Araştırma Makalesi
BibTex RIS Kaynak Göster

Matematik Öğrenme Güçlüğünü Tanılamada Yeni Bir Model Önerisi: Çoklu Süzgeç Modeli

Yıl 2017, , 1153 - 1173, 21.04.2017
https://doi.org/10.17051/ilkonline.2017.330248

Öz

Matematik öğrenme güçlüğü (MÖG) bireyin aritmetiksel becerileri edinim yetilerinde yetersizliklere sahip olduğu özgül bir öğrenme güçlüğüdür. MÖG’ün tanımı, nedenleri ve yaygınlık oranları üzerinde tartışmalar devam etmektedir. Ayrıca MÖG’ün tanılanmasında halen üzerinde hemfikir olunan bir yöntem mevcut değildir. Bu çalışmada MÖG tanılama yöntemlerinin güçlü ve zayıf yönleri incelenmiş ve MÖG’e dair yapılan tanımlar irdelenerek MÖG yaşayan öğrenciler için kapsayıcı ve dışlayıcı kriterler ışığında Çoklu Süzgeç Modeli (ÇSM) tasarlanmıştır. ÇSM’de öğretmen görüşü, diskalkuli ön değerlendirme testi, diskalkuli tarama aracı, öğrenci tanıma formu ve zeka testi birer süzgeç olarak kullanılmıştır. Modelin uygulaması yapılarak MÖG yaşayan üç öğrenci belirlenmiştir. Yapılan çalışma MÖG yaşayan öğrencilerin belirlenmesinde ÇSM kullanımı sağlam sonuçlar elde edilebileceğine işaret etmektedir.

Kaynakça

  • Andersson, U. ve Östergren, R. (2012). Number magnitude processing and basic cognitive functions in children with mathematical learning disabilities. Learning and Individual Differences, 22(6), 701-714.
  • Ansari, D. ve Karmiloff-Smith, A. (2002). Atypical trajectories of number development: A neuroconstructivist perspective. Trends in cognitive sciences, 6(12), 511-516.
  • Amerikan Psikoloji Birliği, A. (2005). DSM-IV-TR Tanı Ölçütleri Başvuru Elkitabı. 2. baskı. Çev: Köroğlu E. Ankara: Hekimler Yayın Birliği.
  • Ashlock, R. B. (2015). Deep diagnosis, focused instruction, and expanded math horizons. Chinn, S. (Ed) The Routledge international handbook of dyscalculia and mathematical learning difficulties. Routledge, 2015.
  • Baer, R. D., Griffin, M., Franco, F., Fast, P., Loveless, T., Carleson, V., Brown, G. (2006). Integrating Response to Intervention and Severe Discrepancy in Specific Learning Disabilities Determination: The Best of Two Worlds
  • Bartelet, D., Ansari, D., Vaessen, A. ve Blomert, L. (2014). Cognitive subtypes of mathematics learning difficulties in primary education. Research in developmental disabilities, 35(3), 657-670.
  • Berch, D. B. ve Mazzocco, M. M. (2007). Why Is Math So Hard for Some Children? The Nature and Origins of Mathematical Learning Difficulties and Disabilities: ERIC.
  • Beygi, A., Padakannaya, P., ve Gowramma, I. (2010). A Remedial Intervention for Addition and Subtraction in children with Dyscalculia. Journal of the lndian Academy of Applied Psychology, 36, 9-18.
  • Bruyer, R. ve Brysbaert, M. (2011). Combining speed and accuracy in cognitive psychology: is the inverse efficiency score a better dependent variable than the mean reaction time (rt) and the percentage of errors (pe)? Psychologica Belgica, 51(1), 5-13.
  • Butterworth, B. (2000). The mathematical brain. Macmillan: London
  • Büttner, G. ve Hasselhorn, M. (2011). Learning disabilities: Debates on definitions, causes, subtypes, and responses. International Journal of Disability, Development and Education, 58(1), 75-87.
  • Chinn, S. (2013). The trouble with maths: A practical guide to helping learners with numeracy difficulties: Routledge.
  • Dehaene, S. (2003). The neural basis of the Weber–Fechner law: a logarithmic mental number line. Trends in cognitive sciences, 7(4), 145-147.
  • Department for Education and Skills (DfES) (2001). Guidance to support pupils with dislexia and dyscalculia. Ref: DfES-0512-2001. DfES London.
  • Desoete, A. ve Grégoire, J. (2006). Numerical competence in young children and in children with mathematics learning disabilities.
  • Learning and Individual Differences, 16(4), 351-367.
  • Dowker, A. (2009). What works for children with mathematical difficulties? The effectiveness of intervention schemes. Research Report RR554. DfES Publications.
  • Emerson, J., ve Babtie, P. (2014). The dyscalculia assessment: Bloomsbury Publishing.
  • Feigenson, L., Dehaene, S. ve Spelke, E. (2004). Core systems of number. Trends in cognitive sciences, 8(7), 307-314.
  • Fennell, F. (2010). All Means All. NCTM (Ed.), Achieving Fluency: Special Education and Mathematics. NCTM. 2010.
  • Flanagan, D. P., ve Alfonso, V. C. (2010). Essentials of specific learning disability identification (Vol. 82): John Wiley ve Sons.
  • Fletcher, J. M., Lyon, G. R., Fuchs, L. S., ve Barnes, M. A. (2006). Learning disabilities: From identification to intervention: Guilford press.
  • Fuchs, L. S., Geary, D. C., Compton, D. L., Fuchs, D., Hamlett, C. L. ve Bryant, J. D. (2010). The contributions of numerosity and domain‐general abilities to school readiness. Child development, 81(5), 1520-1533.
  • Geary, D. C. (1993). Mathematical disabilities: cognitive, neuropsychological, and genetic components. Psychological bulletin, 114(2), 345.
  • Geary, D. C. (2006). Dyscalculia at an early age: Characteristics and potential influence on socio-emotional development. Encyclopedia on early childhood development, 15, 1-4.
  • Geary, D. C. (2011). Consequences, characteristics, and causes of poor mathematics achievement and mathematical learning disabilities. J. Dev. Behav. Pediatr, 32, 250-263.
  • Geary, D. C., Hoard, M. K., Byrd-Craven, J. ve DeSoto, M. C. (2004). Strategy choices in simple and complex addition: Contributions of working memory and counting knowledge for children with mathematical disability. Journal of experimental child psychology, 88(2), 121-151.
  • Geary, D. C., ve Hoard, M. K. (2005). Learning disabilities in arithmetic and mathematics. Handbook of mathematical cognition, 253-268.
  • Gifford, S. (2006). Dyscalculia: myths and models. Research in Mathematics Education, 8(1), 35-51.
  • Gifford, S., & Rockliffe, F. (2008). In search of dyscalculia. Proceedings of the British Society for Research into Learning Mathematics, 28(1), 21-27.
  • Gifford, S. ve Rockliffe, F. (2012). Mathematics difficulties: does one approach fit all? Research in Mathematics Education, 14(1), 1-15. doi: 10.1080/14794802.2012.657436
  • Hannell, G. (2013). Dyscalculia: Action plans for successful learning in mathematics. Routledge.
  • Henik, A., Rubinsten, O. ve Ashkenazi, S. (2011). The “where” and “what” in developmental dyscalculia. The Clinical Neuropsychologist, 25(6), 989-1008.
  • Holden, J. K., Francisco, E. M., Zhang, Z., Baric, C., & Tommerdahl, M. (2011). An Undergraduate Laboratory Exercise to Study Weber s Law. Journal of Undergraduate Neuroscience Education, 9(2), A71-A74.
  • Iuculano, T., Tang, J., Hall, C. W., ve Butterworth, B. (2008). Core information processing deficits in developmental dyscalculia and low numeracy. Developmental science, 11(5), 669-680.
  • Jordan, N. C., Hanich, L. B., ve Kaplan, D. (2003). Arithmetic fact mastery in young children: A longitudinal investigation. Journal of experimental child psychology, 85(2), 103-119.
  • Izard, V., Pica, P., Spelke, E. S. ve Dehaene, S. (2008). Exact equality and successor function: Two key concepts on the path towards understanding exact numbers. Philosophical Psychology, 21(4), 491-505.
  • Kalaycı, Ş. (Edt.) (2010). SPSS uygulamalı çok değişkenli istatistik teknikleri (2. Baskı). Ankara: Asil Yayın Dağıtım.
  • Karagiannakis, G. ve Cooreman, A. (2015). Focused MLD intervention based on the classification of MLD subtypes . Chinn, S. (Ed) The Routledge international handbook of dyscalculia and mathematical learning difficulties. Routledge, 2015.
  • Karagiannakis, G., ve Baccaglini-Frank, A. (2014). The DeDiMa battery: a tool for identifying students’ mathematical learning profiles. Health Psychology Review, 2(4).
  • Karagiannakis, G., Baccaglini-Frank, A. ve Papadatos, Y. (2014). Mathematical learning difficulties subtypes classification. Frontiers in human neuroscience, 8.
  • Karataş , Z.,Yavuzer, Y. (2015). Bireyi Tanımada Test Dışı Teknikler. Ankara: Nobel Akademik Yayıncılık.
  • Käser, T., Baschera, G.-M., Kohn, J., Kucian, K., Richtmann, V., Grond, U. ve von Aster, M. (2013). Design and evaluation of the computer-based training program Calcularis for enhancing numerical cognition. Frontiers in psychology, 4. doi: 10.3389/fpsyg.2013.00489
  • Kaufmann, L., Mazzocco, M. M., Dowker, A., von Aster, M., Göbel, S. M., Grabner, R. H. ve Kucian, K. (2013). Dyscalculia from a developmental and differential perspective. Frontiers in psychology, 4.
  • Kosc, L. (1974). Developmental dyscalculia. Journal of learning disabilities, 7(3), 164-177.
  • Kovaleski, J., ve Prasse, D. P. (2004). Response to instruction in the identification of learning disabilities: A guide for school teams. NASP Communiqué, 32(5), 159-162.
  • Landerl, K., Bevan, A., ve Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8–9-year-old students. Cognition, 93(2), 99-125.
  • Mazzocco, M. M., ve Myers, G. F. (2003). Complexities in identifying and defining mathematics learning disability in the primary school-age years. Annals of Dyslexia, 53(1), 218-253.
  • Michaelson, M. T. (2007). An Overview of Dyscalculia: Methods for Ascertaining and Accommodating Dyscalculic Children in the Classroom. Australian Mathematics Teacher, 63(3), 17-22.
  • Mutlu, Y. (2016). Matematik öğrenme güçlüğü (gelişimsel diskalkuli). Erhan Bingölbali, Selahattin Arslan ve İsmail Özgür Zembat (Ed.) . Matematik Eğitiminde Teoriler. Ankara:Pegem Akademi.
  • Olkun, S., Altun, A., Cangöz, B., Gelbal, S. ve Sucuoğlu, B. (2012). Developing Tasks for Screening Dyscalculia Tendencies: E-Leader, Berlin.
  • Östergren, R. (2013). Mathematical Learning Disability: Cognitive Conditions, Development and Predictions. Linköping University Electronic Press, 2013.
  • Passolunghi, M. C., ve Lanfranchi, S. (2012). Domain‐specific and domain‐general precursors of mathematical achievement: A longitudinal study from kindergarten to first grade. British Journal of Educational Psychology, 82(1), 42-63.
  • Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D. ve Zorzi, M. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116(1), 33-41.
  • Ramaa,S. (2015) Arithmetic difficulties among socially disadvantaged children and children with dyscalculia. Chinn, S. (Ed). The Routledge international handbook of dyscalculia and mathematical learning difficulties. Routledge, 2015.
  • Restori, A. F., Katz, G. S., ve Lee, H. B. (2009). A critique of the IQ/achievement discrepancy model for identifying specific learning disabilities. Europe’s Journal of Psychology, 5(4), 128-145.
  • Shalev, R. S., Manor, O., Kerem, B., Ayali, M., Badichi, N., Friedlander, Y. ve Gross-Tsur, V. (2001). Developmental dyscalculia is a familial learning disability. Journal of learning disabilities, 34(1), 59-65.
  • Sharma, M. C. (2015). A window into dyscalculia and other mathematics difficulties. The Routledge International Handbook of Dyscalculia and Mathematical Learning Difficulties, 277.
  • Spelke, E. S. ve Kinzler, K. D. (2007). Core knowledge. Developmental science, 10(1), 89-96.
  • Von Aster, M. G. ve Shalev, R. S. (2007). Number development and developmental dyscalculia. Developmental Medicine & Child Neurology, 49, 868-873.
  • World Health Organisation (1992). International statistical classification of diseases and related health problems: tenth revision: World Health Organization.
Toplam 61 adet kaynakça vardır.

Ayrıntılar

Bölüm Araştırma Makaleleri
Yazarlar

Yılmaz Mutlu

Levent Akgün

Yayımlanma Tarihi 21 Nisan 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Mutlu, Y., & Akgün, L. (2017). Matematik Öğrenme Güçlüğünü Tanılamada Yeni Bir Model Önerisi: Çoklu Süzgeç Modeli. İlköğretim Online, 16(3), 1153-1173. https://doi.org/10.17051/ilkonline.2017.330248
AMA Mutlu Y, Akgün L. Matematik Öğrenme Güçlüğünü Tanılamada Yeni Bir Model Önerisi: Çoklu Süzgeç Modeli. İOO. Nisan 2017;16(3):1153-1173. doi:10.17051/ilkonline.2017.330248
Chicago Mutlu, Yılmaz, ve Levent Akgün. “Matematik Öğrenme Güçlüğünü Tanılamada Yeni Bir Model Önerisi: Çoklu Süzgeç Modeli”. İlköğretim Online 16, sy. 3 (Nisan 2017): 1153-73. https://doi.org/10.17051/ilkonline.2017.330248.
EndNote Mutlu Y, Akgün L (01 Nisan 2017) Matematik Öğrenme Güçlüğünü Tanılamada Yeni Bir Model Önerisi: Çoklu Süzgeç Modeli. İlköğretim Online 16 3 1153–1173.
IEEE Y. Mutlu ve L. Akgün, “Matematik Öğrenme Güçlüğünü Tanılamada Yeni Bir Model Önerisi: Çoklu Süzgeç Modeli”, İOO, c. 16, sy. 3, ss. 1153–1173, 2017, doi: 10.17051/ilkonline.2017.330248.
ISNAD Mutlu, Yılmaz - Akgün, Levent. “Matematik Öğrenme Güçlüğünü Tanılamada Yeni Bir Model Önerisi: Çoklu Süzgeç Modeli”. İlköğretim Online 16/3 (Nisan 2017), 1153-1173. https://doi.org/10.17051/ilkonline.2017.330248.
JAMA Mutlu Y, Akgün L. Matematik Öğrenme Güçlüğünü Tanılamada Yeni Bir Model Önerisi: Çoklu Süzgeç Modeli. İOO. 2017;16:1153–1173.
MLA Mutlu, Yılmaz ve Levent Akgün. “Matematik Öğrenme Güçlüğünü Tanılamada Yeni Bir Model Önerisi: Çoklu Süzgeç Modeli”. İlköğretim Online, c. 16, sy. 3, 2017, ss. 1153-7, doi:10.17051/ilkonline.2017.330248.
Vancouver Mutlu Y, Akgün L. Matematik Öğrenme Güçlüğünü Tanılamada Yeni Bir Model Önerisi: Çoklu Süzgeç Modeli. İOO. 2017;16(3):1153-7.