Araştırma Makalesi
BibTex RIS Kaynak Göster

Titanyum Dioksit Nanoparçacıklarının Yac-1 Lenfoma Hücre Soyu Canlılığı Ve İnce Yapısı Üzerine Etkileri

Yıl 2018, , 17 - 24, 12.03.2018
https://doi.org/10.18017/iuitfd.373670

Öz

Amaç: Yaygın kullanım alanı olan nanoparçacıkların
kanser terapisinde etkili oldukları bilinmektedir. Çalışmamızda geniş kullanım
alanına sahip titanyum dioksit nanoparçacıklarının (TiO2-NP) YAC-1 lenfoma
hücre soyu üzerine etkilerini incelemeyi amaçladık.

Gereç ve Yöntem: 24’lü kültür kuyucuklarına
ekilen YAC-1 lenfoma hücreleri üzerine iki (0,1mg/mL, 0,5mg/mL) farklı
konsantrasyonda TiO2-NP’si uygulandı. 24 ve 48 saat sonra hücreler toplanarak
canlılık testi için sayma kamarasında sayım yapıldı ve nicel farklılık
Tukey-Kramer çoklu karşılaştırma testi ile belirlendi. Elektron mikroskop incelemesi
için rutin takip sonrası Epon-812 ortamına gömülen hücrelerden alınan ince
kesitler geçirimli elektron mikroskobu ile incelendi.

Bulgular: YAC-1 hücrelerinin çoğalma
indekslerinde TiO2-NP’lerin dozuna ve uygulama süresine bağlı olarak istatistiksel
olarak anlamlı düzeyde azalma izlendi. Elektron mikroskobik incelemede, 24.
saatte 0,5mg uygulanmış grupta ve 48. saatte 0,1 ve 0,5 mg uygulanmış grupta
mitokondri bozulması, otofajik vakuol birikimi ve hem nekrotik hem de apoptotik
hücre morfolojilerine rastlandı.







Sonuç: TiO2-NP’lerinin farklı kanser hücre
soyları üzerinde hücre ölümünü tetiklediği çeşitli çalışmalarla gösterilmiştir.
Çalışmamızda hücre çoğalma indeksi açısından doza ve süreye bağlı azalmaya ek
olarak elektron mikroskobik olarak nanoparçacığa maruz kalan hücrelerde TiO2-NP
içeren otofajik vakuol oluşumları, organellerin yapısında bozulmalar ve
apoptotik ve nekrotik hücre ölümünü gösteren morfolojik değişimleri izledik.
Çevremizde sürekli etkileşim halinde olduğumuz bu TiO2-NP’sinin hücre üzerinde
gösterdiği bu sitotoksik etkinin mekanizmaları, kapsamlı araştırmaların konusu
olarak değerlendirilmelidir.

Kaynakça

  • 1- Bajaj VK, Goyal A, Sharma G, Sharma KB, Gupta RS. Synthesis of CdS Nanoparticle and Reveal Its Effect on Reproductive System of Male Albino Rats. BioNanoSci 2013; 3: 58-66.
  • 2- Zhang X, Li W, Yang Z, Toxicology of nanosized titanium dioxide: an update. Arch. Toxicol 2015; 89 (12): 2207–2217.
  • 3- Shi H, Magaye R, Castranova V, Zhao J, Titanium dioxide nanoparticles: a review of current toxicological data. Part. Fibre Toxicol 2013;10:15
  • 4- IARC Working Group on the Evaluation of Carcinogenic Risk to Humans. Cobalt in Hard Metals and Cobalt Sulfate, Gallium Arsenide, Indium Phosphide and Vanadium Pentoxide. Lyon (FR): International Agency for Research on Cancer; 2006. (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 86.).
  • 5- Bharali DJ, Khalil M, Gurbuz M, Simone TM, Mousa SA. Nanoparticles and cancer therapy: A concise review with emphasis on dendrimers. International Journal of Nanomedicine 2009; 4: 1–7.
  • 6- Vinardell MP, Mitjans M. Antitumor activities of metal oxide nanoparticles. Nanomaterials 2015; 5: 1004-1021.
  • 7- Xue C, Wu J, Lan F, Liu W, Yang X, Zeng F, et al. Nano titanium dioxide induces the generation of ROS and potential damage in HaCaT cells under UVA irradiation. J Nanosci Nanotechnol. 2010; 10(12):8500-7.
  • 8- Thevenot P, Cho J, Wavhal D, Timmons R.B, Tang L. Surface chemistry influence cancer killing effect of TiO2 nanoparticles. Nanomedicine, 2008;4(3): 226-236.
  • 9- Vamanu CI, Cimpan MR, Hol PJ, Sornes S, Lie SA, Gjerdet NR. Induction of cell death by TiO2 nanoparticles: Studies on a human monoblastoid cell line. Toxicology in Vitro 2008; 22: 1689-1896.
  • 10- Zhu Y, Eaton JW, Li C. Titanium dioxide (TiO2) nanoparticles preferentially induce cell death in transformed cell in a Bak/Bax- independent fashion. PLoSONE 2012; 7(11): 1-11.
  • 11- Luo YH, Chang LW, Lin P. Metal-Based Nanoparticles and the Immune System: Activation, Inflammation, and Potential Applications. BioMed Research International 2015;1-12.
  • 12- Thurn KT, Arora H, Paunesku T, Wu A, Brown EMB, Doty C, Kremer J, Woloschak G. Endocytosis of Titanium Dioxide Nanoparticles in Prostate Cancer PC-3M Cells. Nanomedicine 2011;7(2): 123-130.
  • 13- Sarhan OMM, Hussein RM. Effects of intraperitoneally injected silver nanoparticles on histological structures and blood parameters in the albino rat. International Journal of Nanomedicine 2014; 9: 1505-1517.
  • 14- Lopes VR, Vesa Loitto V, Audinot JN, Bayat N, Gutleb AC, Cristobal S. Dose dependent autophagic effect of titanium dioxide nanoparticles in human HaCaT cells at non cytotoxic levels. J Nanobiotechnol 2016; 14: 22.
  • 15- Halamoda KB, Chapuıs BC, Guney-Ayra S, Juillerat-Jeanneret L. Induction of oxidative stress, lysosome activation and autophagy by nanoparticles in human brain-derived endothelial cells. Biochem 2012; 441: 813-821.
  • 16- Chen Y, Azad MB, Gibson SB. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death and Differentiation 2009; 16: 1040–1052.
  • 17- Levine B, Yuan J. Autophagy in cell death: an innocent convict? J Clin Invest 2005; 115:2679–2688
  • 18- Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. The Journal of pathology. 2010; 221(1):3-12.
  • 19- Krysko DV, Kaczmarek A, Vandenabeele P. Molecular Pathways of Different Types of Cell Death: Many Roads to Death. Phagocytosis of Dying Cells: From Molecular Mechanisms to Human Diseases; 2009.p.3-31.
  • 20- Azad MB, Chen Y, Gibson SB. Regulaton of autophagy by reactive oxygen species (ROS): implications for cancer pregression and treatment. Antioxid Redox Signal 2009; 11(4): 777-790.
  • 21-Wang Y, Cui H, Zhou J, Li F, Wang J, Chen M, et al. Cytotoxicity, DNA damage, and apoptosis induced by titanium dioxide nanoparticles in human non-small cell lung cancer A549 cells. Environ Sci Pollut Res Int. 2015; 22(7): 5519-30.
  • 22- Parka EJ, Yib J, Chungc KH, Ryud DY, Choie J, Park K. Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells Toxicology Letters 2008;180: 222–229.
  • 23- Li XB, Xu SQ, Zhang ZR, Schluesener HJ. Apoptosis induced by titanium dioxide nanoparticles in cultured murine microglia N9 cells. Chinese Sci Bull 2009; 54: 3830―3836.
  • 24- Zhao J, Bowman L, Zhang X, Vallyathan V, Young SH, Castranova V, et al. Titanium dioxide (TiO2) nanoparticles induce JB6 cell apoptosis through activation of the caspase-8/Bid and mitochondrial pathways. J Toxicol Environ Health A. 2009;72(19):1141-9.

The Effects of Titanium Dioxide Nanoparticles on Vitality and Ultrastructure of Yac-1 Lymphoma Cell Line

Yıl 2018, , 17 - 24, 12.03.2018
https://doi.org/10.18017/iuitfd.373670

Öz

Objective: Nanoparticles, which are widely
used, are known to be effective in cancer therapy. The aim of this study is to
investigate the effects of titanium dioxide nanoparticles (TiO2-NP) on the
YAC-1 lymphoma cell line.

Materials and Methods: TiO2-NP were applied
at two different concentrations (0.1mg/mL, 0.5mg/ mL) on cultured YAC-1
lymphoma cells in 24 well plates. After 24 and 48 hours of treatment the cells
were collected and counted for viability test and the quantitative difference
was determined by the Tukey-Kramer multiple comparison test. Cells were
embedded in Epon-812 after routine process for the electron microscope
examination. Thin sections of the cells were examined with Jem Jeol
transmission electron microscope.

Results: The proliferation index of YAC-1
cells showed a statistically significant decrease with the dose and time
dependent of TiO2-NP treatment. Mitochondrial degeneration, autophagic vacuole
accumulation and both necrotic and apoptotic cell morphologies were observed in
both TiO2-NP treatment groups via electron microscopic evaluation.







Conclusion: Several studies have shown that
TiO2-NPs trigger cell death on different cancer cell lines. In our study, we
observed autophagic vacuole filled with NPs, organelle degeneration, and
morphological changes showing apoptotic and necrotic cell death in groups
exposed to nanoparticles. In addition significant decrease of proliferation
index were detected with dose- and time-dependent. We are constantly
interacting with TiO2-NP in our daily day life. The mechanisms of these
cytotoxic effects of TiO2-NP should be elucidated by further studies.

Kaynakça

  • 1- Bajaj VK, Goyal A, Sharma G, Sharma KB, Gupta RS. Synthesis of CdS Nanoparticle and Reveal Its Effect on Reproductive System of Male Albino Rats. BioNanoSci 2013; 3: 58-66.
  • 2- Zhang X, Li W, Yang Z, Toxicology of nanosized titanium dioxide: an update. Arch. Toxicol 2015; 89 (12): 2207–2217.
  • 3- Shi H, Magaye R, Castranova V, Zhao J, Titanium dioxide nanoparticles: a review of current toxicological data. Part. Fibre Toxicol 2013;10:15
  • 4- IARC Working Group on the Evaluation of Carcinogenic Risk to Humans. Cobalt in Hard Metals and Cobalt Sulfate, Gallium Arsenide, Indium Phosphide and Vanadium Pentoxide. Lyon (FR): International Agency for Research on Cancer; 2006. (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 86.).
  • 5- Bharali DJ, Khalil M, Gurbuz M, Simone TM, Mousa SA. Nanoparticles and cancer therapy: A concise review with emphasis on dendrimers. International Journal of Nanomedicine 2009; 4: 1–7.
  • 6- Vinardell MP, Mitjans M. Antitumor activities of metal oxide nanoparticles. Nanomaterials 2015; 5: 1004-1021.
  • 7- Xue C, Wu J, Lan F, Liu W, Yang X, Zeng F, et al. Nano titanium dioxide induces the generation of ROS and potential damage in HaCaT cells under UVA irradiation. J Nanosci Nanotechnol. 2010; 10(12):8500-7.
  • 8- Thevenot P, Cho J, Wavhal D, Timmons R.B, Tang L. Surface chemistry influence cancer killing effect of TiO2 nanoparticles. Nanomedicine, 2008;4(3): 226-236.
  • 9- Vamanu CI, Cimpan MR, Hol PJ, Sornes S, Lie SA, Gjerdet NR. Induction of cell death by TiO2 nanoparticles: Studies on a human monoblastoid cell line. Toxicology in Vitro 2008; 22: 1689-1896.
  • 10- Zhu Y, Eaton JW, Li C. Titanium dioxide (TiO2) nanoparticles preferentially induce cell death in transformed cell in a Bak/Bax- independent fashion. PLoSONE 2012; 7(11): 1-11.
  • 11- Luo YH, Chang LW, Lin P. Metal-Based Nanoparticles and the Immune System: Activation, Inflammation, and Potential Applications. BioMed Research International 2015;1-12.
  • 12- Thurn KT, Arora H, Paunesku T, Wu A, Brown EMB, Doty C, Kremer J, Woloschak G. Endocytosis of Titanium Dioxide Nanoparticles in Prostate Cancer PC-3M Cells. Nanomedicine 2011;7(2): 123-130.
  • 13- Sarhan OMM, Hussein RM. Effects of intraperitoneally injected silver nanoparticles on histological structures and blood parameters in the albino rat. International Journal of Nanomedicine 2014; 9: 1505-1517.
  • 14- Lopes VR, Vesa Loitto V, Audinot JN, Bayat N, Gutleb AC, Cristobal S. Dose dependent autophagic effect of titanium dioxide nanoparticles in human HaCaT cells at non cytotoxic levels. J Nanobiotechnol 2016; 14: 22.
  • 15- Halamoda KB, Chapuıs BC, Guney-Ayra S, Juillerat-Jeanneret L. Induction of oxidative stress, lysosome activation and autophagy by nanoparticles in human brain-derived endothelial cells. Biochem 2012; 441: 813-821.
  • 16- Chen Y, Azad MB, Gibson SB. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death and Differentiation 2009; 16: 1040–1052.
  • 17- Levine B, Yuan J. Autophagy in cell death: an innocent convict? J Clin Invest 2005; 115:2679–2688
  • 18- Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. The Journal of pathology. 2010; 221(1):3-12.
  • 19- Krysko DV, Kaczmarek A, Vandenabeele P. Molecular Pathways of Different Types of Cell Death: Many Roads to Death. Phagocytosis of Dying Cells: From Molecular Mechanisms to Human Diseases; 2009.p.3-31.
  • 20- Azad MB, Chen Y, Gibson SB. Regulaton of autophagy by reactive oxygen species (ROS): implications for cancer pregression and treatment. Antioxid Redox Signal 2009; 11(4): 777-790.
  • 21-Wang Y, Cui H, Zhou J, Li F, Wang J, Chen M, et al. Cytotoxicity, DNA damage, and apoptosis induced by titanium dioxide nanoparticles in human non-small cell lung cancer A549 cells. Environ Sci Pollut Res Int. 2015; 22(7): 5519-30.
  • 22- Parka EJ, Yib J, Chungc KH, Ryud DY, Choie J, Park K. Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells Toxicology Letters 2008;180: 222–229.
  • 23- Li XB, Xu SQ, Zhang ZR, Schluesener HJ. Apoptosis induced by titanium dioxide nanoparticles in cultured murine microglia N9 cells. Chinese Sci Bull 2009; 54: 3830―3836.
  • 24- Zhao J, Bowman L, Zhang X, Vallyathan V, Young SH, Castranova V, et al. Titanium dioxide (TiO2) nanoparticles induce JB6 cell apoptosis through activation of the caspase-8/Bid and mitochondrial pathways. J Toxicol Environ Health A. 2009;72(19):1141-9.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Klinik Araştırma
Yazarlar

Tuğba Kotil 0000-0003-1261-0597

Aslı Erdoğan Bu kişi benim 0000-0002-7899-280X

Hasan Serdar Mutlu Bu kişi benim 0000-0002-4267-9619

Sibel Doğan Bu kişi benim 0000-0003-4627-478X

Seyhun Solakoğlu Bu kişi benim 0000-0002-1389-9639

Yayımlanma Tarihi 12 Mart 2018
Gönderilme Tarihi 2 Ocak 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Kotil, T., Erdoğan, A., Mutlu, H. S., Doğan, S., vd. (2018). The Effects of Titanium Dioxide Nanoparticles on Vitality and Ultrastructure of Yac-1 Lymphoma Cell Line. Journal of Istanbul Faculty of Medicine, 81(1), 17-24. https://doi.org/10.18017/iuitfd.373670
AMA Kotil T, Erdoğan A, Mutlu HS, Doğan S, Solakoğlu S. The Effects of Titanium Dioxide Nanoparticles on Vitality and Ultrastructure of Yac-1 Lymphoma Cell Line. İst Tıp Fak Derg. Mart 2018;81(1):17-24. doi:10.18017/iuitfd.373670
Chicago Kotil, Tuğba, Aslı Erdoğan, Hasan Serdar Mutlu, Sibel Doğan, ve Seyhun Solakoğlu. “The Effects of Titanium Dioxide Nanoparticles on Vitality and Ultrastructure of Yac-1 Lymphoma Cell Line”. Journal of Istanbul Faculty of Medicine 81, sy. 1 (Mart 2018): 17-24. https://doi.org/10.18017/iuitfd.373670.
EndNote Kotil T, Erdoğan A, Mutlu HS, Doğan S, Solakoğlu S (01 Mart 2018) The Effects of Titanium Dioxide Nanoparticles on Vitality and Ultrastructure of Yac-1 Lymphoma Cell Line. Journal of Istanbul Faculty of Medicine 81 1 17–24.
IEEE T. Kotil, A. Erdoğan, H. S. Mutlu, S. Doğan, ve S. Solakoğlu, “The Effects of Titanium Dioxide Nanoparticles on Vitality and Ultrastructure of Yac-1 Lymphoma Cell Line”, İst Tıp Fak Derg, c. 81, sy. 1, ss. 17–24, 2018, doi: 10.18017/iuitfd.373670.
ISNAD Kotil, Tuğba vd. “The Effects of Titanium Dioxide Nanoparticles on Vitality and Ultrastructure of Yac-1 Lymphoma Cell Line”. Journal of Istanbul Faculty of Medicine 81/1 (Mart 2018), 17-24. https://doi.org/10.18017/iuitfd.373670.
JAMA Kotil T, Erdoğan A, Mutlu HS, Doğan S, Solakoğlu S. The Effects of Titanium Dioxide Nanoparticles on Vitality and Ultrastructure of Yac-1 Lymphoma Cell Line. İst Tıp Fak Derg. 2018;81:17–24.
MLA Kotil, Tuğba vd. “The Effects of Titanium Dioxide Nanoparticles on Vitality and Ultrastructure of Yac-1 Lymphoma Cell Line”. Journal of Istanbul Faculty of Medicine, c. 81, sy. 1, 2018, ss. 17-24, doi:10.18017/iuitfd.373670.
Vancouver Kotil T, Erdoğan A, Mutlu HS, Doğan S, Solakoğlu S. The Effects of Titanium Dioxide Nanoparticles on Vitality and Ultrastructure of Yac-1 Lymphoma Cell Line. İst Tıp Fak Derg. 2018;81(1):17-24.

Contact information and address

Addressi: İ.Ü. İstanbul Tıp Fakültesi Dekanlığı, Turgut Özal Cad. 34093 Çapa, Fatih, İstanbul, TÜRKİYE

Email: itfdergisi@istanbul.edu.tr

Phone: +90 212 414 21 61