyanthus, Cinclidotus Pachylomoides ve Palustriella Falcata (Hedw) adlı üç karayosunu türü kullanılarak gerçekleştirilmiştir. Chiloscyphus Polyanthus, Cinclidotus Pachylomoides ve Palustriella Falcata (Hedw)'nın renk giderme etkinlikleri karşılaştırıldığında, artan boya konsantrasyonuyla en yüksek renk giderme etkinliğine sahip türün Palustriella Falcata (Hedw) için belirlendiği görülmüştür. Ayrıca bu yosun türleri ile foto-reaktör kullanılarak belirli konsantrasyon, pH ve UVA (Ultraviyole-A) lamba ışığı altında renk giderme etkinliği üzerindeki etkisi belirlenmiştir. Ayrıca bu üç karayosununun foto-katalitik çalışmalarda kullanılabileceği tespit edilmiştir. Sonuç olarak, bu üç yosun türünün hem ayrı ayrı hem de UVA ışığıyla renk giderici madde olarak kullanılabileceği tespit edilmiştir.

Kaynakça

  • Ahluwalia, S., Goyal, D. (2005). Removal of heavy metals by waste tea leaves from aqueous solution. Engineering in life Sciences, 5(2), 158-162.
  • Akkaya, G., Güzel, F. (2013). Bioremoval and recovery of Cu (II) and Pb (II) from aqueous solution by a novel biosorbent watermelon (Citrullus lanatus) seed hulls: kinetic study, equilibrium isotherm, SEM and FTIR analysis. Desalination and Water Treatment, 51(37-39), 7311-7322.
  • Akkaya, G., Güzel, F. (2013). Optimization of copper and lead removal by a novel biosorbent: cucumber (Cucumis Sativus) peels—kinetic, equilibrium, and desorption studies. Journal of Dispersion Science and Technology, 34(10), 1295-1307.
  • Akkaya, G., Güzel, F. (2014). Application of some domestic wastes as new low-cost biosorbents for removal of methylene blue: kinetic and equilibrium studies. Chemical Engineering Communications, 201(4), 557-578.
  • Argun, Y. A., Karacalı, A., Çalışır, U., Kılınç, N., Irak, H. (2016). Biosorption method and biosorbents for dye removal from industrial wastewater: a review.
  • Ayub, S., Khorasgani, F. C. (2014). Adsorption process for wastewater treatment by using coconut shell. Research Journal of Chemical Sciences, 4(12), 1-8.
  • Bazrafshan, E., Alipour, M. R., Mahvi, A. H. (2016). Textile wastewater treatment by application of combined chemical coagulation, electrocoagulation, and adsorption processes. Desalination and water treatment, 57(20), 9203-9215.
  • Bhatnagar, A., Minocha, A., Sillanpää, M. (2010). Adsorptive removal of cobalt from aqueous solution by utilizing lemon peel as biosorbent. Biochemical Engineering Journal, 48(2), 181-186.
  • Brinkman, A. H. (1929). Hepatics and sites: a short study in the ecology of hepatics. The Bryologist, 32(2), 29-30.
  • Brown, M. A., De Vito, S. C. (1993). Predicting azo dye toxicity. Critical reviews in environmental science and technology, 23(3), 249-324.
  • Butler, E., Hung, Y.-T., Ahmad, M. A., Fu, Y.-P. (2016). Treatment and management of industrial dye wastewater for water resources protection. Natural Resources and Control Processes, 187-232.
  • Chen, H. L., Liu, Y., Gong, X. Z., Hao, L. W., Sun, B. X., Li, X. Q. (2020). A Review on Water Footprint Research of Materials Industry. Paper presented at the Materials Science Forum.
  • Cooney, D. O. (1998). Adsorption design for wastewater treatment: CRC press.
  • Dalvand, A., Gholami, M., Joneidi, A., Mahmoodi, N. M. (2011). Dye removal, energy consumption and operating cost of electrocoagulation of textile wastewater as a clean process. Clean–Soil, Air, Water, 39(7), 665-672.
  • Dietz, T., Rosa, E. A. (1994). Rethinking the environmental impacts of population, affluence and technology. Human ecology review, 1(2), 277-300.
  • Dutta, S., Gupta, B., Srivastava, S. K., Gupta, A. K. (2021). Recent advances on the removal of dyes from wastewater using various adsorbents: A critical review. Materials Advances, 2(14), 4497-4531.
  • Eren, H. A., Pervin, A. (2006). Tekstil boyama atıksularının ozonlama ile renk giderimi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 11(1), 83-91.
  • Foo, K., Hameed, B. H. (2010). An overview of dye removal via activated carbon adsorption process. Desalination and Water Treatment, 19(1-3), 255-274.
  • Ganzenko, O., Huguenot, D., Van Hullebusch, E. D., Esposito, G., Oturan, M. A. (2014). Electrochemical advanced oxidation and biological processes for wastewater treatment: a review of the combined approaches. Environmental Science and Pollution Research, 21, 8493-8524.
  • Garg, U. K., Kaur, M., Garg, V., Sud, D. (2007). Removal of hexavalent chromium from aqueous solution by agricultural waste biomass. Journal of Hazardous materials, 140(1-2), 60-68.
  • Glime, J. M. (2007). Economic and ethnic uses of bryophytes. Flora of North America, 27(1919), 14-41.
  • Gonçalves, E. P. R., Soares, H. M. V. M., Boaventura, R. A. R., Machado, A. A. S. C., Esteves da Silva, J. C. G. (1994). Seasonal variations of heavy metals in sediments and aquatic mosses from the Cávado river basin (Portugal). Science of the Total Environment, 142(3), 143-156. doi:https://doi.org/10.1016/0048-9697(94)90322-0
  • González, A., Pokrovsky, O. (2014). Metal adsorption on mosses: toward a universal adsorption model. Journal of Colloid and Interface Science, 415, 169-178.
  • Grassi, M., Kaykioglu, G., Belgiorno, V., Lofrano, G. (2012). Removal of emerging contaminants from water and wastewater by adsorption process. Emerging compounds removal from wastewater: natural and solar based treatments, 15-37.
  • Grodzińska, K., Szarek-Łukaszewska, G. (2001). Response of mosses to the heavy metal deposition in Poland—an overview. Environmental Pollution, 114(3), 443-451.
  • Gueu, S., Yao, B., Adouby, K., Ado, G. (2007). Kinetics and thermodynamics study of lead adsorption on to activated carbons from coconut and seed hull of the palm tree. International Journal of Environmental Science & Technology, 4, 11-17.
  • Güzel, F., Yakut, H., Topal, G. (2008). Determination of kinetic and equilibrium parameters of the batch adsorption of Mn (II), Co (II), Ni (II) and Cu (II) from aqueous solution by black carrot (Daucus carota L.) residues. Journal of Hazardous materials, 153(3), 1275-1287.
  • Hasanpour, M., Hatami, M. (2020). Photocatalytic performance of aerogels for organic dyes removal from wastewaters: Review study. Journal of Molecular Liquids, 309, 113094.
  • Jegan, J., Vijayaraghavan, J., Bhagavathi Pushpa, T., Sardhar Basha, S. (2016). Application of seaweeds for the removal of cationic dye from aqueous solution. Desalination and Water Treatment, 57(53), 25812-25821.
  • Jiuhui, Q. (2008). Research progress of novel adsorption processes in water purification: a review. Journal of environmental sciences, 20(1), 1-13.
  • Karacakaya, P., Kılıç, N. K., Duygu, E., Dönmez, G. (2009). Stimulation of reactive dye removal by cyanobacteria in media containing triacontanol hormone. Journal of Hazardous materials, 172(2-3), 1635-1639.
  • Katheresan, V., Kansedo, J., Lau, S. Y. (2018). Efficiency of various recent wastewater dye removal methods: A review. Journal of environmental chemical engineering, 6(4), 4676-4697.
  • Kaykhaii, M., Sasani, M., Marghzari, S. (2018). Removal of dyes from the environment by adsorption process. Chem. Mater. Eng, 6(2), 31-35.
  • Kelly, M. G., Girton, C., Whitton, B. A. (1987). Use of moss-bags for monitoring heavy metals in rivers. Water Research, 21(11), 1429-1435. doi:https://doi.org/10.1016/0043-1354(87)90019-4
  • Khan, Z., Shahbaz, M., Ahmad, M., Rabbi, F., Siqun, Y. (2019). Total retail goods consumption, industry structure, urban population growth and pollution intensity: an application of panel data analysis for China. Environmental Science and Pollution Research, 26, 32224-32242.
  • Khormaei, M., Nasernejad, B., Edrisi, M., Eslamzadeh, T. (2007). Copper biosorption from aqueous solutions by sour orange residue. Journal of Hazardous materials, 149(2), 269-274.
  • Kocaer, F. O., Alkan, U. (2002). Boyarmadde içeren tekstil atiksularinin aritim alternatifleri. Uludag Üniversitesi Mühendislik Mimarlik Fakültesi Dergisi, 7, 47-55.
  • Koz, B., Cevik, U. (2014). Lead adsorption capacity of some moss species used for heavy metal analysis. Ecological Indicators, 36, 491-494. doi:https://doi.org/10.1016/j.ecolind.2013.08.018
  • Kumar, P. S., Joshiba, G. J., Femina, C. C., Varshini, P., Priyadharshini, S., Karthick, M., Jothirani, R. (2019). A critical review on recent developments in the low-cost adsorption of dyes from wastewater. Desalin. Water Treat, 172, 395-416.
  • Leonard, J., Lygo, B., Procter, G. (2013). Advanced practical organic chemistry: CRC press.
  • Lerche, C., Philipsen, P., Wulf, H. (2017). UVR: sun, lamps, pigmentation and vitamin D. Photochemical & Photobiological Sciences, 16, 291-301.
  • Li, W., Mu, B., Yang, Y. (2019). Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology. Bioresource Technology, 277, 157-170.
  • Liang, L., Wang, Z., Li, J. (2019). The effect of urbanization on environmental pollution in rapidly developing urban agglomerations. Journal of cleaner production, 237, 117649.
  • Lin, S., Qi, H., Hou, P., Liu, K. (2023). Resource recovery from textile wastewater: Dye, salt, and water regeneration using solar-driven interfacial evaporation. Journal of Cleaner Production, 391, 136148.
  • Liu, Y., Zhou, Y., Wu, W. (2015). Assessing the impact of population, income and technology on energy consumption and industrial pollutant emissions in China. Applied Energy, 155, 904-917.
  • Marešová, J., Pipíška, M., Rozložník, M., Horník, M., Remenárová, L., Augustín, J. (2011). Cobalt and strontium sorption by moss biosorbent: Modeling of single and binary metal systems. Desalination, 266(1-3), 134-141.
  • Martinez, M., Miralles, N., Hidalgo, S., Fiol, N., Villaescusa, I., Poch, J. (2006). Removal of lead (II) and cadmium (II) from aqueous solutions using grape stalk waste. Journal of Hazardous materials, 133(1-3), 203-211.
  • Mikosz, J. (2015). Determination of permissible industrial pollution load at a municipal wastewater treatment plant. International journal of environmental science and technology, 12, 827-836.
  • Mouvet, C. (1984). Accumulation of chromium and copper by the aquatic moss fontinalis antipyretica L. ex hedw transplanted in a metal‐contaminated river. Environmental Technology Letters, 5(12), 541-548. doi:10.1080/09593338409384309
  • Nath, J., Das, A., Ray, L. (2015). Biosorption of Malachite Green from Aqueous Solution Using Resting and Immobilised Biomass of Bacillus cereus M116 (MTCC 5521). Indian Chemical Engineer, 57(1), 82-100.
  • Naushad, M., Lichtfouse, E. (2019). Green materials for wastewater treatment (Vol. 38): Springer.
  • Nigam, P., Banat, I. M., Singh, D., Marchant, R. (1996). Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes. Process Biochemistry, 31(5), 435-442.
  • Padmesh, T., Vijayaraghavan, K., Anand, K., Velan, M. (2008). Biosorption of basic dyes onto Azolla filiculoides: equilibrium and kinetic modeling. Asia‐Pacific Journal of Chemical Engineering, 3(4), 368-373.
  • Pandey, A., Sadavarte, P., Rao, A. B., Venkataraman, C. (2014). Trends in multi-pollutant emissions from a technology-linked inventory for India: II. Residential, agricultural and informal industry sectors. Atmospheric Environment, 99, 341-352.
  • Periyasamy, A. P. (2024). Recent Advances in the Remediation of Textile-Dye-Containing Wastewater: Prioritizing Human Health and Sustainable Wastewater Treatment. Sustainability, 16(2), 495.
  • Piaskowski, K., Świderska-Dąbrowska, R., Zarzycki, P. K. (2018). Dye removal from water and wastewater using various physical, chemical, and biological processes. Journal of AOAC International, 101(5), 1371-1384.
  • Pipíška, M., Zarodňanská, S., Horník, M., Ďuriška, L., Holub, M., Šafařík, I. (2020). Magnetically functionalized moss biomass as biosorbent for efficient Co2+ ions and thioflavin T removal. Materials, 13(16), 3619.
  • Pushpa, T. B., Vijayaraghavan, J., Basha, S. S., Sekaran, V., Vijayaraghavan, K., Jegan, J. (2015). Investigation on removal of malachite green using EM based compost as adsorbent. Ecotoxicology and Environmental Safety, 118, 177-182.
  • Rathi, B. S., Kumar, P. S. (2021). Application of adsorption process for effective removal of emerging contaminants from water and wastewater. Environmental Pollution, 280, 116995.
  • Riaz, M., Nadeem, R., Hanif, M. A., Ansari, T. M. (2009). Pb (II) biosorption from hazardous aqueous streams using Gossypium hirsutum (Cotton) waste biomass. Journal of Hazardous materials, 161(1), 88-94.
  • Russell, D. L. (2019). Practical wastewater treatment: John Wiley & Sons.
  • Saravanan, A., Kumar, P. S., Jeevanantham, S., Karishma, S., Tajsabreen, B., Yaashikaa, P., Reshma, B. (2021). Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. Chemosphere, 280, 130595.
  • Sayğılı, H., Akkaya Sayğılı, G., Güzel, F. (2018). Surface modification of black tea waste using bleaching technique for enhanced biosorption of Methylene blue in aqueous environment. Separation Science and Technology, 53(18), 2882-2895.
  • Sen, N., Bektas, N., Tekbas, M., Yatmaz, H. C. (2013). Investigation of Total Organic Carbon (TOC) Removal in Domestic Wastewater by Photo-Fenton Process. Ekoloji, 22(88), 58-64.
  • Sharma, S. (2009). Study on impact of heavy metal accumulation in Brachythecium populeum (Hedw.) BSG. Ecological Indicators, 9(4), 807-811.
  • Singh, K., Talat, M., Hasan, S. (2006). Removal of lead from aqueous solutions by agricultural waste maize bran. Bioresource Technology, 97(16), 2124-2130.
  • Sliney, D. H. (2007). Radiometric quantities and units used in photobiology and photochemistry: recommendations of the Commission Internationale de l’Eclairage (International Commission on Illumination). Photochemistry and Photobiology, 83(2), 425-432.
  • Society, T. B. B. (2003). Palustriella falcata. Retrieved from https://www.britishbryologicalsociety.org.uk/learning/species-finder/palustriella-falcata/
  • Society, T. B. B. (2014). Chiloscyphus polyanthos. Retrieved from https://www.britishbryologicalsociety.org.uk/learning/species-finder/chiloscyphus-polyanthos/
  • Şen, S., Demirer, G. (2003). Anaerobic treatment of real textile wastewater with a fluidized bed reactor. Water Research, 37(8), 1868-1878.
  • Uyar, G., Oren, M., Ince, M. (2007). Atmospheric heavy metal deposition in Duzce province by using mosses as biomonitors. Fresenius Environmental Bulletin, 16(2), 145.
  • Uzal, N., Yılmaz, L., Yetiş, Ü. (2005). İndigo boyama atıklarının ön arıtımı: kimyasal çöktürme ön filtrasyon süreçlerinin karşılaştırılması, 6. Ulusal Çevre Müh. Kongresi, 429, 437.
  • Vosough, M., Khayati, G. R., Sharafi, S. (2024). A novel nanocomposite for photocatalytic rhodamine B dye removal from wastewater using visible light. Environmental Research, 118415.
  • Whitton, B., PJ, S., JD, W. (1981). Use of plants to monitor heavy metals in rivers.
  • Wikipedia. (2019). Cinclidotus Pachylomoides Retrieved from https://de.wikipedia.org/wiki/Cinclidotus
  • Zhu, S., Xu, J., Yu, W., Kuang, Y., Wang, B., Ying, G., Chen, K. (2022). Simultaneous production of clean water and organic dye from dyeing wastewater by reusable lignin-derived porous carbon. Industrial Crops and Products, 187, 115314.

Comparative Investigation of the Color Removal Efficiency of Different Mosses Species from Dye Solutions

Yıl 2024, Cilt: 10 Sayı: 1, 136 - 151, 30.06.2024
https://doi.org/10.29132/ijpas.1446298

Öz

In this study, Acid Red 88 (Sodium 4-(2-hydroxy-1-naphthalenylazo)-naphthalenesulfonate) dye solution, which is used extensively in textile industry, was used. Dye removal efficiency determination studies were firstly performed by using three moss species, Chiloscyphus polyanthus, Cinclidotus pachylomoides and Palustriella Falcata (Hedw). In the case of comparison of color removal efficiency of Chiloscyphus polyanthus, Cinclidotus Pachylomoides and Palustriella Falcata (Hedw), it was seen that the species with the highest color removal efficiency with increasing dye concentration was determined for Palustriella Falcata (Hedw). Furthermore, the effect on color removal efficiency was determined at specific concentration, pH and under UVA (Ultraviolet-A) lamp light by using a photo reactor with these mosses species. It has also been detected that these three mosses can be used in photocatalytic studies. Thus, these three mosses species can be employed as color removing material both separately and with UVA light.

Kaynakça

  • Ahluwalia, S., Goyal, D. (2005). Removal of heavy metals by waste tea leaves from aqueous solution. Engineering in life Sciences, 5(2), 158-162.
  • Akkaya, G., Güzel, F. (2013). Bioremoval and recovery of Cu (II) and Pb (II) from aqueous solution by a novel biosorbent watermelon (Citrullus lanatus) seed hulls: kinetic study, equilibrium isotherm, SEM and FTIR analysis. Desalination and Water Treatment, 51(37-39), 7311-7322.
  • Akkaya, G., Güzel, F. (2013). Optimization of copper and lead removal by a novel biosorbent: cucumber (Cucumis Sativus) peels—kinetic, equilibrium, and desorption studies. Journal of Dispersion Science and Technology, 34(10), 1295-1307.
  • Akkaya, G., Güzel, F. (2014). Application of some domestic wastes as new low-cost biosorbents for removal of methylene blue: kinetic and equilibrium studies. Chemical Engineering Communications, 201(4), 557-578.
  • Argun, Y. A., Karacalı, A., Çalışır, U., Kılınç, N., Irak, H. (2016). Biosorption method and biosorbents for dye removal from industrial wastewater: a review.
  • Ayub, S., Khorasgani, F. C. (2014). Adsorption process for wastewater treatment by using coconut shell. Research Journal of Chemical Sciences, 4(12), 1-8.
  • Bazrafshan, E., Alipour, M. R., Mahvi, A. H. (2016). Textile wastewater treatment by application of combined chemical coagulation, electrocoagulation, and adsorption processes. Desalination and water treatment, 57(20), 9203-9215.
  • Bhatnagar, A., Minocha, A., Sillanpää, M. (2010). Adsorptive removal of cobalt from aqueous solution by utilizing lemon peel as biosorbent. Biochemical Engineering Journal, 48(2), 181-186.
  • Brinkman, A. H. (1929). Hepatics and sites: a short study in the ecology of hepatics. The Bryologist, 32(2), 29-30.
  • Brown, M. A., De Vito, S. C. (1993). Predicting azo dye toxicity. Critical reviews in environmental science and technology, 23(3), 249-324.
  • Butler, E., Hung, Y.-T., Ahmad, M. A., Fu, Y.-P. (2016). Treatment and management of industrial dye wastewater for water resources protection. Natural Resources and Control Processes, 187-232.
  • Chen, H. L., Liu, Y., Gong, X. Z., Hao, L. W., Sun, B. X., Li, X. Q. (2020). A Review on Water Footprint Research of Materials Industry. Paper presented at the Materials Science Forum.
  • Cooney, D. O. (1998). Adsorption design for wastewater treatment: CRC press.
  • Dalvand, A., Gholami, M., Joneidi, A., Mahmoodi, N. M. (2011). Dye removal, energy consumption and operating cost of electrocoagulation of textile wastewater as a clean process. Clean–Soil, Air, Water, 39(7), 665-672.
  • Dietz, T., Rosa, E. A. (1994). Rethinking the environmental impacts of population, affluence and technology. Human ecology review, 1(2), 277-300.
  • Dutta, S., Gupta, B., Srivastava, S. K., Gupta, A. K. (2021). Recent advances on the removal of dyes from wastewater using various adsorbents: A critical review. Materials Advances, 2(14), 4497-4531.
  • Eren, H. A., Pervin, A. (2006). Tekstil boyama atıksularının ozonlama ile renk giderimi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 11(1), 83-91.
  • Foo, K., Hameed, B. H. (2010). An overview of dye removal via activated carbon adsorption process. Desalination and Water Treatment, 19(1-3), 255-274.
  • Ganzenko, O., Huguenot, D., Van Hullebusch, E. D., Esposito, G., Oturan, M. A. (2014). Electrochemical advanced oxidation and biological processes for wastewater treatment: a review of the combined approaches. Environmental Science and Pollution Research, 21, 8493-8524.
  • Garg, U. K., Kaur, M., Garg, V., Sud, D. (2007). Removal of hexavalent chromium from aqueous solution by agricultural waste biomass. Journal of Hazardous materials, 140(1-2), 60-68.
  • Glime, J. M. (2007). Economic and ethnic uses of bryophytes. Flora of North America, 27(1919), 14-41.
  • Gonçalves, E. P. R., Soares, H. M. V. M., Boaventura, R. A. R., Machado, A. A. S. C., Esteves da Silva, J. C. G. (1994). Seasonal variations of heavy metals in sediments and aquatic mosses from the Cávado river basin (Portugal). Science of the Total Environment, 142(3), 143-156. doi:https://doi.org/10.1016/0048-9697(94)90322-0
  • González, A., Pokrovsky, O. (2014). Metal adsorption on mosses: toward a universal adsorption model. Journal of Colloid and Interface Science, 415, 169-178.
  • Grassi, M., Kaykioglu, G., Belgiorno, V., Lofrano, G. (2012). Removal of emerging contaminants from water and wastewater by adsorption process. Emerging compounds removal from wastewater: natural and solar based treatments, 15-37.
  • Grodzińska, K., Szarek-Łukaszewska, G. (2001). Response of mosses to the heavy metal deposition in Poland—an overview. Environmental Pollution, 114(3), 443-451.
  • Gueu, S., Yao, B., Adouby, K., Ado, G. (2007). Kinetics and thermodynamics study of lead adsorption on to activated carbons from coconut and seed hull of the palm tree. International Journal of Environmental Science & Technology, 4, 11-17.
  • Güzel, F., Yakut, H., Topal, G. (2008). Determination of kinetic and equilibrium parameters of the batch adsorption of Mn (II), Co (II), Ni (II) and Cu (II) from aqueous solution by black carrot (Daucus carota L.) residues. Journal of Hazardous materials, 153(3), 1275-1287.
  • Hasanpour, M., Hatami, M. (2020). Photocatalytic performance of aerogels for organic dyes removal from wastewaters: Review study. Journal of Molecular Liquids, 309, 113094.
  • Jegan, J., Vijayaraghavan, J., Bhagavathi Pushpa, T., Sardhar Basha, S. (2016). Application of seaweeds for the removal of cationic dye from aqueous solution. Desalination and Water Treatment, 57(53), 25812-25821.
  • Jiuhui, Q. (2008). Research progress of novel adsorption processes in water purification: a review. Journal of environmental sciences, 20(1), 1-13.
  • Karacakaya, P., Kılıç, N. K., Duygu, E., Dönmez, G. (2009). Stimulation of reactive dye removal by cyanobacteria in media containing triacontanol hormone. Journal of Hazardous materials, 172(2-3), 1635-1639.
  • Katheresan, V., Kansedo, J., Lau, S. Y. (2018). Efficiency of various recent wastewater dye removal methods: A review. Journal of environmental chemical engineering, 6(4), 4676-4697.
  • Kaykhaii, M., Sasani, M., Marghzari, S. (2018). Removal of dyes from the environment by adsorption process. Chem. Mater. Eng, 6(2), 31-35.
  • Kelly, M. G., Girton, C., Whitton, B. A. (1987). Use of moss-bags for monitoring heavy metals in rivers. Water Research, 21(11), 1429-1435. doi:https://doi.org/10.1016/0043-1354(87)90019-4
  • Khan, Z., Shahbaz, M., Ahmad, M., Rabbi, F., Siqun, Y. (2019). Total retail goods consumption, industry structure, urban population growth and pollution intensity: an application of panel data analysis for China. Environmental Science and Pollution Research, 26, 32224-32242.
  • Khormaei, M., Nasernejad, B., Edrisi, M., Eslamzadeh, T. (2007). Copper biosorption from aqueous solutions by sour orange residue. Journal of Hazardous materials, 149(2), 269-274.
  • Kocaer, F. O., Alkan, U. (2002). Boyarmadde içeren tekstil atiksularinin aritim alternatifleri. Uludag Üniversitesi Mühendislik Mimarlik Fakültesi Dergisi, 7, 47-55.
  • Koz, B., Cevik, U. (2014). Lead adsorption capacity of some moss species used for heavy metal analysis. Ecological Indicators, 36, 491-494. doi:https://doi.org/10.1016/j.ecolind.2013.08.018
  • Kumar, P. S., Joshiba, G. J., Femina, C. C., Varshini, P., Priyadharshini, S., Karthick, M., Jothirani, R. (2019). A critical review on recent developments in the low-cost adsorption of dyes from wastewater. Desalin. Water Treat, 172, 395-416.
  • Leonard, J., Lygo, B., Procter, G. (2013). Advanced practical organic chemistry: CRC press.
  • Lerche, C., Philipsen, P., Wulf, H. (2017). UVR: sun, lamps, pigmentation and vitamin D. Photochemical & Photobiological Sciences, 16, 291-301.
  • Li, W., Mu, B., Yang, Y. (2019). Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology. Bioresource Technology, 277, 157-170.
  • Liang, L., Wang, Z., Li, J. (2019). The effect of urbanization on environmental pollution in rapidly developing urban agglomerations. Journal of cleaner production, 237, 117649.
  • Lin, S., Qi, H., Hou, P., Liu, K. (2023). Resource recovery from textile wastewater: Dye, salt, and water regeneration using solar-driven interfacial evaporation. Journal of Cleaner Production, 391, 136148.
  • Liu, Y., Zhou, Y., Wu, W. (2015). Assessing the impact of population, income and technology on energy consumption and industrial pollutant emissions in China. Applied Energy, 155, 904-917.
  • Marešová, J., Pipíška, M., Rozložník, M., Horník, M., Remenárová, L., Augustín, J. (2011). Cobalt and strontium sorption by moss biosorbent: Modeling of single and binary metal systems. Desalination, 266(1-3), 134-141.
  • Martinez, M., Miralles, N., Hidalgo, S., Fiol, N., Villaescusa, I., Poch, J. (2006). Removal of lead (II) and cadmium (II) from aqueous solutions using grape stalk waste. Journal of Hazardous materials, 133(1-3), 203-211.
  • Mikosz, J. (2015). Determination of permissible industrial pollution load at a municipal wastewater treatment plant. International journal of environmental science and technology, 12, 827-836.
  • Mouvet, C. (1984). Accumulation of chromium and copper by the aquatic moss fontinalis antipyretica L. ex hedw transplanted in a metal‐contaminated river. Environmental Technology Letters, 5(12), 541-548. doi:10.1080/09593338409384309
  • Nath, J., Das, A., Ray, L. (2015). Biosorption of Malachite Green from Aqueous Solution Using Resting and Immobilised Biomass of Bacillus cereus M116 (MTCC 5521). Indian Chemical Engineer, 57(1), 82-100.
  • Naushad, M., Lichtfouse, E. (2019). Green materials for wastewater treatment (Vol. 38): Springer.
  • Nigam, P., Banat, I. M., Singh, D., Marchant, R. (1996). Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes. Process Biochemistry, 31(5), 435-442.
  • Padmesh, T., Vijayaraghavan, K., Anand, K., Velan, M. (2008). Biosorption of basic dyes onto Azolla filiculoides: equilibrium and kinetic modeling. Asia‐Pacific Journal of Chemical Engineering, 3(4), 368-373.
  • Pandey, A., Sadavarte, P., Rao, A. B., Venkataraman, C. (2014). Trends in multi-pollutant emissions from a technology-linked inventory for India: II. Residential, agricultural and informal industry sectors. Atmospheric Environment, 99, 341-352.
  • Periyasamy, A. P. (2024). Recent Advances in the Remediation of Textile-Dye-Containing Wastewater: Prioritizing Human Health and Sustainable Wastewater Treatment. Sustainability, 16(2), 495.
  • Piaskowski, K., Świderska-Dąbrowska, R., Zarzycki, P. K. (2018). Dye removal from water and wastewater using various physical, chemical, and biological processes. Journal of AOAC International, 101(5), 1371-1384.
  • Pipíška, M., Zarodňanská, S., Horník, M., Ďuriška, L., Holub, M., Šafařík, I. (2020). Magnetically functionalized moss biomass as biosorbent for efficient Co2+ ions and thioflavin T removal. Materials, 13(16), 3619.
  • Pushpa, T. B., Vijayaraghavan, J., Basha, S. S., Sekaran, V., Vijayaraghavan, K., Jegan, J. (2015). Investigation on removal of malachite green using EM based compost as adsorbent. Ecotoxicology and Environmental Safety, 118, 177-182.
  • Rathi, B. S., Kumar, P. S. (2021). Application of adsorption process for effective removal of emerging contaminants from water and wastewater. Environmental Pollution, 280, 116995.
  • Riaz, M., Nadeem, R., Hanif, M. A., Ansari, T. M. (2009). Pb (II) biosorption from hazardous aqueous streams using Gossypium hirsutum (Cotton) waste biomass. Journal of Hazardous materials, 161(1), 88-94.
  • Russell, D. L. (2019). Practical wastewater treatment: John Wiley & Sons.
  • Saravanan, A., Kumar, P. S., Jeevanantham, S., Karishma, S., Tajsabreen, B., Yaashikaa, P., Reshma, B. (2021). Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. Chemosphere, 280, 130595.
  • Sayğılı, H., Akkaya Sayğılı, G., Güzel, F. (2018). Surface modification of black tea waste using bleaching technique for enhanced biosorption of Methylene blue in aqueous environment. Separation Science and Technology, 53(18), 2882-2895.
  • Sen, N., Bektas, N., Tekbas, M., Yatmaz, H. C. (2013). Investigation of Total Organic Carbon (TOC) Removal in Domestic Wastewater by Photo-Fenton Process. Ekoloji, 22(88), 58-64.
  • Sharma, S. (2009). Study on impact of heavy metal accumulation in Brachythecium populeum (Hedw.) BSG. Ecological Indicators, 9(4), 807-811.
  • Singh, K., Talat, M., Hasan, S. (2006). Removal of lead from aqueous solutions by agricultural waste maize bran. Bioresource Technology, 97(16), 2124-2130.
  • Sliney, D. H. (2007). Radiometric quantities and units used in photobiology and photochemistry: recommendations of the Commission Internationale de l’Eclairage (International Commission on Illumination). Photochemistry and Photobiology, 83(2), 425-432.
  • Society, T. B. B. (2003). Palustriella falcata. Retrieved from https://www.britishbryologicalsociety.org.uk/learning/species-finder/palustriella-falcata/
  • Society, T. B. B. (2014). Chiloscyphus polyanthos. Retrieved from https://www.britishbryologicalsociety.org.uk/learning/species-finder/chiloscyphus-polyanthos/
  • Şen, S., Demirer, G. (2003). Anaerobic treatment of real textile wastewater with a fluidized bed reactor. Water Research, 37(8), 1868-1878.
  • Uyar, G., Oren, M., Ince, M. (2007). Atmospheric heavy metal deposition in Duzce province by using mosses as biomonitors. Fresenius Environmental Bulletin, 16(2), 145.
  • Uzal, N., Yılmaz, L., Yetiş, Ü. (2005). İndigo boyama atıklarının ön arıtımı: kimyasal çöktürme ön filtrasyon süreçlerinin karşılaştırılması, 6. Ulusal Çevre Müh. Kongresi, 429, 437.
  • Vosough, M., Khayati, G. R., Sharafi, S. (2024). A novel nanocomposite for photocatalytic rhodamine B dye removal from wastewater using visible light. Environmental Research, 118415.
  • Whitton, B., PJ, S., JD, W. (1981). Use of plants to monitor heavy metals in rivers.
  • Wikipedia. (2019). Cinclidotus Pachylomoides Retrieved from https://de.wikipedia.org/wiki/Cinclidotus
  • Zhu, S., Xu, J., Yu, W., Kuang, Y., Wang, B., Ying, G., Chen, K. (2022). Simultaneous production of clean water and organic dye from dyeing wastewater by reusable lignin-derived porous carbon. Industrial Crops and Products, 187, 115314.
Toplam 76 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Analitik Kimya (Diğer)
Bölüm Makaleler
Yazarlar

Salih Paşa 0000-0002-4792-8821

İbrahim Demir 0000-0003-2709-8223

Yasin Aytepe 0000-0001-7162-8119

Erken Görünüm Tarihi 28 Haziran 2024
Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 2 Mart 2024
Kabul Tarihi 11 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 10 Sayı: 1

Kaynak Göster

APA Paşa, S., Demir, İ., & Aytepe, Y. (2024). Comparative Investigation of the Color Removal Efficiency of Different Mosses Species from Dye Solutions. International Journal of Pure and Applied Sciences, 10(1), 136-151. https://doi.org/10.29132/ijpas.1446298
AMA Paşa S, Demir İ, Aytepe Y. Comparative Investigation of the Color Removal Efficiency of Different Mosses Species from Dye Solutions. International Journal of Pure and Applied Sciences. Haziran 2024;10(1):136-151. doi:10.29132/ijpas.1446298
Chicago Paşa, Salih, İbrahim Demir, ve Yasin Aytepe. “Comparative Investigation of the Color Removal Efficiency of Different Mosses Species from Dye Solutions”. International Journal of Pure and Applied Sciences 10, sy. 1 (Haziran 2024): 136-51. https://doi.org/10.29132/ijpas.1446298.
EndNote Paşa S, Demir İ, Aytepe Y (01 Haziran 2024) Comparative Investigation of the Color Removal Efficiency of Different Mosses Species from Dye Solutions. International Journal of Pure and Applied Sciences 10 1 136–151.
IEEE S. Paşa, İ. Demir, ve Y. Aytepe, “Comparative Investigation of the Color Removal Efficiency of Different Mosses Species from Dye Solutions”, International Journal of Pure and Applied Sciences, c. 10, sy. 1, ss. 136–151, 2024, doi: 10.29132/ijpas.1446298.
ISNAD Paşa, Salih vd. “Comparative Investigation of the Color Removal Efficiency of Different Mosses Species from Dye Solutions”. International Journal of Pure and Applied Sciences 10/1 (Haziran 2024), 136-151. https://doi.org/10.29132/ijpas.1446298.
JAMA Paşa S, Demir İ, Aytepe Y. Comparative Investigation of the Color Removal Efficiency of Different Mosses Species from Dye Solutions. International Journal of Pure and Applied Sciences. 2024;10:136–151.
MLA Paşa, Salih vd. “Comparative Investigation of the Color Removal Efficiency of Different Mosses Species from Dye Solutions”. International Journal of Pure and Applied Sciences, c. 10, sy. 1, 2024, ss. 136-51, doi:10.29132/ijpas.1446298.
Vancouver Paşa S, Demir İ, Aytepe Y. Comparative Investigation of the Color Removal Efficiency of Different Mosses Species from Dye Solutions. International Journal of Pure and Applied Sciences. 2024;10(1):136-51.

154501544915448154471544615445