In this article, it is examine some the numerical semigroups W and W/2 such that W= < p, q > and W/2= < p, p+q/2, q > where p < q and p, q are odd natural numbers.
Barucci, V., Dobbs, D. E. and Fontana, M. (1997). Maximality properties in numerical semigroups and applications to one-dimensional analytically irreducible local domains, Mem. Amer. Math. Soc. 125, no. 598.
Rosales, J. C. and Garcia-Sanchez, P. A. (2005).Pseudo-symmetric numerical semigroups with three generators , Journal of Algebra, 291(1), 46-54.
Rosales, J. C. (1996). On symmetric numerical semigroups. J. Algebra, 182(2), 422–434.
Rosales, J.C. and Garcia-Sanchez , P.A. (2008). Every numerical semigroup is one half of a symmetric numerical semigroup, Proc. Amer. Math. Soc., 136, 475-477.
Süer, M. and Çelik, Ö. (2022). On Delta Sets of Some Pseudo-Symmetric Numerical Semigroups with Embedding Dimension Three, Bitlis Eren University Journal of Science, 3(1), 335-343.
Froberg, R., Gotlieb, C. and Haggkvist, R. (1987). On numerical semigroups, Semigroup Forum, 35, 63-68.
Harold J. S., Fractions of Numerical Semigroups. (2010). University of Tennessee, Doctoral Dis-sertations.
Assi, A. and Garcia-Sanchez, P. A. (2016). Numerical Semigroups and Applications, Springer: Cham, Switzerland.
Çelik, A. (2023). A note on the some class of symmetric numerical semigroups, Adıyaman Uni-versity Journal of Science, 13(1-2), 18-27.
Çelik, A. (2023). On Arf Closure Of Some Symmetrıc Numerıcal Semıgroups With Multıplıcıty P-Prıme, JP Journal of Algebra, Number Theory and Applications, 62(2), 109-122.
Barucci, V., Dobbs, D. E. and Fontana, M. (1997). Maximality properties in numerical semigroups and applications to one-dimensional analytically irreducible local domains, Mem. Amer. Math. Soc. 125, no. 598.
Rosales, J. C. and Garcia-Sanchez, P. A. (2005).Pseudo-symmetric numerical semigroups with three generators , Journal of Algebra, 291(1), 46-54.
Rosales, J. C. (1996). On symmetric numerical semigroups. J. Algebra, 182(2), 422–434.
Rosales, J.C. and Garcia-Sanchez , P.A. (2008). Every numerical semigroup is one half of a symmetric numerical semigroup, Proc. Amer. Math. Soc., 136, 475-477.
Süer, M. and Çelik, Ö. (2022). On Delta Sets of Some Pseudo-Symmetric Numerical Semigroups with Embedding Dimension Three, Bitlis Eren University Journal of Science, 3(1), 335-343.
Froberg, R., Gotlieb, C. and Haggkvist, R. (1987). On numerical semigroups, Semigroup Forum, 35, 63-68.
Harold J. S., Fractions of Numerical Semigroups. (2010). University of Tennessee, Doctoral Dis-sertations.
Assi, A. and Garcia-Sanchez, P. A. (2016). Numerical Semigroups and Applications, Springer: Cham, Switzerland.
Çelik, A. (2023). A note on the some class of symmetric numerical semigroups, Adıyaman Uni-versity Journal of Science, 13(1-2), 18-27.
Çelik, A. (2023). On Arf Closure Of Some Symmetrıc Numerıcal Semıgroups With Multıplıcıty P-Prıme, JP Journal of Algebra, Number Theory and Applications, 62(2), 109-122.
İlhan, S. (2024). A Study On Maximal Embedding Dimension Numerical Semigroups. International Journal of Pure and Applied Sciences, 10(1), 303-308. https://doi.org/10.29132/ijpas.1456138
AMA
İlhan S. A Study On Maximal Embedding Dimension Numerical Semigroups. International Journal of Pure and Applied Sciences. Haziran 2024;10(1):303-308. doi:10.29132/ijpas.1456138
Chicago
İlhan, Sedat. “A Study On Maximal Embedding Dimension Numerical Semigroups”. International Journal of Pure and Applied Sciences 10, sy. 1 (Haziran 2024): 303-8. https://doi.org/10.29132/ijpas.1456138.
EndNote
İlhan S (01 Haziran 2024) A Study On Maximal Embedding Dimension Numerical Semigroups. International Journal of Pure and Applied Sciences 10 1 303–308.
IEEE
S. İlhan, “A Study On Maximal Embedding Dimension Numerical Semigroups”, International Journal of Pure and Applied Sciences, c. 10, sy. 1, ss. 303–308, 2024, doi: 10.29132/ijpas.1456138.
ISNAD
İlhan, Sedat. “A Study On Maximal Embedding Dimension Numerical Semigroups”. International Journal of Pure and Applied Sciences 10/1 (Haziran 2024), 303-308. https://doi.org/10.29132/ijpas.1456138.
JAMA
İlhan S. A Study On Maximal Embedding Dimension Numerical Semigroups. International Journal of Pure and Applied Sciences. 2024;10:303–308.
MLA
İlhan, Sedat. “A Study On Maximal Embedding Dimension Numerical Semigroups”. International Journal of Pure and Applied Sciences, c. 10, sy. 1, 2024, ss. 303-8, doi:10.29132/ijpas.1456138.
Vancouver
İlhan S. A Study On Maximal Embedding Dimension Numerical Semigroups. International Journal of Pure and Applied Sciences. 2024;10(1):303-8.