Araştırma Makalesi
BibTex RIS Kaynak Göster

Yıl 2025, Cilt: 14 Sayı: 4, 184 - 203, 30.10.2025
https://doi.org/10.15869/itobiad.1731629

Öz

Kaynakça

  • Abrokwah-Larbi, K., & Awuku-Larbi, Y. (2024). The impact of artificial intelligence in marketing on the performance of business organizations: Evidence from SMEs in an emerging economy. Journal of Entrepreneurship in Emerging Economies, 16(4), 1090–1117. https://doi.org/10.1108/JEEE-07-2022-0207
  • Acar, S., & Sarnıç, A. (2024). A qualitative study on talent management in enterprises within the Industry 4.0 process. SEISENSE Journal of Management, 7(1), 101–116.
  • Alabi, M., & Ang, A. (2024). AI-driven financial risk management: Detecting anomalies and predicting market trends. ResearchGate. https://www.researchgate.net/publication/383276974_AI-Driven_Financial_Risk_Management_Detecting_Anomalies_and_Predicting_Market_Trends
  • Akbaş, A. (2024). Yapay zekâ ile toplumsal dönüşüm: Sosyolojik perspektif. International Journal of Humanities and Education, 10(22), 151–180.
  • Aktepe, Ş., & Karakulle, İ. (2023). İşletmelerde rekabet üstünlüğü sağlamada yapay zekâ kullanımı: E-ticaret sitelerinin mobil uygulamalar örneği. Fenerbahçe Üniversitesi Sosyal Bilimler Dergisi, 3(1), 30–46.
  • Ayinaddis, S. G. (2025). Artificial intelligence adoption dynamics and knowledge in SMEs and large firms: A systematic review and bibliometric analysis. Journal of Innovation & Knowledge, 10(3), 100682.
  • Baabdullah, A. M., Alalwan, A. A., Slade, E. L., Raman, R., & Khatatneh, K. F. (2021). SMEs and artificial intelligence (AI): Antecedents and consequences of AI-based B2B practices. Industrial Marketing Management, 98, 255–270. https://doi.org/10.1016/j.indmarman.2021.09.003
  • Badghish, S., & Soomro, Y. A. (2024). Artificial intelligence adoption by SMEs to achieve sustainable business performance: Application of technology–organization–environment framework. Sustainability, 16(5), 1864. https://doi.org/10.3390/su16051864
  • Barney, J. (1991). Firm resources and sustained competitive advantage. Journal of Management, 17(1), 99–120. https://doi.org/10.1177/014920639101700108
  • Bartlett, J. E., Kotrlik, J. W., & Higgins, C. C. (2001). Organizational research: Determining appropriate sample size in survey research. Information Technology, Learning, and Performance Journal, 19(1), 43–50.
  • Bratucu, G., Ciobanu, E., Chițu, I. B., Litră, A. V., Zamfirache, A., & Bălășescu, M. (2024). The use of technology assisted by artificial intelligence depending on the companies’ digital maturity level. Electronics, 13(9), 1687. https://doi.org/10.3390/electronics13091687
  • Bughin, J., Seong, J., Manyika, J., Chui, M., & Joshi, R. (2018). Notes from the AI frontier: Modeling the impact of AI on the world economy. McKinsey Global Institute, 4(1), 2-61.
  • Cannella, J. (2018). Artificial intelligence in marketing [Unpublished Honors Thesis]. Arizona State University.
  • Carayannis, E. G., Dumitrescu, R., Falkowski, T., Papamichail, G., & Zota, N. R. (2025). Enhancing SME resilience through artificial intelligence and strategic foresight: A framework for sustainable competitiveness. Technology in Society, 102835.
  • Coad, A., Segarra, A., & Teruel, M. (2013). Growth and (adolescent) firm performance: A quantile regression approach. Journal of Evolutionary Economics, 23(1), 195–222.
  • Czarnitzki, D., Fernández, G. P., & Rammer, C. (2023). Artificial intelligence and firm-level productivity. Journal of Economic Behavior & Organization, 211, 188–205. https://doi.org/10.1016/j.jebo.2023.05.008
  • Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108–116. https://hbr.org/2018/01/artificial-intelligence-for-the-real-world
  • Doğan, R., Karakoç, S., & Öztürk, F. (2021). Turkey's autonomous systems and defense technologies. Journal of Defense Studies, 9(2), 22–35. https://doi.org/10.1080/19463138.2021.1940237
  • Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Al-Emran, M., Antonelli, G., Barricelli, B. R., Ashrafi, R., et al. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, Article 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002
  • Feng, F., Li, J., Zhang, F., & Sun, J. (2024). The impact of artificial intelligence on green innovation efficiency: Moderating role of dynamic capability. International Review of Economics & Finance, 96, Article 103649. https://doi.org/10.1016/j.iref.2024.103649
  • Fergnani, A., Hines, A., Lanteri, A., & Esposito, M. (2020). Corporate foresight in an ever-turbulent era. European Business Review, 26–33.
  • Field, A. (2005). Reliability analysis. In A. Field (Ed.), Discovering statistics using SPSS (2nd ed., Ch. 15). Sage.
  • Gülsen, I. (2019). İşletmelerde yapay zekâ uygulamaları ve faydaları: Perakende sektöründe bir derleme. Tüketici ve Tüketim Araştırmaları Dergisi, 11(2), 407–436.
  • Hannan, M. T., & Freeman, J. (1984). Structural inertia and organizational change. American Sociological Review, 49(2), 149–164. https://doi.org/10.2307/2095567
  • Huang, M. H., & Rust, R. T. (2024). The caring machine: Feeling AI for customer care. Journal of Marketing, 88(5), 1-23.
  • Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business horizons, 61(4), 577-586.
  • Kalkınma Ajansları Genel Müdürlüğü. (2021). Dijital dönüşüm ve KOBİ’ler raporu. https://www.sanayi.gov.tr/
  • Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? Business Horizons, 62(1), 15–25.
  • Kulkarni, A. V., Joseph, S., & Patil, K. P. (2024). Artificial intelligence technology readiness for social sustainability and business ethics: Evidence from MSMEs in developing nations. International Journal of Information Management Data Insights, 4(2), Article 100250. https://doi.org/10.1016/j.jjimei.2024.100250
  • Kumar, S., & Nayak, A. (2024). Predictive analytics for demand forecasting: A deep learning-based decision support system. International Journal of Engineering and Computer Science, 13, 26291–26299. https://doi.org/10.18535/ijecs/v13i07.4853
  • Kumar, V., Ashraf, A. R., & Nadeem, W. (2024). AI-powered marketing: What, where, and how? International Journal of Information Management, 77, Article 102783. https://doi.org/10.1016/j.ijinfomgt.2024.102783
  • Li, F., Larimo, J., & Junttila, V. (2018). The impact of digital maturity on firm performance: A dynamic capability perspective. International Business Review, 27(5), 1085-1097. https://doi.org/10.1016/j.ibusrev.2018.04.008
  • Makridakis, S. (2017). The forthcoming artificial intelligence (AI) revolution: Its impact on society and firms. Futures, 90, 46–60. https://doi.org/10.1016/j.futures.2017.03.006
  • McKinsey & Company. (2025). Superagency in the workplace: Empowering people to unlock AI’s full potential. https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/superagency-in-the-workplace-empowering-people-to-unlock-ais-full-potential-at-work
  • Mikalef, P., Fjørtoft, S. O., & Torvatn, H. Y. (2019, June). Developing an artificial intelligence capability: A theoretical framework for business value. In International conference on business information systems (pp. 409-416). Cham: Springer International Publishing.
  • Mikalef, P., & Gupta, M. (2021). Artificial intelligence capability: Conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Information & Management, 58(3), Article 103434. https://doi.org/10.1016/j.im.2021.103434
  • Mukhopadhyay, S., Singh, R. K., & Jain, T. (2024). Developing artificial intelligence enabled Marketing 4.0 framework: An Industry 4.0 perspective. Qualitative Market Research: An International Journal. https://doi.org/10.1108/qmr-06-2023-0086
  • OECD. (2025). Governing with Artificial Intelligence: The State of Play and Way Forward in Core Government Functions. OECD Publishing.
  • Qu, B., Hu, Y., Liu, Y., Li, M., Shi, G., & Zhu, S. (2021). Firm Size and Artificial Intelligence (AI)-Based Technology Adoption: The Role of Corporate Size in South Korean Construction Companies. Buildings, 13(4), 1066. RAND Corporation. (2025). Trends in Focus 2025.
  • Renko, S., & Druzijanic, M. (2014). Perceived usefulness of innovative technology in retailing: Consumers’ and retailers’ point of view. Journal of Retailing and Consumer Services, 21(5), 836–843.
  • Rogers, E. M. (2003). Diffusion of innovations (5th ed.). Free Press.
  • Sanayi ve Teknoloji Bakanlığı. (2021). Ulusal Yapay Zekâ Stratejisi 2021–2025. http://cbddo.gov.tr/SharedFolderServer/Genel/File/TR-UlusalYZStratejisi2021-2025.pdf
  • Soori, M., Karimi Ghaleh Jough, F., Arezoo, B., & Dastres, R. (2024). AI-based decision support systems in Industry 4.0: A review. Journal of Economy and Technology. https://doi.org/10.1016/j.ject.2024.08.005
  • Stanford Institute for Human-Centered Artificial Intelligence. (2025). 2025 AI Index Report. https://hai.stanford.edu/ai-index/2025-ai-index-report
  • Sujan, G. (2023). Artificial intelligence usage among small business owners. Morning Consult. https://morningconsult.com
  • Statista. (2020). Artificial Intelligence Dossier. https://www.statista.com
  • Şentürk, Ö. (2022). İç denetim faaliyetlerinde yapay zekâdan beklentiler: ChatGPT uygulaması örneği. TIDE Academia Research, 4(2), 51–82.
  • Tambouratzis, G., Cortés, M., & Liddle, A. (2024). AI horizon scanning. IEEE-SA White Paper p3395. https://doi.org/10.48550/arXiv.2411.034
  • TÜBİTAK. (2024). Türkiye Yapay Zekâ Ekosistemi Haritası. https://www.tubitak.gov.tr
  • Ünal, A., & Kılınç, İ. (2020). Yapay zekâ işletme yönetimi ilişkisi üzerine bir değerlendirme. Yönetim Bilişim Sistemleri Dergisi, 6(1), 51–78.
  • Wamba-Taguimdje, S.-L., Wamba, S. F., Kamdjoug, J. R. K., & Wanko, C. E. T. (2020). Influence of artificial intelligence (AI) on firm performance: The business value of AI-based transformation projects. Business Process Management Journal, 26(7), 1893–1924. https://doi.org/10.1108/BPMJ-10-2019-0411
  • Yoldaş, E. N., & Aycı, A. (2024). The role of artificial intelligence in integrated marketing communication: An evaluation of ChatGPT. Pamukkale Üniversitesi İşletme Araştırmaları Dergisi, 11(2), 611–637.

Yıl 2025, Cilt: 14 Sayı: 4, 184 - 203, 30.10.2025
https://doi.org/10.15869/itobiad.1731629

Öz

Kaynakça

  • Abrokwah-Larbi, K., & Awuku-Larbi, Y. (2024). The impact of artificial intelligence in marketing on the performance of business organizations: Evidence from SMEs in an emerging economy. Journal of Entrepreneurship in Emerging Economies, 16(4), 1090–1117. https://doi.org/10.1108/JEEE-07-2022-0207
  • Acar, S., & Sarnıç, A. (2024). A qualitative study on talent management in enterprises within the Industry 4.0 process. SEISENSE Journal of Management, 7(1), 101–116.
  • Alabi, M., & Ang, A. (2024). AI-driven financial risk management: Detecting anomalies and predicting market trends. ResearchGate. https://www.researchgate.net/publication/383276974_AI-Driven_Financial_Risk_Management_Detecting_Anomalies_and_Predicting_Market_Trends
  • Akbaş, A. (2024). Yapay zekâ ile toplumsal dönüşüm: Sosyolojik perspektif. International Journal of Humanities and Education, 10(22), 151–180.
  • Aktepe, Ş., & Karakulle, İ. (2023). İşletmelerde rekabet üstünlüğü sağlamada yapay zekâ kullanımı: E-ticaret sitelerinin mobil uygulamalar örneği. Fenerbahçe Üniversitesi Sosyal Bilimler Dergisi, 3(1), 30–46.
  • Ayinaddis, S. G. (2025). Artificial intelligence adoption dynamics and knowledge in SMEs and large firms: A systematic review and bibliometric analysis. Journal of Innovation & Knowledge, 10(3), 100682.
  • Baabdullah, A. M., Alalwan, A. A., Slade, E. L., Raman, R., & Khatatneh, K. F. (2021). SMEs and artificial intelligence (AI): Antecedents and consequences of AI-based B2B practices. Industrial Marketing Management, 98, 255–270. https://doi.org/10.1016/j.indmarman.2021.09.003
  • Badghish, S., & Soomro, Y. A. (2024). Artificial intelligence adoption by SMEs to achieve sustainable business performance: Application of technology–organization–environment framework. Sustainability, 16(5), 1864. https://doi.org/10.3390/su16051864
  • Barney, J. (1991). Firm resources and sustained competitive advantage. Journal of Management, 17(1), 99–120. https://doi.org/10.1177/014920639101700108
  • Bartlett, J. E., Kotrlik, J. W., & Higgins, C. C. (2001). Organizational research: Determining appropriate sample size in survey research. Information Technology, Learning, and Performance Journal, 19(1), 43–50.
  • Bratucu, G., Ciobanu, E., Chițu, I. B., Litră, A. V., Zamfirache, A., & Bălășescu, M. (2024). The use of technology assisted by artificial intelligence depending on the companies’ digital maturity level. Electronics, 13(9), 1687. https://doi.org/10.3390/electronics13091687
  • Bughin, J., Seong, J., Manyika, J., Chui, M., & Joshi, R. (2018). Notes from the AI frontier: Modeling the impact of AI on the world economy. McKinsey Global Institute, 4(1), 2-61.
  • Cannella, J. (2018). Artificial intelligence in marketing [Unpublished Honors Thesis]. Arizona State University.
  • Carayannis, E. G., Dumitrescu, R., Falkowski, T., Papamichail, G., & Zota, N. R. (2025). Enhancing SME resilience through artificial intelligence and strategic foresight: A framework for sustainable competitiveness. Technology in Society, 102835.
  • Coad, A., Segarra, A., & Teruel, M. (2013). Growth and (adolescent) firm performance: A quantile regression approach. Journal of Evolutionary Economics, 23(1), 195–222.
  • Czarnitzki, D., Fernández, G. P., & Rammer, C. (2023). Artificial intelligence and firm-level productivity. Journal of Economic Behavior & Organization, 211, 188–205. https://doi.org/10.1016/j.jebo.2023.05.008
  • Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108–116. https://hbr.org/2018/01/artificial-intelligence-for-the-real-world
  • Doğan, R., Karakoç, S., & Öztürk, F. (2021). Turkey's autonomous systems and defense technologies. Journal of Defense Studies, 9(2), 22–35. https://doi.org/10.1080/19463138.2021.1940237
  • Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Al-Emran, M., Antonelli, G., Barricelli, B. R., Ashrafi, R., et al. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, Article 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002
  • Feng, F., Li, J., Zhang, F., & Sun, J. (2024). The impact of artificial intelligence on green innovation efficiency: Moderating role of dynamic capability. International Review of Economics & Finance, 96, Article 103649. https://doi.org/10.1016/j.iref.2024.103649
  • Fergnani, A., Hines, A., Lanteri, A., & Esposito, M. (2020). Corporate foresight in an ever-turbulent era. European Business Review, 26–33.
  • Field, A. (2005). Reliability analysis. In A. Field (Ed.), Discovering statistics using SPSS (2nd ed., Ch. 15). Sage.
  • Gülsen, I. (2019). İşletmelerde yapay zekâ uygulamaları ve faydaları: Perakende sektöründe bir derleme. Tüketici ve Tüketim Araştırmaları Dergisi, 11(2), 407–436.
  • Hannan, M. T., & Freeman, J. (1984). Structural inertia and organizational change. American Sociological Review, 49(2), 149–164. https://doi.org/10.2307/2095567
  • Huang, M. H., & Rust, R. T. (2024). The caring machine: Feeling AI for customer care. Journal of Marketing, 88(5), 1-23.
  • Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business horizons, 61(4), 577-586.
  • Kalkınma Ajansları Genel Müdürlüğü. (2021). Dijital dönüşüm ve KOBİ’ler raporu. https://www.sanayi.gov.tr/
  • Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? Business Horizons, 62(1), 15–25.
  • Kulkarni, A. V., Joseph, S., & Patil, K. P. (2024). Artificial intelligence technology readiness for social sustainability and business ethics: Evidence from MSMEs in developing nations. International Journal of Information Management Data Insights, 4(2), Article 100250. https://doi.org/10.1016/j.jjimei.2024.100250
  • Kumar, S., & Nayak, A. (2024). Predictive analytics for demand forecasting: A deep learning-based decision support system. International Journal of Engineering and Computer Science, 13, 26291–26299. https://doi.org/10.18535/ijecs/v13i07.4853
  • Kumar, V., Ashraf, A. R., & Nadeem, W. (2024). AI-powered marketing: What, where, and how? International Journal of Information Management, 77, Article 102783. https://doi.org/10.1016/j.ijinfomgt.2024.102783
  • Li, F., Larimo, J., & Junttila, V. (2018). The impact of digital maturity on firm performance: A dynamic capability perspective. International Business Review, 27(5), 1085-1097. https://doi.org/10.1016/j.ibusrev.2018.04.008
  • Makridakis, S. (2017). The forthcoming artificial intelligence (AI) revolution: Its impact on society and firms. Futures, 90, 46–60. https://doi.org/10.1016/j.futures.2017.03.006
  • McKinsey & Company. (2025). Superagency in the workplace: Empowering people to unlock AI’s full potential. https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/superagency-in-the-workplace-empowering-people-to-unlock-ais-full-potential-at-work
  • Mikalef, P., Fjørtoft, S. O., & Torvatn, H. Y. (2019, June). Developing an artificial intelligence capability: A theoretical framework for business value. In International conference on business information systems (pp. 409-416). Cham: Springer International Publishing.
  • Mikalef, P., & Gupta, M. (2021). Artificial intelligence capability: Conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Information & Management, 58(3), Article 103434. https://doi.org/10.1016/j.im.2021.103434
  • Mukhopadhyay, S., Singh, R. K., & Jain, T. (2024). Developing artificial intelligence enabled Marketing 4.0 framework: An Industry 4.0 perspective. Qualitative Market Research: An International Journal. https://doi.org/10.1108/qmr-06-2023-0086
  • OECD. (2025). Governing with Artificial Intelligence: The State of Play and Way Forward in Core Government Functions. OECD Publishing.
  • Qu, B., Hu, Y., Liu, Y., Li, M., Shi, G., & Zhu, S. (2021). Firm Size and Artificial Intelligence (AI)-Based Technology Adoption: The Role of Corporate Size in South Korean Construction Companies. Buildings, 13(4), 1066. RAND Corporation. (2025). Trends in Focus 2025.
  • Renko, S., & Druzijanic, M. (2014). Perceived usefulness of innovative technology in retailing: Consumers’ and retailers’ point of view. Journal of Retailing and Consumer Services, 21(5), 836–843.
  • Rogers, E. M. (2003). Diffusion of innovations (5th ed.). Free Press.
  • Sanayi ve Teknoloji Bakanlığı. (2021). Ulusal Yapay Zekâ Stratejisi 2021–2025. http://cbddo.gov.tr/SharedFolderServer/Genel/File/TR-UlusalYZStratejisi2021-2025.pdf
  • Soori, M., Karimi Ghaleh Jough, F., Arezoo, B., & Dastres, R. (2024). AI-based decision support systems in Industry 4.0: A review. Journal of Economy and Technology. https://doi.org/10.1016/j.ject.2024.08.005
  • Stanford Institute for Human-Centered Artificial Intelligence. (2025). 2025 AI Index Report. https://hai.stanford.edu/ai-index/2025-ai-index-report
  • Sujan, G. (2023). Artificial intelligence usage among small business owners. Morning Consult. https://morningconsult.com
  • Statista. (2020). Artificial Intelligence Dossier. https://www.statista.com
  • Şentürk, Ö. (2022). İç denetim faaliyetlerinde yapay zekâdan beklentiler: ChatGPT uygulaması örneği. TIDE Academia Research, 4(2), 51–82.
  • Tambouratzis, G., Cortés, M., & Liddle, A. (2024). AI horizon scanning. IEEE-SA White Paper p3395. https://doi.org/10.48550/arXiv.2411.034
  • TÜBİTAK. (2024). Türkiye Yapay Zekâ Ekosistemi Haritası. https://www.tubitak.gov.tr
  • Ünal, A., & Kılınç, İ. (2020). Yapay zekâ işletme yönetimi ilişkisi üzerine bir değerlendirme. Yönetim Bilişim Sistemleri Dergisi, 6(1), 51–78.
  • Wamba-Taguimdje, S.-L., Wamba, S. F., Kamdjoug, J. R. K., & Wanko, C. E. T. (2020). Influence of artificial intelligence (AI) on firm performance: The business value of AI-based transformation projects. Business Process Management Journal, 26(7), 1893–1924. https://doi.org/10.1108/BPMJ-10-2019-0411
  • Yoldaş, E. N., & Aycı, A. (2024). The role of artificial intelligence in integrated marketing communication: An evaluation of ChatGPT. Pamukkale Üniversitesi İşletme Araştırmaları Dergisi, 11(2), 611–637.

Yıl 2025, Cilt: 14 Sayı: 4, 184 - 203, 30.10.2025
https://doi.org/10.15869/itobiad.1731629

Öz

Kaynakça

  • Abrokwah-Larbi, K., & Awuku-Larbi, Y. (2024). The impact of artificial intelligence in marketing on the performance of business organizations: Evidence from SMEs in an emerging economy. Journal of Entrepreneurship in Emerging Economies, 16(4), 1090–1117. https://doi.org/10.1108/JEEE-07-2022-0207
  • Acar, S., & Sarnıç, A. (2024). A qualitative study on talent management in enterprises within the Industry 4.0 process. SEISENSE Journal of Management, 7(1), 101–116.
  • Alabi, M., & Ang, A. (2024). AI-driven financial risk management: Detecting anomalies and predicting market trends. ResearchGate. https://www.researchgate.net/publication/383276974_AI-Driven_Financial_Risk_Management_Detecting_Anomalies_and_Predicting_Market_Trends
  • Akbaş, A. (2024). Yapay zekâ ile toplumsal dönüşüm: Sosyolojik perspektif. International Journal of Humanities and Education, 10(22), 151–180.
  • Aktepe, Ş., & Karakulle, İ. (2023). İşletmelerde rekabet üstünlüğü sağlamada yapay zekâ kullanımı: E-ticaret sitelerinin mobil uygulamalar örneği. Fenerbahçe Üniversitesi Sosyal Bilimler Dergisi, 3(1), 30–46.
  • Ayinaddis, S. G. (2025). Artificial intelligence adoption dynamics and knowledge in SMEs and large firms: A systematic review and bibliometric analysis. Journal of Innovation & Knowledge, 10(3), 100682.
  • Baabdullah, A. M., Alalwan, A. A., Slade, E. L., Raman, R., & Khatatneh, K. F. (2021). SMEs and artificial intelligence (AI): Antecedents and consequences of AI-based B2B practices. Industrial Marketing Management, 98, 255–270. https://doi.org/10.1016/j.indmarman.2021.09.003
  • Badghish, S., & Soomro, Y. A. (2024). Artificial intelligence adoption by SMEs to achieve sustainable business performance: Application of technology–organization–environment framework. Sustainability, 16(5), 1864. https://doi.org/10.3390/su16051864
  • Barney, J. (1991). Firm resources and sustained competitive advantage. Journal of Management, 17(1), 99–120. https://doi.org/10.1177/014920639101700108
  • Bartlett, J. E., Kotrlik, J. W., & Higgins, C. C. (2001). Organizational research: Determining appropriate sample size in survey research. Information Technology, Learning, and Performance Journal, 19(1), 43–50.
  • Bratucu, G., Ciobanu, E., Chițu, I. B., Litră, A. V., Zamfirache, A., & Bălășescu, M. (2024). The use of technology assisted by artificial intelligence depending on the companies’ digital maturity level. Electronics, 13(9), 1687. https://doi.org/10.3390/electronics13091687
  • Bughin, J., Seong, J., Manyika, J., Chui, M., & Joshi, R. (2018). Notes from the AI frontier: Modeling the impact of AI on the world economy. McKinsey Global Institute, 4(1), 2-61.
  • Cannella, J. (2018). Artificial intelligence in marketing [Unpublished Honors Thesis]. Arizona State University.
  • Carayannis, E. G., Dumitrescu, R., Falkowski, T., Papamichail, G., & Zota, N. R. (2025). Enhancing SME resilience through artificial intelligence and strategic foresight: A framework for sustainable competitiveness. Technology in Society, 102835.
  • Coad, A., Segarra, A., & Teruel, M. (2013). Growth and (adolescent) firm performance: A quantile regression approach. Journal of Evolutionary Economics, 23(1), 195–222.
  • Czarnitzki, D., Fernández, G. P., & Rammer, C. (2023). Artificial intelligence and firm-level productivity. Journal of Economic Behavior & Organization, 211, 188–205. https://doi.org/10.1016/j.jebo.2023.05.008
  • Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108–116. https://hbr.org/2018/01/artificial-intelligence-for-the-real-world
  • Doğan, R., Karakoç, S., & Öztürk, F. (2021). Turkey's autonomous systems and defense technologies. Journal of Defense Studies, 9(2), 22–35. https://doi.org/10.1080/19463138.2021.1940237
  • Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Al-Emran, M., Antonelli, G., Barricelli, B. R., Ashrafi, R., et al. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, Article 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002
  • Feng, F., Li, J., Zhang, F., & Sun, J. (2024). The impact of artificial intelligence on green innovation efficiency: Moderating role of dynamic capability. International Review of Economics & Finance, 96, Article 103649. https://doi.org/10.1016/j.iref.2024.103649
  • Fergnani, A., Hines, A., Lanteri, A., & Esposito, M. (2020). Corporate foresight in an ever-turbulent era. European Business Review, 26–33.
  • Field, A. (2005). Reliability analysis. In A. Field (Ed.), Discovering statistics using SPSS (2nd ed., Ch. 15). Sage.
  • Gülsen, I. (2019). İşletmelerde yapay zekâ uygulamaları ve faydaları: Perakende sektöründe bir derleme. Tüketici ve Tüketim Araştırmaları Dergisi, 11(2), 407–436.
  • Hannan, M. T., & Freeman, J. (1984). Structural inertia and organizational change. American Sociological Review, 49(2), 149–164. https://doi.org/10.2307/2095567
  • Huang, M. H., & Rust, R. T. (2024). The caring machine: Feeling AI for customer care. Journal of Marketing, 88(5), 1-23.
  • Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business horizons, 61(4), 577-586.
  • Kalkınma Ajansları Genel Müdürlüğü. (2021). Dijital dönüşüm ve KOBİ’ler raporu. https://www.sanayi.gov.tr/
  • Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? Business Horizons, 62(1), 15–25.
  • Kulkarni, A. V., Joseph, S., & Patil, K. P. (2024). Artificial intelligence technology readiness for social sustainability and business ethics: Evidence from MSMEs in developing nations. International Journal of Information Management Data Insights, 4(2), Article 100250. https://doi.org/10.1016/j.jjimei.2024.100250
  • Kumar, S., & Nayak, A. (2024). Predictive analytics for demand forecasting: A deep learning-based decision support system. International Journal of Engineering and Computer Science, 13, 26291–26299. https://doi.org/10.18535/ijecs/v13i07.4853
  • Kumar, V., Ashraf, A. R., & Nadeem, W. (2024). AI-powered marketing: What, where, and how? International Journal of Information Management, 77, Article 102783. https://doi.org/10.1016/j.ijinfomgt.2024.102783
  • Li, F., Larimo, J., & Junttila, V. (2018). The impact of digital maturity on firm performance: A dynamic capability perspective. International Business Review, 27(5), 1085-1097. https://doi.org/10.1016/j.ibusrev.2018.04.008
  • Makridakis, S. (2017). The forthcoming artificial intelligence (AI) revolution: Its impact on society and firms. Futures, 90, 46–60. https://doi.org/10.1016/j.futures.2017.03.006
  • McKinsey & Company. (2025). Superagency in the workplace: Empowering people to unlock AI’s full potential. https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/superagency-in-the-workplace-empowering-people-to-unlock-ais-full-potential-at-work
  • Mikalef, P., Fjørtoft, S. O., & Torvatn, H. Y. (2019, June). Developing an artificial intelligence capability: A theoretical framework for business value. In International conference on business information systems (pp. 409-416). Cham: Springer International Publishing.
  • Mikalef, P., & Gupta, M. (2021). Artificial intelligence capability: Conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Information & Management, 58(3), Article 103434. https://doi.org/10.1016/j.im.2021.103434
  • Mukhopadhyay, S., Singh, R. K., & Jain, T. (2024). Developing artificial intelligence enabled Marketing 4.0 framework: An Industry 4.0 perspective. Qualitative Market Research: An International Journal. https://doi.org/10.1108/qmr-06-2023-0086
  • OECD. (2025). Governing with Artificial Intelligence: The State of Play and Way Forward in Core Government Functions. OECD Publishing.
  • Qu, B., Hu, Y., Liu, Y., Li, M., Shi, G., & Zhu, S. (2021). Firm Size and Artificial Intelligence (AI)-Based Technology Adoption: The Role of Corporate Size in South Korean Construction Companies. Buildings, 13(4), 1066. RAND Corporation. (2025). Trends in Focus 2025.
  • Renko, S., & Druzijanic, M. (2014). Perceived usefulness of innovative technology in retailing: Consumers’ and retailers’ point of view. Journal of Retailing and Consumer Services, 21(5), 836–843.
  • Rogers, E. M. (2003). Diffusion of innovations (5th ed.). Free Press.
  • Sanayi ve Teknoloji Bakanlığı. (2021). Ulusal Yapay Zekâ Stratejisi 2021–2025. http://cbddo.gov.tr/SharedFolderServer/Genel/File/TR-UlusalYZStratejisi2021-2025.pdf
  • Soori, M., Karimi Ghaleh Jough, F., Arezoo, B., & Dastres, R. (2024). AI-based decision support systems in Industry 4.0: A review. Journal of Economy and Technology. https://doi.org/10.1016/j.ject.2024.08.005
  • Stanford Institute for Human-Centered Artificial Intelligence. (2025). 2025 AI Index Report. https://hai.stanford.edu/ai-index/2025-ai-index-report
  • Sujan, G. (2023). Artificial intelligence usage among small business owners. Morning Consult. https://morningconsult.com
  • Statista. (2020). Artificial Intelligence Dossier. https://www.statista.com
  • Şentürk, Ö. (2022). İç denetim faaliyetlerinde yapay zekâdan beklentiler: ChatGPT uygulaması örneği. TIDE Academia Research, 4(2), 51–82.
  • Tambouratzis, G., Cortés, M., & Liddle, A. (2024). AI horizon scanning. IEEE-SA White Paper p3395. https://doi.org/10.48550/arXiv.2411.034
  • TÜBİTAK. (2024). Türkiye Yapay Zekâ Ekosistemi Haritası. https://www.tubitak.gov.tr
  • Ünal, A., & Kılınç, İ. (2020). Yapay zekâ işletme yönetimi ilişkisi üzerine bir değerlendirme. Yönetim Bilişim Sistemleri Dergisi, 6(1), 51–78.
  • Wamba-Taguimdje, S.-L., Wamba, S. F., Kamdjoug, J. R. K., & Wanko, C. E. T. (2020). Influence of artificial intelligence (AI) on firm performance: The business value of AI-based transformation projects. Business Process Management Journal, 26(7), 1893–1924. https://doi.org/10.1108/BPMJ-10-2019-0411
  • Yoldaş, E. N., & Aycı, A. (2024). The role of artificial intelligence in integrated marketing communication: An evaluation of ChatGPT. Pamukkale Üniversitesi İşletme Araştırmaları Dergisi, 11(2), 611–637.

Türkiye’de İşletmelerde Yapay Zekâ Kullanımı ve Geleceğe Dönük Yatırım Eğilimleri

Yıl 2025, Cilt: 14 Sayı: 4, 184 - 203, 30.10.2025
https://doi.org/10.15869/itobiad.1731629

Öz

Bu çalışmanın amacı, Türkiye’de farklı sektörlerde faaliyet gösteren firmaların yapay zekâ (YZ) teknolojilerine yönelik mevcut uygulamalarını ve geleceğe dönük yatırım eğilimlerini etkileyen örgütsel ve teknolojik faktörleri ampirik olarak incelemektir. Çalışmanın teorik çerçevesi, Kaynak Bazlı Görüş (RBV), Yeniliklerin Yayılması Teorisi (DOI) ve Organizasyonel Atalet kavramları üzerine kurulmuştur. Araştırmanın evrenini Türkiye’deki farklı sektörlerde çalışan bireyler oluşturmuş, küçük ve orta ölçekli işletmeler (KOBİ) ile büyük ölçekli firmalardan olmak üzere 241 firma çalışanına anket uygulanmıştır. Analiz birimi işletme olarak belirlenmiş olup, toplanan verilerde YZ kullanımı ve YZ yatırım düşüncesi dikotomik bağımlı değişkenler olarak tanımlanmıştır. Hipotez testleri, lojistik regresyon analizi kullanılarak gerçekleştirilmiştir. Analizler sonucunda, firmalarda kullanılan temel dijital teknolojilerin (ERP, CRM, RPA, İK Yazılımları vb. sayım değişkeni) sayısının, hem mevcut YZ kullanımı hem de gelecekteki YZ yatırım düşüncesi üzerinde istatistiksel olarak anlamlı ve beklenenin aksine negatif bir etkiye sahip olduğu tespit edilmiştir. Bu çarpıcı bulgu, bir yeniliğin mevcut sistemlerle uyumlu olmasının benimsemeyi artıracağını öne süren Yeniliklerin Yayılması Teorisi'nin beklentisiyle açıkça çelişmektedir. Ayrıca, firma büyüklüğü, sektör ve işletme deneyimi gibi Kaynak Bazlı Görüş teorisinin temelini oluşturan kurumsal değişkenler ise YZ benimseme ve yatırım kararları üzerinde anlamlı bir ilişki sergilememiştir. Elde edilen sonuçlar, yüksek düzeyde dijitalleşen firmaların, büyük altyapı yatırımlarını (ERP, CRM) yeni tamamlamış olmanın bir sonucu olarak bir tür Organizasyonel Atalet yaşadığını ve kaynaklarını YZ gibi daha ileri, radikal bir yeniliğe yönlendirmek yerine, mevcut sistemleri optimize etmeyi stratejik olarak ertelediğini göstermektedir. Bu bulgu, dijital altyapının niceliğinin, YZ için gerekli olan veri kalitesi ve kurumsal esneklik anlamına gelmediği çıkarımını güçlendirmektedir. Bu çalışma, dijitalleşme ile YZ kullanımı arasındaki geçiş süreçlerine dair somut ampirik veri sağlayarak, firmaların YZ entegrasyonu stratejilerini anlamaya yönelik önemli bir katkı sunmaktadır. Bulgular, YZ başarısının finansal kaynaklardan ziyade, insan ve veri yetkinliklerine bağlı olduğunu göstermektedir; bu da politika odağının YZ danışmanlığı ve eğitim programlarına kaydırılması gerektiğini düşündürmektedir.

Kaynakça

  • Abrokwah-Larbi, K., & Awuku-Larbi, Y. (2024). The impact of artificial intelligence in marketing on the performance of business organizations: Evidence from SMEs in an emerging economy. Journal of Entrepreneurship in Emerging Economies, 16(4), 1090–1117. https://doi.org/10.1108/JEEE-07-2022-0207
  • Acar, S., & Sarnıç, A. (2024). A qualitative study on talent management in enterprises within the Industry 4.0 process. SEISENSE Journal of Management, 7(1), 101–116.
  • Alabi, M., & Ang, A. (2024). AI-driven financial risk management: Detecting anomalies and predicting market trends. ResearchGate. https://www.researchgate.net/publication/383276974_AI-Driven_Financial_Risk_Management_Detecting_Anomalies_and_Predicting_Market_Trends
  • Akbaş, A. (2024). Yapay zekâ ile toplumsal dönüşüm: Sosyolojik perspektif. International Journal of Humanities and Education, 10(22), 151–180.
  • Aktepe, Ş., & Karakulle, İ. (2023). İşletmelerde rekabet üstünlüğü sağlamada yapay zekâ kullanımı: E-ticaret sitelerinin mobil uygulamalar örneği. Fenerbahçe Üniversitesi Sosyal Bilimler Dergisi, 3(1), 30–46.
  • Ayinaddis, S. G. (2025). Artificial intelligence adoption dynamics and knowledge in SMEs and large firms: A systematic review and bibliometric analysis. Journal of Innovation & Knowledge, 10(3), 100682.
  • Baabdullah, A. M., Alalwan, A. A., Slade, E. L., Raman, R., & Khatatneh, K. F. (2021). SMEs and artificial intelligence (AI): Antecedents and consequences of AI-based B2B practices. Industrial Marketing Management, 98, 255–270. https://doi.org/10.1016/j.indmarman.2021.09.003
  • Badghish, S., & Soomro, Y. A. (2024). Artificial intelligence adoption by SMEs to achieve sustainable business performance: Application of technology–organization–environment framework. Sustainability, 16(5), 1864. https://doi.org/10.3390/su16051864
  • Barney, J. (1991). Firm resources and sustained competitive advantage. Journal of Management, 17(1), 99–120. https://doi.org/10.1177/014920639101700108
  • Bartlett, J. E., Kotrlik, J. W., & Higgins, C. C. (2001). Organizational research: Determining appropriate sample size in survey research. Information Technology, Learning, and Performance Journal, 19(1), 43–50.
  • Bratucu, G., Ciobanu, E., Chițu, I. B., Litră, A. V., Zamfirache, A., & Bălășescu, M. (2024). The use of technology assisted by artificial intelligence depending on the companies’ digital maturity level. Electronics, 13(9), 1687. https://doi.org/10.3390/electronics13091687
  • Bughin, J., Seong, J., Manyika, J., Chui, M., & Joshi, R. (2018). Notes from the AI frontier: Modeling the impact of AI on the world economy. McKinsey Global Institute, 4(1), 2-61.
  • Cannella, J. (2018). Artificial intelligence in marketing [Unpublished Honors Thesis]. Arizona State University.
  • Carayannis, E. G., Dumitrescu, R., Falkowski, T., Papamichail, G., & Zota, N. R. (2025). Enhancing SME resilience through artificial intelligence and strategic foresight: A framework for sustainable competitiveness. Technology in Society, 102835.
  • Coad, A., Segarra, A., & Teruel, M. (2013). Growth and (adolescent) firm performance: A quantile regression approach. Journal of Evolutionary Economics, 23(1), 195–222.
  • Czarnitzki, D., Fernández, G. P., & Rammer, C. (2023). Artificial intelligence and firm-level productivity. Journal of Economic Behavior & Organization, 211, 188–205. https://doi.org/10.1016/j.jebo.2023.05.008
  • Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108–116. https://hbr.org/2018/01/artificial-intelligence-for-the-real-world
  • Doğan, R., Karakoç, S., & Öztürk, F. (2021). Turkey's autonomous systems and defense technologies. Journal of Defense Studies, 9(2), 22–35. https://doi.org/10.1080/19463138.2021.1940237
  • Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Al-Emran, M., Antonelli, G., Barricelli, B. R., Ashrafi, R., et al. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, Article 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002
  • Feng, F., Li, J., Zhang, F., & Sun, J. (2024). The impact of artificial intelligence on green innovation efficiency: Moderating role of dynamic capability. International Review of Economics & Finance, 96, Article 103649. https://doi.org/10.1016/j.iref.2024.103649
  • Fergnani, A., Hines, A., Lanteri, A., & Esposito, M. (2020). Corporate foresight in an ever-turbulent era. European Business Review, 26–33.
  • Field, A. (2005). Reliability analysis. In A. Field (Ed.), Discovering statistics using SPSS (2nd ed., Ch. 15). Sage.
  • Gülsen, I. (2019). İşletmelerde yapay zekâ uygulamaları ve faydaları: Perakende sektöründe bir derleme. Tüketici ve Tüketim Araştırmaları Dergisi, 11(2), 407–436.
  • Hannan, M. T., & Freeman, J. (1984). Structural inertia and organizational change. American Sociological Review, 49(2), 149–164. https://doi.org/10.2307/2095567
  • Huang, M. H., & Rust, R. T. (2024). The caring machine: Feeling AI for customer care. Journal of Marketing, 88(5), 1-23.
  • Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business horizons, 61(4), 577-586.
  • Kalkınma Ajansları Genel Müdürlüğü. (2021). Dijital dönüşüm ve KOBİ’ler raporu. https://www.sanayi.gov.tr/
  • Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? Business Horizons, 62(1), 15–25.
  • Kulkarni, A. V., Joseph, S., & Patil, K. P. (2024). Artificial intelligence technology readiness for social sustainability and business ethics: Evidence from MSMEs in developing nations. International Journal of Information Management Data Insights, 4(2), Article 100250. https://doi.org/10.1016/j.jjimei.2024.100250
  • Kumar, S., & Nayak, A. (2024). Predictive analytics for demand forecasting: A deep learning-based decision support system. International Journal of Engineering and Computer Science, 13, 26291–26299. https://doi.org/10.18535/ijecs/v13i07.4853
  • Kumar, V., Ashraf, A. R., & Nadeem, W. (2024). AI-powered marketing: What, where, and how? International Journal of Information Management, 77, Article 102783. https://doi.org/10.1016/j.ijinfomgt.2024.102783
  • Li, F., Larimo, J., & Junttila, V. (2018). The impact of digital maturity on firm performance: A dynamic capability perspective. International Business Review, 27(5), 1085-1097. https://doi.org/10.1016/j.ibusrev.2018.04.008
  • Makridakis, S. (2017). The forthcoming artificial intelligence (AI) revolution: Its impact on society and firms. Futures, 90, 46–60. https://doi.org/10.1016/j.futures.2017.03.006
  • McKinsey & Company. (2025). Superagency in the workplace: Empowering people to unlock AI’s full potential. https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/superagency-in-the-workplace-empowering-people-to-unlock-ais-full-potential-at-work
  • Mikalef, P., Fjørtoft, S. O., & Torvatn, H. Y. (2019, June). Developing an artificial intelligence capability: A theoretical framework for business value. In International conference on business information systems (pp. 409-416). Cham: Springer International Publishing.
  • Mikalef, P., & Gupta, M. (2021). Artificial intelligence capability: Conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Information & Management, 58(3), Article 103434. https://doi.org/10.1016/j.im.2021.103434
  • Mukhopadhyay, S., Singh, R. K., & Jain, T. (2024). Developing artificial intelligence enabled Marketing 4.0 framework: An Industry 4.0 perspective. Qualitative Market Research: An International Journal. https://doi.org/10.1108/qmr-06-2023-0086
  • OECD. (2025). Governing with Artificial Intelligence: The State of Play and Way Forward in Core Government Functions. OECD Publishing.
  • Qu, B., Hu, Y., Liu, Y., Li, M., Shi, G., & Zhu, S. (2021). Firm Size and Artificial Intelligence (AI)-Based Technology Adoption: The Role of Corporate Size in South Korean Construction Companies. Buildings, 13(4), 1066. RAND Corporation. (2025). Trends in Focus 2025.
  • Renko, S., & Druzijanic, M. (2014). Perceived usefulness of innovative technology in retailing: Consumers’ and retailers’ point of view. Journal of Retailing and Consumer Services, 21(5), 836–843.
  • Rogers, E. M. (2003). Diffusion of innovations (5th ed.). Free Press.
  • Sanayi ve Teknoloji Bakanlığı. (2021). Ulusal Yapay Zekâ Stratejisi 2021–2025. http://cbddo.gov.tr/SharedFolderServer/Genel/File/TR-UlusalYZStratejisi2021-2025.pdf
  • Soori, M., Karimi Ghaleh Jough, F., Arezoo, B., & Dastres, R. (2024). AI-based decision support systems in Industry 4.0: A review. Journal of Economy and Technology. https://doi.org/10.1016/j.ject.2024.08.005
  • Stanford Institute for Human-Centered Artificial Intelligence. (2025). 2025 AI Index Report. https://hai.stanford.edu/ai-index/2025-ai-index-report
  • Sujan, G. (2023). Artificial intelligence usage among small business owners. Morning Consult. https://morningconsult.com
  • Statista. (2020). Artificial Intelligence Dossier. https://www.statista.com
  • Şentürk, Ö. (2022). İç denetim faaliyetlerinde yapay zekâdan beklentiler: ChatGPT uygulaması örneği. TIDE Academia Research, 4(2), 51–82.
  • Tambouratzis, G., Cortés, M., & Liddle, A. (2024). AI horizon scanning. IEEE-SA White Paper p3395. https://doi.org/10.48550/arXiv.2411.034
  • TÜBİTAK. (2024). Türkiye Yapay Zekâ Ekosistemi Haritası. https://www.tubitak.gov.tr
  • Ünal, A., & Kılınç, İ. (2020). Yapay zekâ işletme yönetimi ilişkisi üzerine bir değerlendirme. Yönetim Bilişim Sistemleri Dergisi, 6(1), 51–78.
  • Wamba-Taguimdje, S.-L., Wamba, S. F., Kamdjoug, J. R. K., & Wanko, C. E. T. (2020). Influence of artificial intelligence (AI) on firm performance: The business value of AI-based transformation projects. Business Process Management Journal, 26(7), 1893–1924. https://doi.org/10.1108/BPMJ-10-2019-0411
  • Yoldaş, E. N., & Aycı, A. (2024). The role of artificial intelligence in integrated marketing communication: An evaluation of ChatGPT. Pamukkale Üniversitesi İşletme Araştırmaları Dergisi, 11(2), 611–637.

Artificial Intelligence Use in Businesses in Türkiye and Future Investment Trends

Yıl 2025, Cilt: 14 Sayı: 4, 184 - 203, 30.10.2025
https://doi.org/10.15869/itobiad.1731629

Öz

The objective of this study is to empirically examine the organizational and technological factors that influence the current applications and future investment intentions of firms operating in various sectors in Turkey regarding artificial intelligence (AI) technologies. The theoretical framework of the study is built upon the concepts of the Resource-Based View (RBV), the Theory of Diffusion of Innovations (DOI), and Organizational Inertia. The research population consisted of individuals working in various sectors in Turkey. A convenience sampling method was used to survey 241 employees from small and medium-sized enterprises (SMEs) and large-scale firms. The unit of analysis was the firm, and AI use and AI investment consideration were defined as dichotomous dependent variables in the collected data. Hypothesis testing was conducted using logistic regression analysis. The analyses revealed that the number of core digital technologies employed by firms (count variables such as ERP, CRM, RPA, HR Software, etc.) had a statistically significant and, contrary to expectations, negative impact on both current AI use and future AI investment consideration. This striking finding clearly contradicts the expectation of the Diffusion of Innovations Theory, which posits that an innovation's compatibility with existing systems will increase adoption. Furthermore, institutional variables underlying the Resource-Based View theory, such as firm size, industry, and business experience, did not exhibit a significant relationship on AI adoption and investment decisions. The results suggest that highly digitalized firms experience a form of organizational inertia as a result of having recently completed major infrastructure investments, and instead of allocating their resources to a more advanced, radical innovation such as AI, they strategically postpone optimizing existing systems. This finding reinforces the conclusion that the quantity of digital infrastructure does not necessarily translate into the data quality and organizational flexibility required for AI. By providing concrete empirical data on the transition processes between digitalization and AI adoption, this study makes a significant contribution to understanding firms' AI integration strategies. The findings suggest that AI success depends on human and data competencies rather than financial resources; This suggests that policy focus should shift to AI consulting and training programs.

Kaynakça

  • Abrokwah-Larbi, K., & Awuku-Larbi, Y. (2024). The impact of artificial intelligence in marketing on the performance of business organizations: Evidence from SMEs in an emerging economy. Journal of Entrepreneurship in Emerging Economies, 16(4), 1090–1117. https://doi.org/10.1108/JEEE-07-2022-0207
  • Acar, S., & Sarnıç, A. (2024). A qualitative study on talent management in enterprises within the Industry 4.0 process. SEISENSE Journal of Management, 7(1), 101–116.
  • Alabi, M., & Ang, A. (2024). AI-driven financial risk management: Detecting anomalies and predicting market trends. ResearchGate. https://www.researchgate.net/publication/383276974_AI-Driven_Financial_Risk_Management_Detecting_Anomalies_and_Predicting_Market_Trends
  • Akbaş, A. (2024). Yapay zekâ ile toplumsal dönüşüm: Sosyolojik perspektif. International Journal of Humanities and Education, 10(22), 151–180.
  • Aktepe, Ş., & Karakulle, İ. (2023). İşletmelerde rekabet üstünlüğü sağlamada yapay zekâ kullanımı: E-ticaret sitelerinin mobil uygulamalar örneği. Fenerbahçe Üniversitesi Sosyal Bilimler Dergisi, 3(1), 30–46.
  • Ayinaddis, S. G. (2025). Artificial intelligence adoption dynamics and knowledge in SMEs and large firms: A systematic review and bibliometric analysis. Journal of Innovation & Knowledge, 10(3), 100682.
  • Baabdullah, A. M., Alalwan, A. A., Slade, E. L., Raman, R., & Khatatneh, K. F. (2021). SMEs and artificial intelligence (AI): Antecedents and consequences of AI-based B2B practices. Industrial Marketing Management, 98, 255–270. https://doi.org/10.1016/j.indmarman.2021.09.003
  • Badghish, S., & Soomro, Y. A. (2024). Artificial intelligence adoption by SMEs to achieve sustainable business performance: Application of technology–organization–environment framework. Sustainability, 16(5), 1864. https://doi.org/10.3390/su16051864
  • Barney, J. (1991). Firm resources and sustained competitive advantage. Journal of Management, 17(1), 99–120. https://doi.org/10.1177/014920639101700108
  • Bartlett, J. E., Kotrlik, J. W., & Higgins, C. C. (2001). Organizational research: Determining appropriate sample size in survey research. Information Technology, Learning, and Performance Journal, 19(1), 43–50.
  • Bratucu, G., Ciobanu, E., Chițu, I. B., Litră, A. V., Zamfirache, A., & Bălășescu, M. (2024). The use of technology assisted by artificial intelligence depending on the companies’ digital maturity level. Electronics, 13(9), 1687. https://doi.org/10.3390/electronics13091687
  • Bughin, J., Seong, J., Manyika, J., Chui, M., & Joshi, R. (2018). Notes from the AI frontier: Modeling the impact of AI on the world economy. McKinsey Global Institute, 4(1), 2-61.
  • Cannella, J. (2018). Artificial intelligence in marketing [Unpublished Honors Thesis]. Arizona State University.
  • Carayannis, E. G., Dumitrescu, R., Falkowski, T., Papamichail, G., & Zota, N. R. (2025). Enhancing SME resilience through artificial intelligence and strategic foresight: A framework for sustainable competitiveness. Technology in Society, 102835.
  • Coad, A., Segarra, A., & Teruel, M. (2013). Growth and (adolescent) firm performance: A quantile regression approach. Journal of Evolutionary Economics, 23(1), 195–222.
  • Czarnitzki, D., Fernández, G. P., & Rammer, C. (2023). Artificial intelligence and firm-level productivity. Journal of Economic Behavior & Organization, 211, 188–205. https://doi.org/10.1016/j.jebo.2023.05.008
  • Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108–116. https://hbr.org/2018/01/artificial-intelligence-for-the-real-world
  • Doğan, R., Karakoç, S., & Öztürk, F. (2021). Turkey's autonomous systems and defense technologies. Journal of Defense Studies, 9(2), 22–35. https://doi.org/10.1080/19463138.2021.1940237
  • Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Al-Emran, M., Antonelli, G., Barricelli, B. R., Ashrafi, R., et al. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, Article 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002
  • Feng, F., Li, J., Zhang, F., & Sun, J. (2024). The impact of artificial intelligence on green innovation efficiency: Moderating role of dynamic capability. International Review of Economics & Finance, 96, Article 103649. https://doi.org/10.1016/j.iref.2024.103649
  • Fergnani, A., Hines, A., Lanteri, A., & Esposito, M. (2020). Corporate foresight in an ever-turbulent era. European Business Review, 26–33.
  • Field, A. (2005). Reliability analysis. In A. Field (Ed.), Discovering statistics using SPSS (2nd ed., Ch. 15). Sage.
  • Gülsen, I. (2019). İşletmelerde yapay zekâ uygulamaları ve faydaları: Perakende sektöründe bir derleme. Tüketici ve Tüketim Araştırmaları Dergisi, 11(2), 407–436.
  • Hannan, M. T., & Freeman, J. (1984). Structural inertia and organizational change. American Sociological Review, 49(2), 149–164. https://doi.org/10.2307/2095567
  • Huang, M. H., & Rust, R. T. (2024). The caring machine: Feeling AI for customer care. Journal of Marketing, 88(5), 1-23.
  • Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business horizons, 61(4), 577-586.
  • Kalkınma Ajansları Genel Müdürlüğü. (2021). Dijital dönüşüm ve KOBİ’ler raporu. https://www.sanayi.gov.tr/
  • Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? Business Horizons, 62(1), 15–25.
  • Kulkarni, A. V., Joseph, S., & Patil, K. P. (2024). Artificial intelligence technology readiness for social sustainability and business ethics: Evidence from MSMEs in developing nations. International Journal of Information Management Data Insights, 4(2), Article 100250. https://doi.org/10.1016/j.jjimei.2024.100250
  • Kumar, S., & Nayak, A. (2024). Predictive analytics for demand forecasting: A deep learning-based decision support system. International Journal of Engineering and Computer Science, 13, 26291–26299. https://doi.org/10.18535/ijecs/v13i07.4853
  • Kumar, V., Ashraf, A. R., & Nadeem, W. (2024). AI-powered marketing: What, where, and how? International Journal of Information Management, 77, Article 102783. https://doi.org/10.1016/j.ijinfomgt.2024.102783
  • Li, F., Larimo, J., & Junttila, V. (2018). The impact of digital maturity on firm performance: A dynamic capability perspective. International Business Review, 27(5), 1085-1097. https://doi.org/10.1016/j.ibusrev.2018.04.008
  • Makridakis, S. (2017). The forthcoming artificial intelligence (AI) revolution: Its impact on society and firms. Futures, 90, 46–60. https://doi.org/10.1016/j.futures.2017.03.006
  • McKinsey & Company. (2025). Superagency in the workplace: Empowering people to unlock AI’s full potential. https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/superagency-in-the-workplace-empowering-people-to-unlock-ais-full-potential-at-work
  • Mikalef, P., Fjørtoft, S. O., & Torvatn, H. Y. (2019, June). Developing an artificial intelligence capability: A theoretical framework for business value. In International conference on business information systems (pp. 409-416). Cham: Springer International Publishing.
  • Mikalef, P., & Gupta, M. (2021). Artificial intelligence capability: Conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Information & Management, 58(3), Article 103434. https://doi.org/10.1016/j.im.2021.103434
  • Mukhopadhyay, S., Singh, R. K., & Jain, T. (2024). Developing artificial intelligence enabled Marketing 4.0 framework: An Industry 4.0 perspective. Qualitative Market Research: An International Journal. https://doi.org/10.1108/qmr-06-2023-0086
  • OECD. (2025). Governing with Artificial Intelligence: The State of Play and Way Forward in Core Government Functions. OECD Publishing.
  • Qu, B., Hu, Y., Liu, Y., Li, M., Shi, G., & Zhu, S. (2021). Firm Size and Artificial Intelligence (AI)-Based Technology Adoption: The Role of Corporate Size in South Korean Construction Companies. Buildings, 13(4), 1066. RAND Corporation. (2025). Trends in Focus 2025.
  • Renko, S., & Druzijanic, M. (2014). Perceived usefulness of innovative technology in retailing: Consumers’ and retailers’ point of view. Journal of Retailing and Consumer Services, 21(5), 836–843.
  • Rogers, E. M. (2003). Diffusion of innovations (5th ed.). Free Press.
  • Sanayi ve Teknoloji Bakanlığı. (2021). Ulusal Yapay Zekâ Stratejisi 2021–2025. http://cbddo.gov.tr/SharedFolderServer/Genel/File/TR-UlusalYZStratejisi2021-2025.pdf
  • Soori, M., Karimi Ghaleh Jough, F., Arezoo, B., & Dastres, R. (2024). AI-based decision support systems in Industry 4.0: A review. Journal of Economy and Technology. https://doi.org/10.1016/j.ject.2024.08.005
  • Stanford Institute for Human-Centered Artificial Intelligence. (2025). 2025 AI Index Report. https://hai.stanford.edu/ai-index/2025-ai-index-report
  • Sujan, G. (2023). Artificial intelligence usage among small business owners. Morning Consult. https://morningconsult.com
  • Statista. (2020). Artificial Intelligence Dossier. https://www.statista.com
  • Şentürk, Ö. (2022). İç denetim faaliyetlerinde yapay zekâdan beklentiler: ChatGPT uygulaması örneği. TIDE Academia Research, 4(2), 51–82.
  • Tambouratzis, G., Cortés, M., & Liddle, A. (2024). AI horizon scanning. IEEE-SA White Paper p3395. https://doi.org/10.48550/arXiv.2411.034
  • TÜBİTAK. (2024). Türkiye Yapay Zekâ Ekosistemi Haritası. https://www.tubitak.gov.tr
  • Ünal, A., & Kılınç, İ. (2020). Yapay zekâ işletme yönetimi ilişkisi üzerine bir değerlendirme. Yönetim Bilişim Sistemleri Dergisi, 6(1), 51–78.
  • Wamba-Taguimdje, S.-L., Wamba, S. F., Kamdjoug, J. R. K., & Wanko, C. E. T. (2020). Influence of artificial intelligence (AI) on firm performance: The business value of AI-based transformation projects. Business Process Management Journal, 26(7), 1893–1924. https://doi.org/10.1108/BPMJ-10-2019-0411
  • Yoldaş, E. N., & Aycı, A. (2024). The role of artificial intelligence in integrated marketing communication: An evaluation of ChatGPT. Pamukkale Üniversitesi İşletme Araştırmaları Dergisi, 11(2), 611–637.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bilim ve Teknoloji Sosyolojisi ve Sosyal Bilimler
Bölüm Makaleler
Yazarlar

Kevser Şahinbaş 0000-0002-8076-3678

Erken Görünüm Tarihi 30 Ekim 2025
Yayımlanma Tarihi 30 Ekim 2025
Gönderilme Tarihi 1 Temmuz 2025
Kabul Tarihi 28 Ekim 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 4

Kaynak Göster

APA Şahinbaş, K. (2025). Türkiye’de İşletmelerde Yapay Zekâ Kullanımı ve Geleceğe Dönük Yatırım Eğilimleri. İnsan ve Toplum Bilimleri Araştırmaları Dergisi, 14(4), 184-203. https://doi.org/10.15869/itobiad.1731629
İnsan ve Toplum Bilimleri Araştırmaları Dergisi  Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı (CC BY NC) ile lisanslanmıştır.